首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enhance transdermal delivery of atenolol, ethylene-vinyl acetate (EVA) matrix of drug containing penetration enhancer was fabricated. Effect of penetration enhancer on the permeation of atenolol through the excised rat skin was studied. Penetrating enhancers showed the increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene 2-oleyl ether showed the best enhancement. For the controlling transdermal delivery of atenolol, the application of EVA matrix containing permeation enhancer could be useful in the development of transdermal drug delivery system.  相似文献   

2.
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.  相似文献   

3.
The objective of the present study was to formulate a hydroxypropyl methylcellulose (HPMC) gel drug reservoir system with ethanol-water as a solvent system and limonene as a penetration enhancer for enhancing the transdermal delivery of nicorandil so as to develop and fabricate a membrane-moderated transdermal therapeutic system (TTS). The in vitro permeation of nicorandil was determined across rat abdominal skin from a solvent system consisting of ethanol or various proportions of ethanol and water. The ethanol-water (70:30 v/v) solvent system that provided an optimal transdermal permeation was used in formulating an HPMC gel drug reservoir system with selected concentrations (0% w/w, 4% w/w, 6% w/w, 8% w/w or 10% w/w) of limonene as a penetration enhancer for further enhancement of transdermal permeation of nicorandil. The amount of nicorandil permeated in 24 h was found increased with an increase in the concentration of limonene in the drug reservoir system up to a concentration of 6% w/w, but beyond this concentration there was no further increase in the amount of drug permeated. The flux of nicorandil was 370.9 +/- 4.2 microg/cm2 x h from the drug reservoir system with 6% w/w of limonene, which is about 2.6 times the required flux to be obtained across rat abdominal skin for producing the desired plasma concentration for the predetermined period in humans. The results of a Fourier Transform Infrared study indicated that limonene enhanced the percutaneous permeation of nicorandil by partially extracting the stratum corneum lipids. It is concluded that the HPMC gel drug reservoir system prepared with a 70:30 v/v ethanol-water solvent system containing 6% w/w of limonene is useful in designing and fabricating a membrane-moderated TTS of nicorandil.  相似文献   

4.
The aim of this work is to investigate penetration enhancers in proniosomes as a transdermal delivery system for nisoldipine. This was performed with the goal of optimising the composition of proniosomes as transdermal drug delivery systems. Plain proniosomes comprising sorbitan monostearate, cholesterol, ethanol and a small quantity of water were initially prepared. Subsequently, proniosomes containing lecithin or skin penetration enhancers were prepared and evaluated for transdermal delivery of nisoldipine. The plain proniosomes significantly enhanced the transdermal flux of nisoldipine to reach 12.18 μg cm−2 h−1 compared with a saturated aqueous drug solution which delivered the drug at a rate of 0.46 μg cm−2 h−1. Incorporation of lecithin into such proniosomes increased the drug flux to reach a value of 28.51 μg cm−2 h−1. This increase can be attributed to the penetration enhancing effect of lecithin fatty acid components. Replacing lecithin oleic acid (OA) produced proniosomes of comparable efficacy to the lecithin containing system. The transdermal drug flux increased further after incorporation of propylene glycol into the OA based proniosomes. Similarly, incorporation of isopropyl myristate into plain proniosomes increased drug flux. The study introduced enhanced proniosomes as a promising transdermal delivery carrier and highlighted the role of penetration enhancing mechanisms in enhanced proniosomal skin delivery. The study opened the way for another line of optimisation of niosome proconcentrates.  相似文献   

5.
经皮给药系统具有给药方便、血药浓度稳定、无首过效应等优点,但皮肤的屏障作用使得药物难以透过皮肤。近年来,出现了很多新型经皮给药的药物载体,如脂质体、醇质体、囊泡等,这些能通过化学方法促进药物的经皮渗透。而微针能穿透皮肤角质层形成微孔通道,通过物理方法促进药物的渗透,将微针与新型经皮给药载体结合能显著提高药物的经皮吸收的速率。本文对微针与新型经皮给药载体结合的最新研究进行了综述,并展望了微针辅助新型药物载体经皮给药的发展前景。  相似文献   

6.
A transdermal dosage form of terbutaline may be useful to prevent nocturnal wheezing by providing prolonged duration of action. It will also improve patient compliance and bioavailability. Controlled input of the drug would be an additional advantage as this will reduce the intersubject variablity. Preformulation studies were conducted to determine the feasibility of a transdermal dosage form of terbutaline. The drug solubility in propylene glycol was 6.3 mg mL?1. The apparent partition coefficient (n-octanol/deionized-water, pH 6.5) of terbutaline was 0.03. A pH-partition coefficient (octanol/buffer) profile indicated that the partition coefficient values were 0.02, 0.05 and 04 in buffers of pH 3, 7.4 and 9, respectively. The required drug flux through the human skin to attain therapeutic concentrations in the blood was calculated to be 3.3 μg cm?2 h?1 for a 10-cm2 transdermal delivery system. Rabbit, guinea-pig and human skin was tested as the penetration barrier using modified Franz diffusion cells. Terbutaline flux values through the rabbit and guinea-pig skin were 8.3 and 7.7 μg cm?2 h?1, respectively. The flux through human full-thickness skin and human epidermis were 0.6 and 3.6 μg cm?2 h?1. Azone (3% w/v), a skin penetration enhancer, significantly increased the drug flux through all the membranes tested. Based on these studies, transdermal delivery of terbutaline appears to be promising.  相似文献   

7.
The purpose of this study was to investigate solid lipid nanoparticles (SLN) hydrogel for transdermal iontophoretic drug delivery. Triamcinolone acetonide acetate (TAA), a glucocorticoids compound, was employed as the model drug. SLN containing the drug triamcinolone acetonide acetate (TAA-SLN) and their carbopol gel with stable physicochemical properties were prepared. The use of TAA-SLN carbopol gel as a vehicle for the transdermal iontophoretic delivery of TAA was evaluated in vitro using horizontal diffusion cells fitted with porcine ear skin. We found that the TAA-SLN gel possessed good stability, rheological properties, and high electric conductance. Transdermal penetration of TAA from TAA-SLN gel cross the skin tissue was significantly enhanced by iontophoresis. The enhancement of the cumulative penetration amount and the steady-state penetration flux of the penetrated drug were related to the particle size of TAA-SLN and the characteristics of the applied pulse electric current, such as density, frequency, and on/off interval ratio. These results indicated that SLN carbopol gel could be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.  相似文献   

8.
To overcome many challenges associated with antiretroviral drug therapy, novel drug delivery systems present an opportunity for formulation scientists to improve the management of patients with HIV/AIDS. The purpose of this study was to prepare a transdermal delivery system for zidovudine using different penetration enhancers incorporated in carbopol 971P gel and to evaluate the same for rheology, percent drug content, drug deposition, in vitro, ex vivo, and in vivo permeation across rat skin. The rheology studies indicated that 1% w/w carbopol gel had a higher linear viscoelastic region, good creep recovery, and desirable viscosity. Among all gel formulations, gel containing cineole and menthol as penetration enhancers attained a steady-state flux of 5.9 mg/cm(2)/h and 5.4 mg/cm(2)/h of zidovudine, respectively, leading to plasma concentration in the therapeutic range. The drug deposition was also found to be highest in the case of gel containing cineole and menthol as penetration enhancers. The results indicated a linear relationship between in vitro flux and in vivo bioavailability of zidovudine transdermal gel.  相似文献   

9.
Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain length, polarity, level of unsaturation and presence of some special groups such as ketones), the interaction between the stratum corneum and penetration enhancers may vary which will result in significant differences in penetration enhancement. Our review also discusses the various factors to be considered in the selection of an appropriate penetration enhancer for the development of transdermal delivery systems.  相似文献   

10.
The transdermal delivery of 2 fluorescent probes with similar molecular weight but different lipophilicity, into and through the skin from 2 commercially available transdermal bases, pluronic lecithin organogel, and Lipoderm® has been evaluated. First, in vitro penetration of fluorescein sodium and fluorescein (free acid) through porcine skin was evaluated. Retention and depth distribution profiles in skin were obtained by tape stripping and then followed by optical sectioning using multiphoton microscopy. The results showed that Lipoderm® led to an enhanced penetration of the hydrophilic compound, fluorescein sodium. For the lipophilic compound fluorescein (free acid), Lipoderm® performed similar to pluronic lecithin organogel base, where minimal drug was detected in either receptor phase. The skin retention and depth distribution results also showed that the hydrophilic fluorescein sodium had high skin retention with Lipoderm®, whereas fluorescein (free acid) had very low penetration and retention with increasing skin depth. Moreover, optical sectioning by multiphoton microscopy revealed an uneven distribution of probes across the skin in the x-y plane for both transdermal bases. This work showed that a hydrophilic compound has significantly increased skin penetration and retention when formulated with Lipoderm®, and the skin retention of the probe was the main determinant of its skin flux.  相似文献   

11.
Various enhancers, such as fatty acids (saturated, unsaturated), glycerides, propylene glycols, and non-ionic surfactants, have been incorporated in the loratadine-EVA matrix to increase the rate of skin permeation of loratadine from an EVA matrix. The enhancing effects of these enhancers on the skin permeation of loratadine were evaluated using a modified Keshary-Chien cell fitted with intact excised rat skin. The penetration enhancers showed a higher flux, probably due to the enhancing effect on the skin barrier, the stratum corneum. Among the enhancers used, such as the fatty acids, glycols, propylene glycols, and non-ionic surfactants, linoleic acid showed the best enhancement. For the enhanced transdermal delivery of loratadine, application of an EVA matrix containing a permeation enhancer might be useful in the development of a transdermal drug delivery system.  相似文献   

12.
醇传递体在透皮给药系统中的研究进展   总被引:1,自引:1,他引:0  
由于角质层的限速屏障作用,大部分药物透过皮肤的能力较差。醇传递体因能够将药物传递到皮肤深层和全身循环,且制备方法简单,使用安全而受到关注,为药物的经皮渗透提供了新的传递载体。醇传递体具有高度变形性、促进药物经皮渗透、缓释、防止药物代谢降解等优点,在药物的经皮吸收方面具有广阔的应用价值和开发前景。本文通过查阅国内外文献对醇传递体在透皮给药系统中的研究和应用等方面进行综述,为其今后在透皮领域的进一步发展提供借鉴。  相似文献   

13.
Glimepiride is a third generation oral antidiabetic sulphonylurea drug frequently prescribed to patients of type 2 diabetes. However, its oral therapy is encountered with bioavailability problems due to its poor solubility leading to irreproducible clinical response, in addition to adverse effects like dizziness and gastric disturbances. As a potential for convenient, safe and effective antidiabetic therapy, the rationale of this study was to develop a transdermal delivery system for glimepiride. Chitosan polymer was utilized in developing transdermal films for glimepiride. Chitosan has film forming ability, bioadhesive and absorption enhancing properties. Aiming at optimizing the drug delivery and circumventing the skin barrier function, inclusion complexation of glimepiride with beta-cyclodextrin (beta-CyD) as well as the use of several conventional penetration enhancers were monitored for augmenting the drug flux. The physical and mechanical properties of the prepared films were investigated using tensile testing, IR spectroscopy and X-ray diffractometry. Release studies revealed adequate release rates from chitosan films. Permeation studies through full thickness rat abdominal skin were conducted. High flux values were obtained from films comprising a combination of the drug with limonene and ethanol as well as from films containing glimepiride-beta-CyD complex. In vivo studies on diabetic rats for selected formulae revealed a marked therapeutic efficacy sustained for about 48 hours. The above-mentioned results shed light on feasibility of utilizing chitosan as an effective, safe transdermal delivery system for glimepiride characterized by increased patient compliance and better control of the disease.  相似文献   

14.
This work evaluated the occlusive versus non-occlusive application of microemulsion (ME) for the transdermal delivery of progesterone. The mechanisms of enhanced skin penetration were investigated. ME comprised of oleic acid, Tween 80, propylene glycol, and water, was used neat or with ethanol as a volatile cosurfactant. The ME formulations enhanced progesterone transdermal flux compared to the saturated drug solution in 14% aqueous propylene glycol (control). Ethanol-containing ME (EME) was better than the ethanol-free system (EFME). Open application of EFME produced a marginal reduction in flux compared to occlusive application. For EME, open application reduced the flux by 26–28% with the flux remaining significantly higher than that obtained with EFME. The mechanistic studies revealed synergism between ethanol and EFME with EME, producing greater flux than the sum of fluxes obtained from 40% ethanol in water and EFME. Penetration enhancement and supersaturation played a role in enhanced transdermal delivery, but other mechanisms were also possible. This study thus introduced EME as a transdermal delivery system for progesterone with good potential for open application as a spray.  相似文献   

15.
《Drug delivery》2013,20(5):199-209
Abstract

The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.  相似文献   

16.
Triprolidine-containing matrix was fabricated with ethylene-vinyl acetate (EVA) copolymer to control the release of the drug. The permeation rate of triprolidine in the stripped skin was greatly larger than that in the whole skin. Thus it showed that the stratum corneum acts as a barrier of skin permeation. The effect of penetration enhancer and stripping of skin on the permeation of triprolidine through the excised mouse skin was studied. Penetrating enhancers showed increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene-2-oleyl ether showed the best enhancement. The permeability of triprolidine was markedly increased with stripping of the mouse skin to remove the stratum corneum that acts as a barrier of skin permeation. For the controlling transdermal delivery of triprolidine, the application of EVA membrane containing permeation enhancer could be useful in the development of transdermal drug delivery system.  相似文献   

17.
几种非促渗剂方法对氟比洛芬凝胶经皮渗透的影响   总被引:1,自引:0,他引:1  
目的考察几种非促渗剂方法对氟比洛芬凝胶经皮渗透的影响。方法采取提高氟比洛芬浓度、制备了氟比洛芬羟丙基-β-环糊精包合物、氟比洛芬单乙醇胺盐和钠盐来改善氟比洛芬的经皮渗透。结果含药质量分数在2%以下时,氟比洛芬的经皮渗透速率随含量增加而升高。随着羟丙基-β-环糊精浓度的增加,氟比洛芬的经皮渗透速率降低。氟比洛芬单乙醇胺盐经皮渗透速率略高于氟比洛芬,而氟比洛芬钠盐经皮渗透速率远低于氟比洛芬。结论增加药物含量、合成氟比洛芬单乙醇胺盐对氟比洛芬有渗透促进作用,羟丙基-β-环糊精包合以及合成氟比洛芬钠盐对氟比洛芬有渗透抑制作用。  相似文献   

18.
本文考察了某些渗透促进剂如月桂氮Zhuo酮(AZ)、油酸(OA)、泊洛沙姆(POL)和丙二醇(PG)等对胰岛素体外经皮离子导入渗透性的影响。结果表明AZ对离子导入具有协同作用,PG能够增强这种作用,三者并用对胰岛素的经皮渗透具有特别显著的促渗效果。5%AZ/PG与离子导入并用后,较单独离子导入处理组的促渗因子为2.75。OA不能增强离子导入的作用,离子导入与某些渗透促进剂并用为胰岛素等大分子多肽类药物的透皮给药提供了新的思路和可能。  相似文献   

19.
The effect of various classes of chemical enhancers was investigated for the transdermal delivery of the anesthetic lidocaine across pig and human skin in vitro. The lipid disrupting agents (LDA) oleic acid, oleyl alcohol, butenediol, and decanoic acid by themselves or in combination with isopropyl myristate (IPM) showed no significant flux enhancement. However, the binary system of IPM/n-methyl pyrrolidone (IPM/NMP) improved drug transport. At 2% lidocaine dose, this synergistic enhancement peaked at 25:75 (v/v) IPM:NMP with a steady state flux of 57.6 +/- 8.4 microg cm(-2) h(-1) through human skin. This observed flux corresponds to a four-fold enhancement over a 100% NMP solution and over 25-fold increase over 100% IPM at the same drug concentration (p < 0.001). NMP was also found to co-transport through human skin with lidocaine free base and improve enhancement due to LDA. These findings allow a more rational approach for designing oil-based formulations for the transdermal delivery of lidocaine free base and similar drugs.  相似文献   

20.
In order to develop transdermal drug delivery system that facilitates the skin permeation of Pioglitazone (PZ) encapsulated in carbopol-based transgel system (proniosomes/niosome). The developed formulations were optimized using quality by design (QbD) approach and particle size, percentage entrapment and transdermal flux were determined. It was found to be more efficient delivery carriers with high encapsulation and enhanced flux value demonstrated that the permeation of PZ through skin was significantly increased with developed formulation. The transdermal enhancement from proniosome was 3.16 times higher than that of PZ from control formulation (ethanol buffer formulation, 3:7), which was further confirmed by confocal laser scanning microscopy. In vivo pharmacokinetic study of carbopol transgel showed a significant increase in bioavailability (2.26 times) compared with tablet formulation. It also showed better antidiabetic activity in comparison to marketed tablet, so our results suggest that carbopol-based transgel are an efficient carrier for delivery of pioglitazone through skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号