首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rare genotype G6P[9] was identified in two human group A rotavirus strains designated as KF14 and KF17, that were detected in stool specimens from children with diarrhea in Japan. VP7 gene sequences of these two strains were identical and genetically closely related to G6 human rotavirus strains reported in European countries and the United States. To our knowledge, this is the first report of detection of a G6 human rotavirus in Japan. For further genetic analysis to elucidate the origin of the G6 rotavirus, nearly full-length sequences of all 11 RNA segments were determined for the KF17 strain. The complete genomic constellation of KF17 was determined as G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, a novel genotype constellation for human rotavirus. Phylogenetic analysis indicated that VP6, VP1-3, and NSP2 genes of KF17 clustered with bovine-like G6 human strains and some animal strains into sub-lineages distinct from those of common DS-1-like G2 human rotaviruses. On the other hand, KF17 genes encoding VP4, NSP1, and NSP3-5 showed high sequence identities to the human G3P[9] strain AU-1, and clustered with AU-1 and some feline strains within the same lineage. These findings suggested that the G6P[9] human rotavirus detected in Japan may have occurred through reassortment among uncommon bovine-like human rotaviruses and human/feline AU-1-like rotaviruses.  相似文献   

2.
In 2004, an epidemiological survey of human rotavirus infection in Chiang Mai, Thailand detected two uncommon human rotavirus strains (CMH120/04 and CMH134/04) bearing AU-1-like G3P[9] genotypes in 1 year old children hospitalized with acute gastroenteritis. The CMH120/04 and CMH134/04 rotavirus strains were characterized by molecular analyses of their VP6, VP7, VP8*, and NSP4 gene segments as well as the determination of RNA patterns by polyacrylamide gel electrophoresis (PAGE). Analysis of the VP8* gene revealed a high level of amino acid sequence identities with those of P[9] rotavirus reference strains, ranging from 94.9% to 98.3%. The highest identities were shared with the human rotavirus AU-1 strain at 97.8% and 98.3% for CMH120/04 and CMH134/04 strains, respectively. Analysis of the VP7 gene sequence revealed the highest identities with G3 human rotavirus strain KC814 at 96.6% and 96.2% for CMH120/04 and CMH134/04 strains, respectively. Based on the analyses of VP7 and VP8* genes, CMH120/04 and CMH134/04 belonged to G3P[9] genotypes. In addition, analyses of VP6 and NSP4 sequences revealed a VP6 subgroup (SG) I, with NSP4 genetic group C specificities. Moreover, both strains displayed a long RNA electrophoretic pattern. The finding of uncommon G3P[9] rotaviruses in pediatric patients provided additional evidence of the genetic/antigenic diversities of human group A rotaviruses in the Chiang Mai area of Thailand.  相似文献   

3.
During the surveillance of rotavirus strains that were circulating in Argentinean children from 2000 to 2004, seven rotaviruses were detected bearing the genotype combination G9P[8]. The molecular characterization of the VP7 and NSP4 genes and the RNA migration patterns support the hypothesis that rotaviruses G9 could have been reintroduced into Argentina as a novel G9P[8] strain, rather than represent VP7 gene reassortants from G9P[6] strains that had been circulating previously in this country.  相似文献   

4.
Kirkwood  Carl D.  Gentsch  Jon R.  Glass  Roger I. 《Virus genes》1999,19(2):113-122
Two major and one minor genotype of the rotavirus NSP4 gene have been described. The sequences of 29 NSP4 genes from rotavirus isolates obtained in the United States during the 1996–1997 rotavirus season (types P[8]G1, P[8]G9, P[4]G2 and P[6]G9) and 10 strains isolated during previous rotavirus seasons (types P[8]G1 and P[4]G2) were determined. All NSP4 genes from strains with short E types (6 P[4]G2, 4 P[6]G9) belonged to genotype NSP4A, whereas all 19 strains with long E types (16 P[8]G1, 3 P[8]G9) had NSP4 genes of genotype NSP4B. Genetic variation within genotypes was low (2.3% for both NSP4A and NSP4B), confirming that the NSP4 genes are highly conserved. Nonetheless, at least two distinct sub-lineages could be detected within each genotype: strains isolated in the same year, regardless of geographic location, were more closely related or even identical at the deduced amino acid level; strains isolated in different years were more distinct. Thus, geographic distance did not affect genetic distance. Northern hybridization analysis with NSP4A and NSP4B total gene probes failed to detect any unusual combinations of the VP6 and NSP4 genes in 31 additional isolates from the 1996–1997 rotavirus season.  相似文献   

5.
Two G12 human rotavirus strains, CP727 and CP1030, were isolated from the respective diarrheic stools of an infant and an adult in Japan. VP7 gene sequences of strains CP727 and CP1030 showed high identity with that of the G12 prototype strain L26, and with those of G12 strains reported recently from Thailand, the United States, and India. VP4 gene sequences of strains CP727 and CP1030 showed the highest identity with those of P[9] rotaviruses. In Northern blot hybridization, strains CP727 and CP1030 were found to be closely related to strain AU-1 (G3P[9]); nine RNA segments hybridized to each other. Moreover, all segments each of the two Japanese G12 strains hybridized to those of the Thai G12 strain T152. These results suggest that Japanese G12 strains detected in this study are reassortants between a L26-like strain and a strain in the AU-1 genogroup. A similar reassortant was found in the Thai G12 strain T152.  相似文献   

6.
Serotyping of human rotavirus was conducted in 396 Japanese and 100 Thai rotavirus-positive fecal specimens collected from 1995 to 1997. Serotype G9 was found to be the third most common serotype with frequency of 16.2% in Thailand from 1996 to 1997. It was also detected in Japan with a low frequency (0.7%) in this year. The genetic analyses of VP4 and NSP4 genes of these G9 strains showed that 1 strain from Japan possessed P[8] genotype and NSP4 Wa-group with long electropherotype (e-type). In contrast, 5 strains from Thailand belonged to P[6] and 1 strain belonged to P[4]. All of the Thai strains were in the NSP4 KUN-group with a short e-type. Sequence analysis of their VP7 gene revealed that there was the highest homology among fecal G9 strains (> 96.3%, amino acid identity) and a relatively high degree of homology to standard viruses, F45 from Japan (95.4-96.3%, amino acid identity) and 116E from India (92-92.3%, amino acid identity). However, immunological analysis using G9 specific monoclonal antibodies (Mabs) against VP7 protein showed that the G9 strains isolated from the two countries had different antigenic specificity. It was confirmed further by intraserotypical phylogenetic analysis of VP7 amino acid. These results indicated that the prevalence of G9 rotavirus in 1996-1997 in Thailand was relative to the continuing recent emergence of it on a worldwide basis, while the Japanese G9 strain isolated in this survey was identified to have progenitors common to the F45 strain that was prevalent in 1985 in Japan. Phylogenetic analysis of VP7 amino acid of G1-14 prototype rotavirus showed that the G9 strains were most closely related to the equine G14 rotavirus FI23 strain but G3 strains, interserotypically. These findings suggest that G9 rotaviruses might be divided into two or more subtypes.  相似文献   

7.
8.
A distinct rotavirus strain (PTRV) was isolated in cell cultures from a stool sample obtained from a diarrheic 3-year-old female pig-tailed macaque (Macaca nemestrina) that was born at the breeding colony of the University of Washington in Seattle. Unlike other known simian rotavirus strains including vervet monkey rotavirus SA11 which bears P5B[2]:G3 or P6[1]:G3 specificity, rhesus monkey rotavirus MMU18006 with P5B[3]:G3 specificity, pig-tailed macaque rotavirus YK-1 with P[3]:G3 specificity and rhesus monkey rotavirus TUCH with P[24]:G3 specificity, the cell-culture-grown PTRV strain was shown to bear P6[1]:G8 specificity as determined by VP4 (P)- and VP7 (G)-specific neutralization assays as well as gene sequence analyses. The virus in the original diarrhea stool was also shown to bear genotypes P[1] and G8. In addition, the PTRV strain exhibited a "long" electropherotype, subgroup I specificity and NSP4 genotype A specificity. The PTRV probe formed (i) 8-9 hybrid bands with genomic RNAs of various bovine rotavirus strains and (ii) only 2-3 hybrid bands with simian rotavirus RNAs as demonstrated by RNA-RNA hybridization, suggesting a possible bovine origin of the virus. Serologic analysis of serum samples obtained from selected pig-tailed macaques in the colony suggested that a rotavirus bearing P[1]:G8 specificity was endemic among macaques for at least 8 years (1987-1994). This is the first report describing an isolation of a simian rotavirus bearing a non-G3 VP7 and possibly a P6[1] specificities. Because of its unique simian serotype, this virus may prove to be valuable in challenge studies in a non-human primate model in studies of rotavirus immunity.  相似文献   

9.
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2‐year‐old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full‐length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4‐P[6]‐I5‐R1‐C1‐M1‐A1‐N1‐T7‐E1‐H1. This genotype includes the porcine‐like VP6 genotype (I5) and bovine‐like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine‐human reassortant strain IAL28. To our knowledge, R479 is the first porcine–bovine reassortant rotavirus isolated from a human. J. Med. Virol. 82:1094–1102, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
A rotavirus surveillance study was undertaken in Slovenia from December 2005 to March 2006. Stool samples from 114 children hospitalized with acute viral gastroenteritis were collected from two main Slovenian hospitals. These confirmed rotavirus-positive samples were selected for a rotavirus G and P genotype prevalence study. Six untypable strains of genotype G were further analyzed with sequencing of the VP7, VP8*, and NSP4 genes. The findings of the study were that the G1 genotype was the most prevalent, found in 72 samples (63.2%), followed by G9 in 26 samples (22.8%), G4 in 10 samples (8.8%), and G3 in 2 samples (1.7%). All G genotypes were combined with the P[8] genotype specificity. After sequence analysis, one G8 and two G12 genotypes were also characterized. In a VP7-based phylogenetic analysis, the G8P[8] strain (SI-885/06) was more closely related to the Cody I801 bovine strain than to other human strains. Both G12 strains (SI-264/06 and SI-403/06) were shown to belong to the Se585 G12 cluster. In the VP8* phylogenetic tree, all analyzed strains except one, belonged to the P[8] lineage II and shared high identity in amino acid sequence. All characterized strains were clustered into the NSP4 genotype B. The molecular characterization of this G8 strain supports the theory of interspecies transmission of rotaviruses and animal-human genome reassortment. This is the first report on rotavirus G12 detection in Slovenia.  相似文献   

11.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. Two unusual rotavirus strains not previously reported in India, G11P[25] (CRI 10795) and G3P[3] (CRI 33594) were isolated from faecal samples of asymptomatic children in India. The strains were characterized by sequence analysis of the genes encoding the VP7, VP4, VP6, and NSP4. The G11P[25] strain was closely related to the human G11P[25] strains from Bangladesh (with 98% identity at the nucleotide [nt] level and the amino acid [aa] level for the VP7 gene and 96% identity at the nt and 98% at the aa level for the VP4 gene). The G3P[3] strain was found to be related to a G3P[3] strain isolated in Thailand (CMH222; 88% identity at the nt level and 97% at aa level for the VP7 gene and 84% identity at the nt level and 90% at the aa level for the VP4 gene). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G11P[25] strain was of VP6 subgroup II and NSP4 genotype B. The G3P[3] strain was identified as NSP4 genotype C and the VP6 gene showed 97% identity at the deduced amino acid level with strain CMH222 (Thailand) strain but did not cluster with sequences of SGI, SGII, SGI+II or SG-nonI/nonII. Both strains had gene segments of animal rotavirus origin suggesting inter-species transmission of rotavirus, and in the case of G11P[25] possibly underwent reassortment subsequently with human strains resulting in an animal-human hybrid strain.  相似文献   

12.
Rotavirus A (RVA) is the leading cause of acute viral gastroenteritis in children under 5 years of age worldwide. G9P[8] is a common RVA genotype that has been persistently prevalent in Jiangsu, China. To determine the genetic diversity of G9P[8] RVAs, 7 representative G9P[8] strains collected from Suzhou Children’s Hospital between 2010 and 2016 (named JS2010‐JS2016) were analyzed through whole‐genome sequencing. All evaluated strains showed the Wa‐like constellation G9‐P[8]‐I1‐R1‐C1‐M1‐A1‐N1‐T1‐E1‐H1. Furthermore, phylogenetic analysis revealed that the VP7 genes of all strains clustered into lineage G9‐III and G9‐VI. With the exception of strain JS2012 (P[8]‐4), the VP4 sequences of all strains belonged to the P[8]‐3 lineage. Sequencing further revealed that amino acid substitutions were present in the antigenic regions of the VP7 and VP4 genes of all strains. Moreover, there were multiple substitutions in antigenic sites I and II of the nonstructural protein 4 (NSP4) genes, whereas the other NSP genes were relatively conserved. In conclusion, our phylogenetic analysis of these 7 G9P[8] strains suggests that RVA varied across regions and time. Therefore, our findings suggest that continued surveillance is necessary to explore the molecular evolutionary characteristics of RVA for better prevention and treatment of acute viral gastroenteritis.  相似文献   

13.
During a surveillance study (November 2001-March 2005), one rare G15P[11] and two rare G15P[21] bovine group A rotavirus strains were detected in diarrhoeic calves in Eastern India. Sequence analysis of the VP8*, VP6, NSP4 and NSP5 genes of the G15P[11] strain confirmed its bovine origin. Although the NSP4 and NSP5 genes of the two G15P[21] strains were of bovine origin, their VP6 genes shared higher nucleotide and amino acid identities with simian strain SA11 (92.5-93.1% and 98.5-98.7%) than bovine strains (88.5-88.9% and 97-97.2%), and by phylogenetic analysis, exhibited clustering with SA11, distantly related to bovine strains. All these pointed towards a possible reassortment event of VP6 gene between bovine and simian (SA11-like) strains. Therefore, the present study provided molecular evidence for bovine origin of G15 strains and revealed a rare instance of genetic diversity in the bovine VP6 gene, otherwise conserved in group A rotavirus strains from cattle.  相似文献   

14.
A total of 162 rotavirus strains detected between 1996 and 2006 among individuals with diarrhea in Rio de Janeiro, Brazil, were analyzed by multiple‐gene genotyping. Characterization of strains was done by RT‐PCR assay for amplification and typing of the VP7‐, VP4‐, VP6‐, and NSP4‐encoding genes. Overall, 139 (85.8%) strains belonged to the common group A rotavirus combinations: 67 (41.4%) belonged to genotype G1‐P[8]‐I1‐E1; 18 (11.1%) were G2‐P[4]‐I2‐E2; 11 (6.8%) were G3‐P[8]‐I1‐E1; 12 (7.4%) were G4‐P[8]‐I1‐E1; and 31 (19.1%) were G9‐P[8]‐I1‐E1. Two samples presented mixed genotypes (G1 + G3‐P[8]‐I1‐E1 and G1 + G9‐P[9]‐I1‐E1) and rare combinations, such as G2‐P[6]‐I2‐E2 and G9‐P[6]‐I2‐E2, were detected in six (3.7%) strains. The results suggest a linkage among all four genes. Genotypes G1/G3/G4/G5/G9‐P[8] were correlated strongly to I1‐E1 genotypes and G2‐P[4]/P[6] were correlated to I2‐E2 genotypes. Unusual combinations of genes, such as G3‐P[9]‐I2‐E2, G9‐P[9]‐I1‐E2, and G3‐P[9]‐I3‐E3, were observed in 15 (9.3%) strains. The characterization of multiple genes allows a more complete analysis of the rotavirus isolates and provides evidence of natural reassortment of strains. J. Med. Virol. 82:1797–1802, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Rotavirus serotype G12 was initially identified in the Philippines in 1987 and was not described again until it reemerged more than 13 years later. G12 strains were first detected in the United States in 2002 and have recently assumed a worldwide distribution. The high similarity between the sequence of the major outer capsid VP7 gene of human G12 strains and the single porcine G12 isolate raised the prospect that human strains may have arisen through reassortment with porcine strains or, alternatively, that the porcine strain originally came from humans. We sequenced portions of the remaining 10 segments of two human G12 strains (G12P[8] and G12P[6]) and a currently circulating common strain (G1P[8]) identified during the 2005–2006 surveillance season and compared the sequences with those of strains available through GenBank. By comparison, the three strains were all Wa‐like and not porcine‐like. A newly outlined classification system proposed genotypes for each gene segment based on nucleotide similarity. Using this approach, gene segments VP1–3, VP6 and NSP1–5 grouped within the same genotype, indicating that the three strains analyzed were closely related. These results suggest that the novel G12P[8] strain could have been formed by the solitary introduction of a VP7 gene into a globally common rotavirus strain, G1P[8]. Classifying rotavirus strains based only on VP7 (G) and VP4 (P) genotype potentially underestimates diversity and sequence analysis of the other segments is required to assess the complete genetic relationships between strains. J. Med. Virol. 81:736–746, 2009 © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. The commonest G types in humans are G1-4 and G9. G12 is a rare human rotavirus (HRV) strain first reported in the Philippines. In this study, 13 G12 strains obtained from a community-based cohort and a hospital-based surveillance system in 2005 were characterized by phylogenetic analysis of partial nucleotide sequences of VP7, VP6, and NSP4 genes. Sequence and phylogenetic analysis of VP7 gene sequences showed that these southern Indian strains had the greatest homology with G12 strains recently reported from eastern India (97-99% identity both at the nucleotide level and deduced amino acid level) and less homology with the prototype G12 strain, L26 (89-90% identity at the nucleotide level and 90-94% at the deduced amino acid level). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G12 strains belonged to VP6 subgroup II and NSP4 genotype B. The P types associated with these strains were P[6] and P[8]. A G12 type-specific primer was designed for inclusion in an established VP7 G-typing multiplex RT PCR, and tested against a panel of known G types and untyped samples and was found to detect G12 strains in the multiplex-PCR. Close homology of the South Indian G12 strains to those from Kolkata suggests that G12 HRV strains are emerging in India. Methods for characterization of rotaviruses in epidemiological studies need to be updated frequently, particularly in developing countries.  相似文献   

17.
Among 1316 rotavirus specimens collected during strain surveillance in the United States from 1996 to 1999, most strains (95%) belonged to the common types (G1 to G4 and G9), while 5% were mixed infections of common serotypes, rare strains, or not completely typeable. In this report, 2 rare (P[9],G3) and 2 partially typeable (P[6],G?; P[9],G?) strains from that study were further characterized. The P[6] strain was virtually indistinguishable by hybridization analysis in 10 of its 11 gene segments with recently isolated P2A[6],G9 strains (e.g., U.S.1205) from the United States, but had a distinct VP7 gene homologous (94.7% a.a. and 90.2% nt) to the cognate gene from P1B[4],G12 reference strain L26. Thus, this serotype P2A[6],G12 strain represents a previously unrecognized reassortant. Three P3[9] strains were homologous (97.8-98.2% aa) in the VP8 region of VP4 to the P3[9],G3 feline-like reference strain AU-1, but had a high level of genome homology to Italian bovine-like, P3[9],G3 and P3[9],G6 rotavirus strains. Two of the U.S. P3[9] strains were confirmed to be type G3 (97.2-98.2% VP7 aa homology with reference G3 strain AU-1), while the other was most similar to Italian bovine-like strain PA151 (P3[9],G6), sharing 99.0% a.a. homology in VP7. Cross-neutralization studies confirmed all serotype assignments and represented the first detection of these rotavirus serotypes in the United States. The NSP4 genes of all U.S. P3[9] strains and rotavirus PA151 were most closely related to the bovine and equine branch within the DS-1 lineage, consistent with an animal origin. These results demonstrate that rare strains with P and G serotypes distinct from those of experimental rotavirus vaccines circulate in the United States, making it important to understand whether current vaccine candidates protect against these strains.  相似文献   

18.
This investigation describes the molecular characterization of P[6]G2 rotavirus strains from hospitalized neonates with community-acquired diarrhea (CAD), nosocomial diarrhea (ND), and asymptomatic nosocomial infection (ANI) in Belém, Brazil. Twenty-six rotavirus strains with P[6]G2 genotype were sequenced to genes coding for VP4, VP7, and NSP4 proteins. Phylogenetic analysis of the VP4 gene, including prototype strains RV3, ST3, M37, and U1205, showed that local P[6]G2 strains clustered forming a distinct lineage (bootstrap of 99%). Brazilian P[6]G2 strains had the highest homology (ranging from 96.0%-98.3%) with the African strain GR1107, G4P[6]. Phylogenetic tree for VP7 gene was constructed including old and new G2 African strains SA3958GR/97, SA356PT/96, SA514GR/87, SA4476PT/97, BF3676/99, GH1803/99, and representative strains of G1, G3, G4, G5, G8, and G9 genotypes. The Brazilian P[6]G2 samples fell into a distinct group (bootstrap value of 97%) and showed homology rates ranging from 92.1% to 93.5% with P[6]G2 African strains BF3676/99, GH1803/99, and SA3958GR/97. Nucleotide sequence analysis of the NSP4 gene, including human prototype strains S2, KUN, DS-1, RV5, RV3 and ST3, and animal prototype OSU, showed that all neonatal isolates fell into genotype A and clustered with a bootstrap value of 100%, with in-group similarities ranging from 99.3% to 100%. In this study no significant differences in nucleotide sequences of the VP4, VP7, and NSP4 genes could be observed when comparing diarrheic (CAD and ND) and non-diarrheic (ANI) babies. Monitoring of rotavirus strains in hospital environments is of particular importance, since it is claimed currently that an efficacious rotavirus vaccine, when available for routine use, will determine an impact on hospital-acquired rotavirus disease.  相似文献   

19.
Shi H  Chen J  Li H  Sun D  Wang C  Feng L 《Archives of virology》2012,157(10):1897-1903
The fifth most important G genotype, G9 rotavirus, is recognized as an emerging genotype that is spreading around the world. Sequence analysis was completed of a rare group A rotavirus, strain G9P[23], that was designated rotavirus A pig/China/NMTL/2008/G9P[23] and abbreviated as NMTL. It was isolated from a piglet with diarrhea in China. Nucleotide sequence analysis revealed that the VP7 gene clustered within the G9 lineage VId. The VP4 gene clustered within the rare P[23] genotype. NMTL is the first porcine G9 stain reported in China. Thus, to further characterize the evolutionary diversity of the NMTL strain, all gene segments were used to draw a phylogenetic tree. Based on the new classification system of rotaviruses, the NMTL sequence revealed a G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype with close similarity to human Wa-like and porcine strains. The results showed that (i) NSP2 and NSP4 genes of NMTL exhibited higher genetic relatedness to human group A rotaviruses than to porcine strains, (ii) the VP2 and VP4 genes clustered with porcine and porcine-like human strains, and (iii) VP1 genes clustered apart from the Wa-like human and porcine clusters. In view of rotavirus evolution, this report provides additional evidence to support the notion that the human and porcine rotavirus genomes might be related.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号