首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta in the brain with an unknown cause. Current pharmacological treatments for PD are only symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of human fetal ventral midbrain cells into PD brains has provided a proof of concept that cell replacement therapy can be used for some PD patients, beneficial for improving their symptoms. However, the ethical and practical issues of human fetal tissue will inevitably limit its widespread clinical use. Therefore, it is essential to find alternative cell sources for the future cell transplantation for PD patients. With recent development in stem cell technology, here, we review the different types of stem cells and their main properties currently explored, which could be developed as a possible cell therapy for PD treatment.  相似文献   

2.
Parkinson's disease (PD) is a common neurodegenerative disease, characterized by a selective loss of midbrain Dopaminergic (DA) neurons. To address this problem, various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD, including cells derived from embryonic or adult donor tissue, and embryonic stem cells. These cell sources, however, have raised certain questions with regard to ethical and rejection issues. Recent progress in adult stems has further proved that the cells derived from adult tissue could be expanded and differentiated into DA precursor cells in vitro, and cell therapy with adult stem cells could produce a clear improvement for PD models. Using adult stem cells for clinic application may not only overcome the ethical problem inherent in using human fetal tissue or embryonic stem cells, but also open the possibility for autologous transplantation. The patient-specific adult stem cell is therefore a potential and prospective candidate for PD treatment.  相似文献   

3.
Current findings suggest that multipotent stem cells may be suitable for cell replacement therapies in the treatment of neurodegenerative disorders. Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of the preimplantation blastocyst, which give rise to all cells in the organism. Similarly, multipotent stem cells are also able to regenerate, but are believed to have a more restricted potential than ES cells, and are often defined by the organ from which they are derived. Neural stem cells have been categorized as multipotent stem cells derived from the nervous system with the capacity to regenerate and to give rise to cells belonging to all three cell lineages in the nervous system: neurons, oligodendrocytes, and astrocytes. It is hoped that research on stem cells may reveal methods for producing an infinite supply of dopamine neurons for transplant into Parkinson's disease (PD) patients. The problem is controlling cell growth and differentiation. We will briefly review the current state of stem cell research and will critically discuss the potential of stem cells for the treatment of PD.  相似文献   

4.
The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson's disease (PD) in particular, is that they will improve patient's functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft's excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their application for cell therapy in PD.  相似文献   

5.
Stem cell replacement has emerged as the novel therapeutic strategy for Parkinson's disease (PD). Control of motor behavior is lost in PD due to the selective degeneration of mesencephalic dopamine neurons (DA) in the substantia nigra. This progressive loss of DA neurons results in devastating symptoms for which there is no cure. Debilitating side effects often result from chronic pharmacological treatment, hence current investigations into cell transplantation therapy as a substitute and/or adjuvant to other therapeutics. Clinical trials with fetal DA tissue have provided evidence that cell transplantation could be a viable alternative. Limited availability of fetal tissue, combined with variable outcome led to emphasis on other sources of cells, such as stem cells. This review focuses on three stem cell sources (embryonic, neural, and adult mesenchymal). Also discussed is the molecular differentiation into mature DA neurons, the various protocols that have been developed to generate DA neurons from various stem cells, and the current state of stem cell therapy for PD.  相似文献   

6.
The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson’s disease (PD) in particular, is that they will improve patient’s functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft’s excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their application for cell therapy in PD.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of midbrain dopaminergic (DA) neurons and a subsequent reduction in striatal dopamine. As a treatment for advanced Parkinson's disease, deep brain stimulation (DBS) of the thalamus was introduced in 1987 to treat tremor, and was applied in 1993 to the subthalamic nucleus. Now high-frequency stimulation of the subthalamic nucleus has become a surgical therapy of choice. Another surgical treatment is a cell replacement therapy. Transplantation of fetal dopaminergic (DA) neurons can produce symptomatic relief, however, the technical and ethical difficulties in obtaining sufficient and appropriate donor fetal brain tissue have limited the application of this therapy. Then, neural precursor cells and embryonic stem (ES) cells are expected to be candidates of potential donor cells for transplantation. We induced DA neurons from monkey ES cells, and analyzed the effect of transplantation of the DA neurons into MPTP-treated monkeys as a primate model of Parkinson's disease. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons, attenuating the MPTP-induced neurological symptoms. DA neurons have also been generated from several human ES cell lines. Furthermore, functional recovery of rat PD models after transplantation was observed. One of the major problems in ES cell transplantation is tumor formation, which is caused by a small fraction of undifferentiated ES cells in the graft. So, it is essential for undifferentiated ES cells to be eliminated from the graft in order for transplantation to be feasible. These efforts will lead to clinical application of ES cell transplantation to the patients with PD.  相似文献   

8.
The main properties of stem cells include long-term self-renewal and the capacity to give rise to one or more types of differentiated progeny. Recently, much evidence was provided that leukemia and tumor maintenance and growth are sustained by a small proportion of cells exhibiting stem cell properties. In neural tumors, stem cells have been detected in glioblastoma, medulloblastoma and ependymoma. These observations imply that normal stem cells could be the origin of cancer stem cells; alternatively, a more differentiated progeny may revert to a "stem-like" status, and give rise to cancer stem cells. In adult brain residual stem cells are located in the hippocampus, the subventricular zone and possibly the cerebellum. However, evidence for the ability of more differentiated progeny (astroglia, oligodendroglia) to convert into "stem cells" in vitro has also been provided, thus greatly expanding the potential target of oncogenic mutations. In the framework of the cancer stem cell hypothesis, genes originally identified as important for normal neural stem cells may be essential to support cancer stem cells as well. Stem cell genes act in several ways: they stimulate stem cell self-replication, inhibit differentiation, control excessive replication that might lead to "exhaustion" of the stem cell pool. Mutations in man and mouse, in spontaneous or experimental brain tumors, often target stem cell genes or genes lying in their functional pathway, the main examples being the Sonic hedgehog and the Wnt pathways. Interestingly, several stem cell genes are often overexpressed in brain tumors, even if they are not mutated. This suggests that these genes may be important for the generation of cancer stem cells from more differentiated precursors, or for cancer stem cell maintenance. Cancer stem cells partially differentiate in vivo, and in vitro they also give rise to seemingly normal differentiated progeny, like normal stem cells: thus, their main defect, leading to cancer, may lie in the unbalance between self-replication and terminal differentiation of this minority cell population. Knowledge of extrinsic diffusible factors affecting the activity of stem cell genes may help identifying tools for inducing cancer stem cell differentiation, which might be of use in therapy.  相似文献   

9.
A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in sufficient quantities for the unmet cell transplantation need for patients with PD and related disorders.  相似文献   

10.
Stem cells in the treatment of Parkinson's disease   总被引:11,自引:0,他引:11  
Stem cells have been suggested as candidate therapeutic tools for neurodegenerative disorders, given their ability to give rise to the appropriate cell types after grafting in vivo. In this review I summarize some of the evidence currently available concerning two approaches for the treatment of Parkinson's disease: (1) The generation of dopaminergic neurons from embryonic stem cells, multipotent stem cells, and neuronal progenitor cells for cell replacement therapy. (2) The engineering of multipotent stem cells to release glial cell-line derived neurotrophic factor, a potent neurotrophic factor for dopaminergic neurons, in a neuroprotective and neuroregenerative approach to the treatment of Parkinson's disease.  相似文献   

11.
Neural progenitor cell transplantation has emerged as a promising approach for cell replacement therapy in the brain of neurodegenerative diseases. These are multipotent stem cells with self-renewal capabilities and can give rise to cells of all the three lineages of nervous system and can be maintained and differentiated to desirable neuronal subtypes in vitro with known trophic factors. However, like fetal cells, neural progenitor cells after differentiating to specific neuronal type also require continuous neurotrophic factor support for their long-term survival following transplantation. Recent reports suggest that olfactory ensheathing cells are capable of providing continuous neurotrophic factor to the transplanted neural progenitor cells for their long-term survival. In the present investigation, an attempt has been made to validate functional restoration in kainic acid lesioned rat model of cognitive dysfunction following co-transplantation of neural progenitor cells with olfactory ensheathing cells.  相似文献   

12.
Isacson O  Bjorklund LM  Schumacher JM 《Annals of neurology》2003,53(Z3):S135-46; discussion S146-8
New therapeutic nonpharmacological methodology in Parkinson's disease (PD) involves cell and synaptic renewal or replacement to restore function of neuronal systems, including the dopaminergic (DA) system. Using fetal DA cell therapy in PD patients and laboratory models, it has been demonstrated that functional motor deficits associated with parkinsonism can be reduced. Similar results have been observed in animal models with stem cell-derived DA neurons. Evidence obtained from transplanted PD patients further shows that the underlying disease process does not destroy transplanted fetal DA cells, although degeneration of the host nigrostriatal system continues. The optimal DA cell regeneration system would reconstitute a normal neuronal network capable of restoring feedback-controlled release of DA in the nigrostriatal system. The success of cell therapy for PD is limited by access to preparation and development of highly specialized dopaminergic neurons found in the A9 and A10 region of the substantia nigra pars compacta as well as the technical and surgical steps associated with the transplantation procedure. Recent laboratory work has focused on using stem cells as a starting point for deriving the optimal DA cells to restore the nigrostriatal system. Ultimately, understanding the cell biological principles necessary for generating functional DA neurons can provide many new avenues for better treatment of patients with PD.  相似文献   

13.
Generation of neural progenitor cells from whole adult bone marrow   总被引:23,自引:0,他引:23  
The efficient and large-scale generation of neural progenitor cells for neural grafting in the treatment of neurological diseases has been a challenge. Here we describe the isolation and successful propagation of neural progenitor cells from adult rat bone marrow. Unfractionated bone marrow cultured in vitro with epidermal growth factor and basic fibroblast growth factor gave rise to cellular spheres which differentiated into neurons and glia. The cellular spheres expressed nestin, a neural stem cell marker as well as CD90, a marker of hematopoietic stem cells. This methodology addresses the ethical and tissue rejection problems associated with fetal neural stem cells and would circumvent the difficulty associated with generating neural progenitors from the adult brain. We demonstrate that bone marrow may offer a renewable autologous extracranial source of neural progenitor cells.  相似文献   

14.
Human neurodegenrative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell‐based cell therapies for neurodegenerative diseases have been developed. A recent advance in generatioin of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenrative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell‐mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury.  相似文献   

15.
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.  相似文献   

16.
Current treatments for stroke, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days even weeks after stroke occurs, which might provide a second window for treatment. Cell-based therapy can be categorized into two strategies. One is transplantation of exogenous cells into the injured brain to replace the lost cells or support the remaining cells. The other strategy is to enhance the proliferation, differentiation, migration of endogenous stem or progenitor cells. Recent development in adult stem cell research and advancement in the induction of pluripotent stem cells from somatic adult cells provide a tremendous opportunity for transplantation therapy. Understanding the mechanisms and regulations involved in the endogenous neurogenesis will also help develop novel therapeutic interventions to promote neurogenesis and functional recovery in stroke. This review describes up-to-date progresses in cell-based therapy for the treatment of stroke.  相似文献   

17.
Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs) reside in the adult central nervous system (CNS), the adult brain has the potential to regenerate and may be amenable to repair. The function(s) of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.  相似文献   

18.
Fetal ventral mesencephalic (VM) transplants have been studied in the context of dopaminergic (DA) replacement therapy for Parkinson's disease (PD). DA neurons from VM transplants will grow axons and form functional synapses in the adult host central nervous system (CNS). Recently, studies have demonstrated that most of the transplanted DA neurons die in grafts within the first week after implantation. An important feature of neural development, also in transplanted developing fetal neural tissue, is cell death. However, while about 50% of cells born in the CNS will die naturally, up to 99% of fetal cells die after neural transplantation. It has been shown that VM grafts contain many apoptotic cells even at 14 days after transplantation. The interleukin-1beta converting enzyme (ICE) cysteine protease and 11 other ICE-like-related proteases have been identified, now named caspases. Activation of caspases is one of the final steps before a neuron is committed to die by apoptosis. Here we review this cell death process in detail: Since the growth of fetal neural grafts placed in the adult brain in many ways mimics normal development, it is likely that the caspases also play a functional role in transplants. Pharmacological inhibitors of caspases and genetically modified mice are now available for the study of neuronal death in fetal neuronal transplants. Understanding cell death mechanisms involved in acute cellular injury, necrosis, and programmed cell death (PCD) is useful in improving future neuronal transplantation methodology, as well as in neuroprotection, for patients with neurodegenerative diseases.  相似文献   

19.

Parkinson’s disease (PD) is one of the most frequent neurodegenerative diseases and represents a major therapeutic challenge because of the so far missing therapeutic means to influence the ongoing loss of dopaminergic innervation to the striatum. Cell replacement has raised hope to offer the first restorative treatment option. Clinical trials have provided “proof of principle” that transplantation of dopamine-producing neurons into the striatum of PD patients can achieve symptomatic relief given that the striatum is sufficiently re-innervated. Various cell sources have been tested, including fetal ventral midbrain tissue, embryonic stem cells, fetal and adult neural stem cells and, after a ground-breaking discovery, induced pluripotent stem cells. Although embryonic and induced pluripotent stem cells have emerged as the most promising candidates to overcome most of the obstacles to clinical successful cell replacement, each cell source has its unique drawbacks. This review does not only provide a comprehensive overview of the different cellular candidates, including their assets and drawbacks, but also of the various additional issues that need to be addressed in order to convert cellular replacement therapies from an experimental to a clinically relevant therapeutic alternative.

  相似文献   

20.
We have made use of a reporter mouse line in which enhanced green fluorescence protein (GFP) is inserted into the Sox1 locus. We show that the GFP reporter is coexpressed with the Sox1 protein as well as with other known markers for neural stem and progenitor cells, and can be used to identify and isolate these cells by fluorescence-activated cell sorting (FACS) from the developing or adult brain and from neurosphere cultures. All neurosphere-forming cells with the capacity for multipotency and self-renewal reside in the Sox1-GFP-expressing population. Thus, the Sox1-GFP reporter system is highly useful for identification, isolation and characterization of neural stem and progenitor cells, as well as for the validation of alternative means for isolating neural stem and progenitor cells. Further, transplantation experiments show that Sox1-GFP cells isolated from the foetal brain give rise to neurons and glia in vivo, and that many of the neurons display phenotypic characteristics appropriate for the developing brain region from which the Sox1-GFP precursors were derived. On the other hand, Sox1-GFP cells isolated from the adult subventricular zone or expanded neurosphere cultures gave rise almost exclusively to glial cells following transplantation. Thus, not all Sox1-GFP cells possess the same capacity for neuronal differentiation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号