首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Fluxes of 45Ca2+ were studied in β-cell rich islets of non-inbred ob/ob-mice, using LaCl3 to wash out extracellular and superficially bound 45Ca2+. The ionophore A-23187 (10,μM) increased the 45Ca2+ uptake in islets both at 3 and 20 mM D-glucose, the effect being more pronounced after 10 min than after 120 min of incubation. In incubations for 120 min, 20 mM D-glucose induced a higher uptake of 45Ca2+ than did A-23187. The ionophore enhanced the unidirectional efflux of 45Caa+ from preloaded islets. Pretreatment of islets with 20 mM D-glucose in non-radioactive medium inhibited the subsequent D-glucose-induced 45Ca2+ uptake. Similar pretreatment with A-23187 increased the subsequent ionophore-induced 45Ca2+ uptake. The results suggest that A-23187 acts by catalyzing Ca2+ fluxes across the β-cell plasma membrane. The different effects of D-glucose and A-23187 on 45Ca2+ fluxes suggest that the two agents act through different mechanisms in the β-cells.  相似文献   

2.
Fluxes of 45Ca2+ were studied in beta-cell rich islets of non-inbred ob/ob-mice, using LaCl3 to wash out extra-cellular and superficially bound 45Ca2+. The ionophore A-23187 (10 microM) increased the 45Ca2+ uptake in islets both at 3 and 20 mM D-glucose, the effect being more pronounced after 10 min than after 120 min of incubation. In incubations for 120 min, 20 mM D-glucose induced a higher uptake of 45Ca2+ than did A-23187. The ionophore enhanced the unidirectional efflux of 45Ca2+ from preloaded islets. Pretreatment of islets with 20 mM D-glucose in non-radioactive medium inhibited the subsequent D-glucose-induced 45Ca2+ uptake. Similar pretreatment with A-23187 increased the subsequent ionophore-induced 45Ca2+ uptake. The results suggest that A-23187 acts by catalyzing Ca2+ fluxes across the beta-cell plasma membrane. The different effects of D-glucose and A-23187 on 45Ca2+ fluxes suggest that the two agents act through different mechanisms in the beta-cells.  相似文献   

3.
Microdissected pancreatic islets of noninbredob/ob-mice were used to study ionic effects on the lanthanum-nondisplaceable45Ca2+ uptake by islet cells. Omission of Mg2+ from the incubation medium had no effect, but the45Ca2+ uptake was increased by omission of Na+ and decreased by omission of K+. Excess Mg2+ (1.2–15 mM) inhibited and excess K+ (4.7–25 mM) stimulated the45Ca2+ uptake in a concentration-dependent manner. Stimulation of45Ca2+ uptake in Na+-deficient islets was associated with an enhancement of the basal insulin release. Total abolishment of glucose-stimulated45Ca2+ uptake in K+-deficient islets did not preclude a significant secretory response to glucose. It is concluded that the lanthanum-nondisplaceable45Ca2+ uptake shows a partial correlation to insulin release.  相似文献   

4.
1. Fluxes of 45Ca2+ were studied in pancreatic islets from non-inbred ob/ob-mice. Because La3+ blocked the transmembrane fluxes of 45Ca2+ in islet cells, incubations aimed at measuring glucose-induced changes of the intracellular Ca2+ were ended by washing the islets with 2 mM-La3+ for 60 min. 2. Uptake of 45Ca2+ progressed for 2 hr; the intracellular concentration of exchangable Ca2+ was about 7 m-mole/kg dry wt., as estimated from the isotope distribution at apparent equilibrium in islets exposed to 3 mM D-glucose. Raising the D-glucose concentration to 20 mM enhanced the 45 Ca2+ uptake whether or not the islets had first been equilibrated with the isotope. The stimulatory effect of D-glucose was observed in Tris buffer containing no anions but Cl- as well as in polyanionic bicarbonate buffer. The effect could not be reproduced with equimolar L-glucose. 3. The rate of 45Ca2+ release was the same whether the islets had been pre-loaded in the presence of 3 or 20 mM D-glucose. Thus the 45Ca2+ that had been taken up in response to 20 mM D-glucose appeared to be released much more slowly than the bulk of intracellular 45Ca2+. The release of 45Ca2+ was not significantly influenced by D-glucose during the release period. Incubation for 30 min was require for half of the radioactivity to be released. 4. The rates of insulin secretion were about the same in uni-anionic Tris buffer as in polyanionic bicarbonate buffer. A marked insulin secretory response to 20 mM D-glucose was observed in either buffer. 5. It is concluded that 20 mM D-glucose causes a net uptake of Ca2+ from the extracellular fluid into the interior of the beta-cells. This uptake is probably not regulated at the level of the plasma membrane but more likely reflects an increased affinity of some intracellular phase or compartment for the ion. Because the observed uptake and release of intracellular 45Ca2+ are slow processes in comparison with the rapid effects of extracellular Ca2+ on insulin secretion, insulin secretion may also depend on a more superficial and La3+-displacable Ca2+ pool.  相似文献   

5.
A possible role for Ca2+ in the alpha-adrenoceptor-induced inhibition of glucose-stimulated insulin secretion was studied in isolated rat islets by the use of the selective alpha 2-adrenoceptor agonist clonidine. We found that clonidine, in contrast to the alpha 1-adrenoceptor agonist phenylephrine, inhibited glucose-stimulated insulin secretion at dose levels below 10(-6) mol l-1. In islets preloaded with 45Ca2+ and perifused at 2 mmol l-1 Ca2+, clonidine (10(-6) mol l-1) reduced the glucose (13.3 mmol l-1)-stimulated 45Ca2+ efflux during both the first and second phases of insulin secretion. Furthermore, the inhibitory effect of clonidine on glucose (13.3 mmol l-1)-stimulated insulin secretion was partially counteracted by raising the extracellular Ca2+ concentrations. Moreover, the calcium channel agonist Bay K 8644 counteracted the inhibition by clonidine on glucose-stimulated insulin secretion. Our results suggest that selective alpha 2-adrenoceptor-induced inhibition of glucose-stimulated insulin secretion is mediated, at least partially, by restraint of Ca2+-influx. This action might in turn be exerted through interference with the voltage-dependent calcium channels.  相似文献   

6.
This is the first study using the selective agonist/antagonist stereoisomers of dihydropyridine 202791 to investigate stimulus-secretion coupling in pancreatic islet cells. We studied effects of the (+)(Ca2+ channel agonist) and (-)(Ca2+ channel antagonist) forms of the dihydropyridine, on 45calcium net uptake, insulin secretion, and membrane potential measured in rodent islets. The antagonist partially inhibited glucose-induced insulin secretion and Ca2+ uptake; however, the potassium-induced Ca2+ uptake was completely inhibited. The antagonist did not completely block glucose-evoked spike activity. Addition of the agonist enhanced insulin release and Ca2+ uptake in the presence of 5.6 mM-glucose, but did not increase insulin release or Ca2+ uptake in 16.7 mM-glucose. In the presence of tetraethylammonium (TEA), (+)202791 increased and (-)202791 decreased the duration of glucose-induced action potentials. The results again confirm the presence of a dihydropyridine-sensitive Ca2+ channel in pancreatic B-cells. In addition these data suggest that in these cells there is activation of a dihydropyridine-insensitive Ca2+ entry in the presence of glucose.  相似文献   

7.
45Ca2+ uptake evoked by depolarization of PC12 pheochromocytoma cells with K+ was reduced approximately 90% by prior depolarization in Ca2+-containing medium. Prior depolarization without added Ca2+ reduced 45Ca2+ uptake by only about 20%. The Ca2+ channel agonists, BAY K 8644 and CGP 28392, had no effect on inactivation of 45Ca2+ uptake. These findings suggest that (1) voltage-gated Ca2+ channels of PC12 cells undergo inactivation, (2) inactivation is Ca2+-dependent rather than voltage-dependent, and (3) Ca2+ channel agonists do do not promote Ca2+ flux by inhibiting Ca2+ channel inactivation.  相似文献   

8.
The effects of epinephrine on insulin release, 86Rb+ fluxes, and 45Ca2+ fluxes were measured in rat islets. In the presence of 10 mM glucose, epinephrine did not affect 86Rb+ influx and slightly increased net uptake. It caused a monophasic inhibition of release and a biphasic decrease in 86Rb+ efflux. A maximum effect was observed with 1 microM epinephrine, but release was more markedly inhibited by lower concentrations of the catecholamine than was the efflux. Epinephrine inhibition of release and efflux was reversed by phentolamine and yohimbine but not by prazosin or propranolol. It was mimicked by norepinephrine and clonidine. The inhibition of 86Rb+ efflux persisted when insulin release was prevented by omission of extracellular calcium. Ouabain or high K+ markedly increased 86Rb+ efflux in the presence of glucose and epinephrine; theophylline and quinine had a similar but smaller effect. None of these agents restored insulin release. Epinephrine abolished the insulinotropic effect of arginine without altering the rise in 86Rb+ efflux triggered by the amino acid. Epinephrine abolished insulin release but inhibited 45Ca2+ efflux only partially during stimulation by glucose or by barium plus theophylline. The results show that epinephrine does not inhibit insulin release by activating the Na pump or by increasing K permeability of the B cell membrane. On the contrary, the inhibition of release is accompanied by a decrease in 86Rb+ efflux. Both result from activation of alpha 2-receptors but are not causally related; they could be due to remodeling of Ca2+ fluxes and/or changes in cAMP levels.  相似文献   

9.
Exposure to the beta 2-adrenoceptor agonist terbutaline resulted in a transient stimulation of 45Ca2+ efflux from 45Ca2+ preloaded rat islets perfused in 2 mM Ca2+ and 8.3 mM glucose. Concomitantly, an increase in insulin secretion occurred. Under the same experimental conditions, the alpha-adrenoceptor agonist noradrenaline promptly inhibited insulin release without any apparent influence on 45Ca2+ efflux. In contrast, in a medium containing 2 mM Ca2+ and a low glucose concentration (2.8 mM), terbutaline stimulated insulin secretion without any apparent effects on 45Ca2+ efflux. Noradrenaline had no effect on insulin secretion or 45Ca2+ efflux in this medium. When islets were perfused with 8.3 mM glucose in a Ca2+ deficient medium, with or without addition of the chelating agent EGTA, terbutaline induced a marginal stimulation of insulin secretion and a negligible stimulation of 45Ca2+ efflux. On the contrary, noradrenaline stimulated to an immediate and notable 45Ca2+ efflux in these Ca2+ deficient media. Noradrenaline also clearly inhibited insulin secretion, though less markedly and with a slower onset than in islets perfused in 2 mM Ca2+. When the islets were perfused in a Ca2+ deficient medium with 2.8 mM glucose, terbutaline had a slight insulin releasing effect, but stimulated 45Ca2+ efflux potently. Noradrenaline had no influence on insulin secretion but a weak stimulatory effect on 45Ca2+ efflux. The data suggest that the beta 2-adrenoceptor agonist terbutaline has the ability to stimulate insulin secretion in perfused rat islets, requiring extracellular Ca2+ for the full expression of its effects. These effects may be exerted through a Ca2+-Ca2+ exchange over the cell membrane and/or through cAMP and intracellular Ca2+ perturbations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Uptake of45Ca2+ was studied in dispersed pancreatic islet cells from non-inbredob/ob-mice. Like whole islets the dispersed cells responded to 20 mMd-glucose with a markedly increased45Ca2+-labeling of both the lanthanum-nondisplaceable and the lanthanum-displaceable calcium pools. The pronounced effect ofd-glucose could not be reproduced with 3-O-methyl-d-glucose,l-glucose,d-mannose,l-leucine, ord-leucine; however,45Ca2+ uptake was greater in the presence ofl-leucine as compared withd-leucine.45Ca2+ uptake by dispersed cells or whole islets was stimulated severalfold by 100 M or more chlorotetracycline. At the concentration of only 10 M, chlorotetracycline had no effect on whole islets and partially inhibited45Ca2+ uptake by the dispersed cells. The ability ofd-glucose to stimulate45Ca2+ uptake by islets or dispersed cells remained in the presence of 10 M chlorotetracyline. Islet cell suspensions apparently represent a valid model for studying how Ca2+ interacts with the cells. However, when using chlorotetracycline as fluorescent Ca2+ probe, attention must be paid to its potential ionophoric activity. At only 10 M, the drug seems to monitor a peripheral pool of Ca2+, some of which may reside in normal transport channels.  相似文献   

11.
Ca2+ transients in isolated cardiac ventricular myocytes and the amount of Ca2+ that could be released from the sarcoplasmic reticulum (SR) in these cells by caffeine were reduced in the presence of tamoxifen. To examine the effects of tamoxifen on the cardiac muscle SR directly, isolated SR vesicles and fluorimetry methods were used to measure the uptake of Ca2+ by the SR and the ATPase activity of the SR Ca2+ pump. SR Ca2+ uptake was inhibited by tamoxifen at concentrations greater than 2.4 microM. Half-maximal inhibition was seen at approximately 5 microM. Inhibition of uptake was not due to the development of a substantial tamoxifen-dependent leak of Ca2+ from the SR or to a direct inhibitory effect of tamoxifen on the ATPase activity of the SR Ca2+ pump. In addition to its effect on SR Ca2+ uptake, tamoxifen also reduced the rate at which stored Ca2+ could be released from the SR by the Ca2+ ionophore 4-bromo A23187. Our results are consistent with the hypothesis that tamoxifen inhibits an ion current that accompanies Ca2+ movement across the SR membrane. This possibility is also consistent with the known inhibitory action of tamoxifen on some types of Cl- and K+ channels.  相似文献   

12.
Summary Ca2+-dependent phosphorylation of endogenous substrate proteins (mol. wt 30 800, 35 500, 38 600 and 53 200) is found in a membrane subcellular fraction from rabbit mesenteric arteries. Characteristics of32P incorporation are suggestive of a phosphoester-type phosphorylation produced by a Ca2+-dependent protein kinase.Ca2+-dependent phosphorylation and Ca2+ uptake rate show comparable affinities for Ca2+ of 3.5 × 10–7 m and 2.4 × 10–7 m, respectively. The dependence of both phenomena on the MgATP concentration is also similar. Ca2+-dependent phosphorylation and Ca2+ uptake are inhibited by trifluoperazine with an IC50 of 3 × 10–5 m and 5 × 10–5 m, respectively. These results suggest that Ca2+ uptake might be modulated by a Ca2+-dependent protein kinase, which is possibly regulated by membrane-bound calmodulin.Endogenous Ca2+-dependent phosphorylation is stimulated up to 300% by the addition of boiled cytosol. This stimulation is due to phosphorylation of proteins of molecular weight 21 000 and 81 500 and is reversed by trifluoperazine. Since this stimulation cannot be mimicked by addition of calmodulin or phosphatidylserine, and since boiled cytosol does not stimulate Ca2+ uptake, it is proposed that an unknown cytosolic factor stimulates a second Ca2+-dependent protein kinase resulting in phosphorylation of membrane substrates unrelated to the Ca2+ pump.Since cAMP-dependent protein kinase is shown to cause little phosphorylation and has no effect on Ca2+ uptake, it is concluded that a Ca2+-dependent rather than a cAMP-dependent protein kinase might modulate Ca2+ transport in vascular smooth muscle.  相似文献   

13.
A possible role for Ca2+ in the α-adrenoceptor-induced inhibition of glucose-stimulated insulin secretion was studied in isolated rat islets by the use of the selective α2-adrenoceptor agonist clonidine. We found that clonidine, in contrast to the a,-adrenoceptor agonist phenylephrine, inhibited glucose-stimulated insulin secretion at dose levels below 10-6 mol l-1. In islets preloaded with 46Ca2+ and perifused at 2 mmol l l Ca2+, clonidine (10-6 moll-1) reduced the glucose (13.3 mmol l-1)-stimulated 46Ca2+efflux during both the first and second phases of insulin secretion. Furthermore, the inhibitory effect of clonidine on glucose (13.3 mmol l-1)-stimulated insulin secretion was partially counteracted by raising the extracellular Ca2+ concentrations. Moreover, the calcium channel agonist Bay K 8644 counteracted the inhibition by clonidine on glucose-stimulated insulin secretion. Our results suggest that selective α2-adrenoceptor-induced inhibition of glucose-stimulated insulin secretion is mediated, at least partially, by restraint of Ca2+-influx. This action might in turn be exerted through interference with the voltage-dependent calcium channels.  相似文献   

14.
 Ruthenium red inhibits mitochondrial Ca2+ uptake and is widely used as an inhibitor of ryanodine-sensitive Ca2+ channels that function to release Ca2+ from the sarcoplasmic reticulum (SR) of muscle cells. It also has effects on other Ca2+ channels and ion transporters. To study the effects of ruthenium red on Ca2+ transport into the SR of cardiac muscle cells, fluorescence measurements of Ca2+ uptake into cardiac SR vesicles were made. Ruthenium red significantly decreased the Ca2+ sensitivity of SR uptake in a dose-dependent manner at concentrations ranging from 5 μM to 20 μM. There were no significant effects of ruthenium red on the maximum velocity or the Hill coefficient of SR Ca2+ uptake. Received: 14 January 1998 / Received after revision: 12 March 1998 / Accepted: 16 March 1998  相似文献   

15.
Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis.  相似文献   

16.
The effect of the central cholinolytic benactyzine and the cholinomimetic arecoline on the uptake of45Ca by rat brain synaptosomes was studied in vitro. Benactyzine was shown to cause biphasic changes (a decrease followed by an increase) in the intensity of uptake of the isotope, whereas arecoline led to a rapid initial increase in45Ca uptake. Benactyzine was shown to depress the effect of arecoline and depolarization on uptake of the isotope. It is concluded that the increase in45Ca uptake through the action of arecoline is connected with activation of Nachannels. Benactyzine, on the other hand, reduces the permeability of the these channels for45Ca and activates the Ca-channels proper.(Presented by Academician of the Academy of Medical Sciences of the USSR S. S. Golikov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 86, No. 9, pp. 301–304, September, 1978.  相似文献   

17.
We used isolated ventricular myocytes to study45Ca2+ transport in the presence of three concentrations of ouabain (10 nM, 1 M, and 100 M) in Tyrode solution containing 1 mM CaCl2. The cells were quiescent and during45Ca2+ uptake and45Ca2+ efflux experiments 10 nM ouabain decreased Ca2+ content, 1 M, didn't change it appreciably, and 100 M increased it significantly. Qualitatively, the same results were obtained at 22°C and 35°C. Ouabain did not significantly affect the electrical activity of isolated, electrically stimulated myocytes, but it increased the amplitude of shortenings of these myocytes in a dose-dependent manner. Thus, the positive inotropic effect of ouabain at therapeutic doses (10 nM) occurs in spite of decreased Ca2+ content, while at high toxic doses the positive inotropic effect is accompanied by an increment in Ca2+ content. These data support the hypothesis that the mechanisms of positive inotropy of ouabain are different at therapeutic and toxic concentrations of this drug. Finally, our study demonstrates that the effects of low doses of ouabain are independent of the release of endogenous catecholamines.  相似文献   

18.
At the synapse, SNAP-25, along with syntaxin/HPC-1 and synaptobrevin/VAMP, forms SNARE N-ethylmaleimide-sensitive factor [soluble (NSF) attachment protein receptor] complexes that are thought to catalyze membrane fusion. Results from neuronal cultures of synaptobrevin-2 knockout (KO) mice showed that loss of synaptobrevin has a more severe effect on calcium-evoked release than on spontaneous release or on release evoked by hypertonicity. In this study, we recorded neurotransmitter release from neuronal cultures of SNAP-25 KO mice to determine whether they share this property. In neurons lacking SNAP-25, as those deficient in synaptobrevin-2, we found that approximately 10-12% of calcium-independent excitatory and inhibitory neurotransmitter release persisted. However, in contrast to synaptobrevin-2 knockouts, this remaining readily releasable pool in SNAP-25-deficient synapses was virtually insensitive to calcium-dependent-evoked stimulation. Although field stimulation reliably evoked neurotransmitter release in synaptobrevin-2 KO neurons, responses were rare in neurons lacking SNAP-25, and unlike synaptobrevin-2-deficient synapses, SNAP-25-deficient synapses did not exhibit facilitation of release during high-frequency stimulation. This severe loss of evoked exocytosis was matched by a reduction, but not a complete loss, of endocytosis during evoked stimulation. Moreover, synaptic vesicle turnover probed by FM-dye uptake and release during hypertonic stimulation was relatively unaffected by the absence of SNAP-25. This last difference indicates that in contrast to synaptobrevin, SNAP-25 does not directly function in endocytosis. Together, these results suggest that SNAP-25 has a more significant role in calcium-secretion coupling than synaptobrevin-2.  相似文献   

19.
Facilitation is a transient stimulation-induced increase in synaptic response, a ubiquitous form of short-term synaptic plasticity that can regulate synaptic transmission on fast time scales. In their pioneering work, Katz and Miledi and Rahamimoff demonstrated the dependence of facilitation on presynaptic Ca(2+) influx and proposed that facilitation results from the accumulation of residual Ca(2+) bound to vesicle release triggers. However, this bound Ca(2+) hypothesis appears to contradict the evidence that facilitation is reduced by exogenous Ca(2+) buffers. This conclusion led to a widely held view that facilitation must depend solely on the accumulation of Ca(2+) in free form. Here we consider a more realistic implementation of the bound Ca(2+) mechanism, taking into account spatial diffusion of Ca(2+), and show that a model with slow Ca(2+) unbinding steps can retain sensitivity to free residual Ca(2+). We demonstrate that this model agrees with the facilitation accumulation time course and its biphasic decay exhibited by the crayfish inhibitor neuromuscular junction (NMJ) and relies on fewer assumptions than the most recent variants of the free residual Ca(2+) hypothesis. Further, we show that the bound Ca(2+) accumulation is consistent with Kamiya and Zucker's experimental results, which revealed that photolytic liberation of a fast Ca(2+) buffer decreases the synaptic response within milliseconds. We conclude that Ca(2+) binding processes with slow unbinding times (tens to hundreds of milliseconds) constitute a viable mechanism of synaptic facilitation at some synapses and discuss the experimental evidence for such a mechanism.  相似文献   

20.
The effect of nordihydroguaiaretic acid (NDGA), vitamin E, butylated hydroxytoluene (BHT) and indomethacin on histamine release and Ca2+ uptake in rat mast cells stimulated with compound 48/80 was studied. NDGA inhibited both the release of histamine and Ca2+ uptake in stimulated cells; however, there was no correlation between inhibition of Ca2+ uptake and the amount of histamine release. At a concentration of 5 microM, NDGA completely inhibited Ca2+ uptake, while histamine release was decreased by less than 50%. BHT (50 microM) inhibited both the Ca2+ uptake and histamine release. On the other hand, vitamin E (50 microM) inhibited histamine release by 70% without impairment in Ca2+ uptake. In the absence of the stimulus, vitamin E increased the cell-associated Ca2+; however, it had no effect on spontaneous release of histamine. Indomethacin (3 microM) inhibited Ca2+ uptake in stimulated cells by 50%, but did not affect the release of histamine. The results suggest that a part of Ca2+-influx may not be related to the coupled activation--secretion response and that lipid peroxidation through the lipoxygenase pathway may be involved in secretion of histamine from mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号