首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most individuals with Williams syndrome (WS) have a 1.6 Mb deletion in chromosome 7q11.23 that encompasses the elastin (ELN) gene, while most families with autosomal dominant supravalvar aortic stenosis (SVAS) have point mutations in ELN. The overlap of the clinical phenotypes of the two conditions (cardiovascular disease and connective tissue abnormalities such as hernias) is due to the effect of haploinsufficiency of ELN. SVAS families often have affected individuals with some WS facial features, most commonly in infancy, suggesting that ELN plays a role in WS facial gestalt as well. To find other genes contributing to the WS phenotype, we studied five families with SVAS who have small deletions in the WS region. None of the families had mental retardation, but affected family members had the Williams Syndrome Cognitive Profile (WSCP). All families shared a deletion of LIMK1, which encodes a protein strongly expressed in the brain, supporting the hypothesis that LIMK1 hemizygosity contributes to impairment in visuospatial constructive cognition. While the deletions from the families nearly spanned the WS region, none had a deletion of FKBP6 or GTF2I, suggesting that the mental retardation seen in WS is associated with deletion of either the centromeric and/or telomeric portions of the region. Comparison of these five families with reports of other individuals with partial deletions of the WS region most strongly implicates GTF2I in the mental retardation of WS.  相似文献   

2.
Williams syndrome (WS) is characterized by distinct facial changes, growth deficiency, mental retardation, and congenital heart defect (particularly supravalvular aortic stenosis), associated at times with infantile hypercalcemia. Molecular genetic studies have indicated that hemizygosity at the elastin locus (7q11.23) causes WS. The purpose of this study was to confirm that this regional deletion, involving the elastin locus, is the cause of WS in Japan, and to clarify the correlation between the phenotype and the elastin locus. Thirty-two patients with WS and thirty of their relatives were examined by fluorescent in situ hybridization (FISH), using the WS chromosome region (WSCR) probe. All patients had cardiovascular disease (100%), 30 had typical WS facial changes (94%), 31 had mental retardation or developmental delay (97%), 16 were small-for-date at birth (50%), 14 had short stature (44%), and 13 had dental anomalies (41%). No relatives showed any manifestation of WS. Hemizygosity for a region of 7q11.23, involving the elastin locus, was found in all WS patients, but was not found in the 30 relatives. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Williams-Beuren syndrome (WBS) is generally the consequence of an interstitial microdeletion at 7q11.23, which includes the elastin gene, thus causing hemizygosity at the elastin gene locus. The origin of the deletion has been reported by many authors to be maternal in approximately 60% and paternal in 40% of cases. Segregation analysis of grandparental markers flanking the microdeletion region in WBS patients and their parents indicated that in the majority of cases a recombination between grandmaternal and grandpaternal chromosomes 7 at the site of the deletion had occurred during meiosis in the parent from whom the deleted chromosome stemmed. Thus, the majority of deletions were considered a consequence of unequal crossing-over between homologous chromosomes 7 (interchromosomal rearrangement) while in the remaining cases an intrachromosomal recombination (between the chromatids of one chromosome 7) may have occurred. These results suggest that the majority of interstitial deletions of the elastin gene region occur during meiosis, due to unbalanced recombination while a minority could occur before or during meiosis probably due to intrachromosomal rearrangements. The recurrence risk of the interchromosomal rearrangements for sibs of a proband with non-affected parents must be negligible, which fits well with the observation of sporadic occurrence of almost all cases of WBS.   相似文献   

4.
Despite the heterogeneous clinical presentations, the majority of patients with 22q11.2 deletion syndrome (22q11.2 DS) have either a common recurrent 3 Mb deletion or a less common, 1.5 Mb nested deletion, with breakpoint sites in flanking low-copy repeats (LCR) sequences. Only a small number of atypical deletions have been reported and precisely defined. Haploinsufficiency of the TBX1 gene was determined to be the likely cause of 22q11.2 DS. The diagnostic procedure usually used is FISH using commercially probes (N25 or TUPLE1). However, this test does not contain TBX1, and fails to detect deletions that are either proximal or distal to the FISH probes. Here, we report on two patients with clinical features suggestive of 22q11.2 DS, a male infant with facial dysmorphia, pulmonary atresia, ventricular septal defect, neonatal hypocalcemia, and his affected mother, with facial dysmorphia, learning disabilities, and hypernasal speech. They were tested negative for 22q11.2 DS using N25 or TUPLE1 probes, but were shown deleted for a probe containing TBX1. Delineation of the deletion was performed using high-density SNP arrays (Illumina, 370K). This atypical deletion was spanning 1.89 Mb. The distal breakpoint resided in LCR-D, sharing the same distal breakpoint with the 3 Mb common deletion. The proximal breakpoint was located 105 kb telomeric to TUPLE1, representing a new breakpoint variant that does not correspond to known LCRs of 22q11.2. We conclude that FISH with the TBX1 probe is an accurate diagnostic tool for 22q11.2 DS, with a higher sensitivity than FISH using standard probes, detecting all but the rarest deletions, greatly reducing the false negative rate.  相似文献   

5.
FISH, using 16 probes, informative for more then 30 different loci, allowed us better to delineate the common deleted region in mature B-cell lymphoid malignancies with deletions of chromosome 7. The region spans about 5 cM and is located between bands 7q31 and 7q32, between loci D7S685 and D7S514. Genes Chromosom. Cancer 18:147–150, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
We report on a boy with myoclonus-dystonia (M-D), language delay, and malformative anomalies. Genetic investigations allowed the identification of an apparently balanced de novo reciprocal translocation, t(7;9)(q21;p23). Breakpoint-region mapping using fluorescent in situ hybridization (FISH) analysis of bacterial artificial chromosome (BAC) clone probes identified microdeletions of 3.7 and 5.2 Mb within 7q21 and 9p23 breakpoint regions, respectively. Genotyping with microsatellite markers showed that deletions originated from paternal alleles. The deleted region on chromosome 7q21 includes a large imprinted gene cluster. SGCE and PEG10 are two maternally imprinted genes. SGCE mutations are implicated in M-D. In our case, M-D is due to deletion of the paternal allele of the SGCE gene. PEG10 is strongly expressed in the placenta and is essential for embryo development. Prenatal growth retardation identified in the patient may be due to deletion of the paternal allele of the PEG10 gene. Other genes in the deleted region on chromosome 7 are not imprinted. Nevertheless, a phenotype can be due to haploinsufficiency of these genes. KRIT1 is implicated in familial forms of cerebral cavernous malformations, and COL1A2 may be implicated in very mild forms of osteogenesis imperfecta. The deleted region on chromosome 9 overlaps with the candidate region for monosomy 9p syndrome. The proband shows dysmorphic features compatible with monosomy 9p syndrome, without mental impairment. These results emphasize that the phenotypic abnormalities of apparently balanced de novo translocations can be due to cryptic deletions and that the precise mapping of these aneusomies may improve clinical management.  相似文献   

7.
Deletion at 13q14 is detected by fluorescence in situ hybridization (FISH) in about 50% of chronic lymphocytic leukemia (CLL). Although CLL with 13q deletion as the sole cytogenetic abnormality (del13q-only) usually have good prognosis, more aggressive clinical courses are documented for del13q-only CLL carrying higher percentages of 13q deleted nuclei. Moreover, deletion at 13q of different sizes have been described, whose prognostic significance is still unknown. In a multi-institutional cohort of 342 del13q-only cases and in a consecutive unselected cohort of 265 CLL, we investigated the prognostic significance of 13q deletion, using the 13q FISH probes locus-specific identifier (LSI)-D13S319 and LSI-RB1 that detect the DLEU2/MIR15A/MIR16-1 and RB1 loci, respectively. Results indicated that both percentage of deleted nuclei and presence of larger deletions involving the RB1 locus cooperated to refine the prognosis of del13q-only cases. In particular, CLL carrying <70% of 13q deleted nuclei with deletions not comprising the RB1 locus were characterized by particularly long time-to-treatment. Conversely, CLL with 13q deletion in <70% of nuclei but involving the RB1 locus, or CLL carrying 13q deletion in ≥70% of nuclei, with or without RB1 deletions, collectively experienced shorter time-to-treatment. A revised flowchart for the prognostic FISH assessment of del13q-only CLL, implying the usage of both 13q probes, is proposed.  相似文献   

8.
Smith–Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.  相似文献   

9.
Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma   总被引:13,自引:0,他引:13  
In an allelotyping study prostatic carcinoma, we found the highest frequency of allelic deletions on chromosomes 8, 10, 16, and 18. In all cases with allelic deletions, at least one of the chromosomes 8, 10, and 16 were involved. A detailed deletion mapping of these chromosomes in 18 cases was carried out with probes that detect restriction fragment length polymorphisms (RFLP) on chromosomes 8 (6 probes), 10 (11 probes), and 16 (9 probes). The highest frequency of allelic deletions were found on 8p (65%), where the minimally deleted region was between the PLAT locus and pter. The long arm of chromosome 16 had allelic deletions in 56% of informative cases, with three different break points, the most distal being located between D16S4 and D16S7. Chromosome 10 exhibited a complex deletion pattern with terminal deletions of the p or the q arm (2 cases each), a deletion pattern that could be interpreted as nonreciprocal translocations of the q arm (2 cases), or allelic losses on all informative loci, suggesting monosomy (2 cases). Our data suggest that tumor suppressor genes involved in the oncogenesis of prostatic carcinoma may be localized between 8 pter and the PLAT locus and that additional/alternative tumor suppressor genes may be localized on chromosome 10 and on the long arm of chromosome 16 distal to the D16S4 locus.  相似文献   

10.
Over 90% of patients with DiGeorge syndrome (DGS) or velocardiofacial syndrome (VCFS) have a microdeletion at 22q11.2. Given that these deletions are difficult to visualize at the light microscopic level, fluorescence in situ hybridization (FISH) has been instrumental in the diagnosis of this disorder. Deletions on the short arm of chromosome 10 are also associated with a DGS-like phenotype. Since deletions at 22q11.2 and at 10p13p14 result in similar findings, we have developed a dual-probe FISH assay for screening samples referred for DGS or VCFS in the clinical laboratory. This assay includes two test probes for the loci, DGSI at 22q11.2 and DGSII at 10p13p14, and centromeric probes for chromosomes 10 and 22. Of 412 patients tested, 54 were found to be deleted for the DGSI locus on chromosome 22 (13%), and a single patient was found deleted for the DGSII locus on chromosome 10 (0. 24%). The patient with the 10p deletion had facial features consistent with VCFS, plus sensorineural hearing loss, and renal anomalies. Cytogenetic analysis showed a large deletion of 10p [46, XX,del(10)(p12.2p14)] and FISH using a 10p telomere region-specific probe confirmed the interstitial nature of the deletion. Analysis for the DGSI and the DGSII loci suggests that the deletion of the DGSII locus on chromosome 10 may be 50 times less frequent than the deletion of DGSI on chromosome 22. The incidence of deletions at 22q11.2 has been estimated to be 1 in 4000 newborns; therefore, the deletion at 10p13p14 may be estimated to occur in 1 in 200,000 live births.  相似文献   

11.
Williams–Beurens syndrome (WBS) is a rare genetic disorder caused by a recurrent 7q11.23 microdeletion. Clinical characteristics include typical facial dysmorphisms, weakness of connective tissue, short stature, mild to moderate intellectual disability and distinct behavioral phenotype. Cardiovascular diseases are common due to haploinsufficiency of ELN gene. A few cases of larger or smaller deletions have been reported spanning towards the centromeric or the telomeric regions, most of which included ELN gene. We report on three patients from two unrelated families, presenting with distinctive WBS features, harboring an atypical distal deletion excluding ELN gene. Our study supports a critical role of CLIP2, GTF2IRD1, and GTF2I gene in the WBS neurobehavioral profile and in craniofacial features, highlights a possible role of HIP1 in the autism spectrum disorder, and delineates a subgroup of WBS individuals with an atypical distal deletion not associated to an increased risk of cardiovascular defects.  相似文献   

12.
We present two patients with the full Williams syndrome (WS) phenotype carrying a smaller deletion than typically observed. The deleted region spans from the elastin gene to marker D7S1870. This observation narrows the minimal region of deletion in WS and suggests that the syntaxin 1A and frizzled genes are not responsible for the major features of this developmental disorder and provides important insight into understanding the genotype-phenotype correlation in WS.  相似文献   

13.
Fluorescence in situ hybridisation (FISH) and conventional chromosome analysis were performed on a series of 52 patients with classical Williams-Beuren syndrome (WBS), suspected WBS, or supravalvular aortic stenosis (SVAS). In the classical WBS group, 22/23 (96%) had a submicroscopic deletion of the elastin locus on chromosome 7, but the remaining patient had a unique interstitial deletion of chromosome 11 (del(11)(q13.5q14.2)). In the suspected WBS group 2/22 (9%) patients had elastin deletions but a third patient had a complex karyotype including a ring chromosome 22 with a deletion of the long arm (r(22)(p11-->q13)). In the SVAS group, 1/7 (14%) had an elastin gene deletion, despite having normal development and minimal signs of WBS. Overall, some patients with submicroscopic elastin deletions have fewer features of Williams-Beuren syndrome than those with other cytogenetic abnormalities. These results, therefore, emphasise the importance of a combined conventional and molecular cytogenetic approach to diagnosis and suggest that the degree to which submicroscopic deletions of chromosome 7 extend beyond the elastin locus may explain some of the phenotypic variability found in Williams-Beuren syndrome.  相似文献   

14.
PTEN haploinsufficiency is common in hormone‐sensitive prostate cancer, though the incidence of genomic deletion and its downstream effects have not been elucidated in clinical samples of hormone refractory prostate cancer (HRPC). Progression to androgen independence is pivotal in prostate cancer and mediated largely by the androgen receptor (AR). Since this process is distinct from metastatic progression, we examined alterations of the PTEN gene in locally advanced recurrent, non‐metastatic human HRPC tissues. Retrospective analyses of PTEN deletion status were correlated with activated downstream phospho‐Akt (p‐Akt) pathway proteins and with the androgen receptor. The prevalence of PTEN genomic deletions in transurethral resection samples of 59 HRPC patients with known clinical outcome was assessed by four‐colour FISH analyses. FISH was performed using six BAC clones spanning both flanking PTEN genomic regions and the PTEN gene locus, and a chromosome 10 centromeric probe. PTEN copy number was also evaluated in a subset of cases using single nucleotide polymorphism (SNP) arrays. In addition, the samples were immunostained with antibodies against p‐Akt, p‐mTOR, p‐70S6, and AR. The PTEN gene was deleted in 77% of cases, with 25% showing homozygous deletions, 18% homozygous and hemizygous deletions, and 34% hemizygous deletions only. In a subset of the study group, SNP array analysis confirmed the FISH findings. PTEN genomic deletion was significantly correlated to the expression of downstream p‐Akt (p < 0.0001), AR (p = 0.025), and to cancer‐specific mortality (p = 0.039). PTEN deletion is common in HRPC, with bi‐allelic loss correlating to disease‐specific mortality and associated with Akt and AR deregulation. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

15.
Over 90% of patients with DiGeorge syndrome (DGS) or velocardiofacial syndrome (VCFS) have a microdeletion at 22q11.2. Given that these deletions are difficult to visualize at the light microscopic level, fluorescence in situ hybridization (FISH) has been instrumental in the diagnosis of this disorder. Deletions on the short arm of chromosome 10 are also associated with a DGS‐like phenotype. Since deletions at 22q11.2 and at 10p13p14 result in similar findings, we have developed a dual‐probe FISH assay for screening samples referred for DGS or VCFS in the clinical laboratory. This assay includes two test probes for the loci, DGSI at 22q11.2 and DGSII at 10p13p14, and centromeric probes for chromosomes 10 and 22. Of 412 patients tested, 54 were found to be deleted for the DGSI locus on chromosome 22 (13%), and a single patient was found deleted for the DGSII locus on chromosome 10 (0.24%). The patient with the 10p deletion had facial features consistent with VCFS, plus sensorineural hearing loss, and renal anomalies. Cytogenetic analysis showed a large deletion of 10p [46,XX,del(10)(p12.2p14)] and FISH using a 10p telomere region‐specific probe confirmed the interstitial nature of the deletion. Analysis for the DGSI and the DGSII loci suggests that the deletion of the DGSII locus on chromosome 10 may be 50 times less frequent than the deletion of DGSI on chromosome 22. The incidence of deletions at 22q11.2 has been estimated to be 1 in 4000 newborns; therefore, the deletion at 10p13p14 may be estimated to occur in 1 in 200,000 live births. Am. J. Med. Genet. 91:313–317, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
Although abnormalities of chromosome 6 have frequently been observed in Burkitt's lymphoma (BL), they have 50 far not been defined by modern cytogenetic and molecular methods. By a combination of high-resolution chromosome banding, fluorescence in situ hybridization (FISH), and loss of heterozygosity (LOH) analysis, we have examined the nature of aberrations affecting chromosome 6 in 7 previously established BL cell lines. All cell lines exhibited the characteristic translocations associated with BL; 5 had t(814)(q24;q32) and 2 had t(8;22)(q24;q11). Three cell lines had deletions of 6q; 3 others had rearrangements affecting 6q, whereas one cell line had apparently normal chromosomes 6. FISH analysis of the three deletions established that they were interstitial. LOH analysis with probes mapped to the 6q26-27 region confirmed the sub-telomeric interstitial deletion in cell line BL-108, which had a del(6)(q23q27). All informative loci mapped to 6q26-27 (5/7) were deleted in BL-74, which had no apparent cytogenetic abnormality in chromosome 6, thus documenting a sub-microscopic deletion. These data define the cytogenetic and molecular limits of 6q deletions in BL and are consistent with our previous demonstration of LOH analysis of the site of a candidate tumor suppressor gene in the 6q25-27 region. Genes Chrom Cancer 9:13-18 (1994). ©1994 Wiley-Liss, Inc.  相似文献   

17.
Deletion of 3p13 has been reported from about 20% of prostate cancers. The clinical significance of this alteration and the tumour suppressor gene(s) driving the deletion remain to be identified. We have mapped the 3p13 deletion locus using SNP array analysis and performed fluorescence in situ hybridization (FISH) analysis to search for associations between 3p13 deletion, prostate cancer phenotype and patient prognosis in a tissue microarray containing more than 3200 prostate cancers. SNP array analysis of 72 prostate cancers revealed a small deletion at 3p13 in 14 (19%) of the tumours, including the putative tumour suppressors FOXP1, RYBP and SHQ1. FISH analysis using FOXP1‐specific probes revealed deletions in 16.5% and translocations in 1.2% of 1828 interpretable cancers. 3p13 deletions were linked to adverse features of prostate cancer, including advanced stage (p < 0.0001), high Gleason grade (p = 0.0125), and early PSA recurrence (p = 0.0015). In addition, 3p13 deletions were linked to ERG+ cancers and to PTEN deletions (p < 0.0001 each). A subset analysis of ERG+ tumours revealed that 3p13 deletions occurred independently from PTEN deletions (p = 0.3126), identifying tumours with 3p13 deletion as a distinct molecular subset of ERG+ cancers. mRNA expression analysis confirmed that all 3p13 genes were down regulated by the deletion. Ectopic over‐expression of FOXP1, RYBP and SHQ1 resulted in decreased colony‐formation capabilities, corroborating a tumour suppressor function for all three genes. In summary, our data show that deletion of 3p13 defines a distinct and aggressive molecular subset of ERG+ prostate cancers, which is possibly driven by inactivation of multiple tumour suppressors. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

18.
Multiple myeloma is a clonal malignancy of plasma cells in the bone marrow. Risk stratification is partly based on cytogenetic findings that include abnormalities of the IGH locus as determined by fluorescence in situ hybridization (FISH), such as rearrangements that result in either standard‐risk or high‐risk gene fusions. IGH deletions have been evaluated as a group in multiple myeloma patients with respect to cumulative outcomes but have provided limited guidance. Whether these deletions have the potential to result in gene fusions and thus further stratify patients is unknown. We identified 229 IGH deletions in patients referred for plasma cell dyscrasia genetic testing over 5.5 years. Follow‐up was conducted on 208 of the deletions with dual fusion FISH probes for standard‐risk (IGHCCND1) and high‐risk IGH gene fusions (IGHFGFR3, IGHMAF, IGHMAFB). Of all deletions identified with follow‐up, 44 (21%) resulted in a gene fusion as detected by FISH, 15 (7%) of which were fusion partners associated with high‐risk multiple myeloma. All fusion‐positive 3′‐IGH deletions (6 fusions) resulted in high‐risk IGHFGFR3 fusions. Of the 15 high‐risk fusion‐positive cases, eight were without other high‐risk cytogenetic findings. This study is the first to evaluate the presence of IGH gene fusions upon identification of IGH deletions and to characterize the deletion locus. Importantly, these findings indicate that follow‐up FISH studies with dual fusion probes should be standard of care when IGH deletions are identified in multiple myeloma.  相似文献   

19.
Chromosome 22q11.2 deletions are found in almost 90% of patients with DiGeorge/velocardiofacial syndrome (DGS/VCFS). Large, chromosome-specific low copy repeats (LCRs), flanking and within the deletion interval, are presumed to lead to misalignment and aberrant recombination in meiosis resulting in this frequent microdeletion syndrome. We traced the grandparental origin of regions flanking de novo 3 Mb deletions in 20 informative three-generation families. Haplotype reconstruction showed an unexpectedly high number of proximal interchromosomal exchanges between homologs, occurring in 19/20 families. Instead, the normal chromosome 22 in these probands showed interchromosomal exchanges in 2/15 informative meioses, a rate consistent with the genetic distance. Meiotic exchanges, visualized as MLH1 foci, localize to the distal long arm of chromosome 22 in 75% of human spermatocytes tested, also reflecting the genetic map. Additionally, we found no effect of proband gender or parental age on the crossover frequency. Parental origin studies in 65 de novo 3 Mb deletions (including these 20 patients) demonstrated no bias. Unlike Williams syndrome, we found no chromosomal inversions flanked by LCRs in 22 sets of parents of 22q11 deleted patients, or in eight non-deleted patients with a DGS/VCFS phenotype using FISH. Our data are consistent with significant aberrant interchromosomal exchange events during meiosis I in the proximal region of the affected chromosome 22 as the likely etiology for the deletion. This type of exchange occurs more often than is described for deletions of chromosomes 7q11, 15q11, 17p11 and 17q11, implying a difference in the meiotic behavior of chromosome 22.  相似文献   

20.
Smith-Magenis syndrome (SMS) is a mental retardation syndrome with distinctive behavioral characteristics, dysmorphic features, and congenital anomalies usually associated with an interstitial deletion of chromosome 17p11.2. While high quality G-banding will identify most SMS patients, fluorescent in situ hybridization (FISH) is the recommended test for confirmation of an SMS diagnosis. Recently, haploinsufficiency of the RAI1 gene due to deletion or mutation was determined to be the likely cause of SMS. All diagnostic FISH probes available commercially contain the FLII gene and are approximately 580 kb centromeric to RAI1. We present two patients with SMS who have interstitial deletions at 17p11.2 but are not deleted for currently available commercial FISH probes that include FLII; both patients have deletions that are demonstrated with probes containing the RAI1 gene. We recommend that for diagnostic accuracy, all future FISH tests for SMS be performed with probes containing the RAI1 gene, as some atypical deletions in the region critical to the SMS phenotype will otherwise be missed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号