首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.  相似文献   

2.
The fine structure of synaptic terminals contacting neurons generated in the forebrain of adult male canaries was investigated by autoradiography and electron microscopy. The procedure for labeling the new neurons included pretreating adult canaries with 3H-thymidine and sacrificing them 23-45 days later. Neurons were identified as newly generated by the presence of 3H-thymidine in the cell nucleus. The new neurons in the nucleus hyperstriatum ventralis, pars caudalis (HVc) were identified by autoradiography and light microscopy and examined with electron microscopy. Several types of synaptic terminals contacted the cell body and proximal dendrites of the newly formed neurons. Synaptic junctions were formed by terminals that contained spherical, agranular vesicles, large dense-core vesicles and spherical, agranular vesicles, and pleomorphic or flattened synaptic vesicles. Terminals that contained spherical vesicles were most often associated with asymmetric synaptic densities, and terminals that contained pleomorphic or flattened vesicles formed symmetric junctions. New neurons were also contacted by small terminals that contained few vesicles and had little pre- or postsynaptic density associated with the junction; these terminals may be a special type or may be in the process of developing their synaptic contact with the new neuron. In addition, rare terminals that appeared to be degenerating or to contain debris from other degenerating neural elements contacted new neurons. In summary, these data indicate that the new neurons, which are known to be inserted into existing neural networks, receive synaptic input from at least three different sources.  相似文献   

3.
Light microscopic studies have demonstrated important differences in the distribution of enkephalin and dynorphin cells and terminals in the dorsal horn. Most importantly, dynorphin neurons are located in regions almost exclusively associated with the transmission and/or control of nociceptive messages (laminae I, IIo, and V); enkephalin neurons, although located in the same regions, are also found in areas involved in the transmission of nonnociceptive messages, e.g., laminae IIi and III. To determine whether there are also differences in the synaptic organization of the two opioid peptides, we have examined the distribution of dynorphin B immunoreactivity at the ultrastructural level. The studies were performed in colchicine-treated rats that underwent dorsal rhizotomy so that the relationship of dynorphin terminals and cells to primary afferent terminals could be established. Dynorphin B-immunoreactive cell bodies and dendrites in laminae I and IIo receive convergent primary and nonprimary afferent input, which suggests that dynorphin neurons receive a small-diameter, nociceptive input. Dynorphin terminals predominantly contain round, agranular vesicles; some terminals also contain a few dense core vesicles. Most dynorphin terminals are presynaptic to unlabelled dendrites; both asymmetric and symmetrical axonal contacts were noted. Dynorphin-immunoreactive boutons are also presynaptic to unlabelled cell bodies and spines. Twenty-nine percent of dynorphin terminals were associated with axonal profiles, including degenerating primary afferent terminals; only rarely could a synaptic density be detected. Although some degenerating primary afferent terminals were clearly presynaptic to dynorphin-immunoreactive terminals, in most cases, the polarity of the relationship between primary afferents and dynorphin terminals could not be established. These data indicate that synaptic interactions made by and with dynorphin-immunoreactive cells and terminals in the superficial dorsal horn are not very different from those that were previously reported for enkephalin cells and terminals. Thus, it is unlikely that dynorphin terminals provide a significant presynaptic input to primary afferent fibers. On the other hand, the presence of a primary afferent input to dynorphin cell bodies and dendrites in the superficial dorsal horn suggests that dynorphin cells receive a direct input from small-diameter, nociceptive primary afferents. That connection might contribute to the increased levels of dynorphin message and peptide that have been reported in rats experiencing a chronic inflammatory condition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Leu-enkephalin-like immunoreactive (ENK-I) elements appearing in the superficial layers of the rat superior colliculus (SC) after eye-enucleation were examined by means of immunoelectronmicroscopy. ENK-I somata were of a single type and formed symmetric and asymmetric synapses with non-immunoreactive axon terminals. Some degenerating retinal terminals made synaptic contacts only with small ENK-I dendrites, suggesting that deafferentation-induced ENK-I neurons in the rat SC receive retinal input onto the distal portions of their dendrites.  相似文献   

5.
The ultrastructure of the lateroventral subcomponent of the visual dorsolateral anterior thalamic nucleus of the pigeon (DLLv) was analyzed using hodological techniques and GABA-immunocytochemistry. Two types of GABA-immunonegative hyperpalliopetal neurons and a single type of strongly GABA-immunoreactive (-ir) interneuron were identified, the latter displaying long dendrites with some containing synaptic vesicles (DCSV). Ten types of axon terminal were identified and divided into two categories. The first, GABA-immunonegative and making asymmetrical synaptic contact, contain round (RT1, RT2, RT3) or pleiomorphic synaptic and many dense-core vesicles (DCT). RT1 terminals are retinothalamic and RT2 terminals hyperpalliothalamic; both mainly contact dendrites of projection neurons (72% and 78% respectively), less frequently dendrites of interneurons and sometimes DCSV; RT1 terminals are rarely involved in synaptic triads. The second category are consistently GABA-immunopositive. Four types (PT1-4), distinguished by their pleiomorphic synaptic vesicles, make symmetrical synaptic contact essentially with dendrites of projection neurons, more rarely on dendrites of interneurons (PT2). PT1 terminals are very probably those of interneurons, whereas the rare PT4 terminals are of retinal origin. A fifth type (RgT) contains round synaptic vesicles and makes asymmetrical synaptic contact with dendrites of projection neurons and interneurons. PT2 and RgT terminals occasionally contact DCSV of interneurons, which are sometimes involved in synaptic triads. Two final subcategories (DCgT1-2) contain many dense-core vesicles. Our findings are compared with those of previous studies concerning the fine structure and neurochemical properties of the GLd of reptiles and mammals, with special reference to the origin of the extraretinal and extracortical projections to this structure.  相似文献   

6.
The toxic lectin ricin was applied to the hamster chorda tympani (CT), producing anterograde degeneration of its terminal boutons within the gustatory zone of the nucleus of the solitary tract (NST). Immunocytochemistry was subsequently performed with antiserum against tyrosine hydroxylase (TH), and the synaptic relationships between degenerating CT terminal boutons and either TH-immunoreactive or unlabeled dendritic processes were examined at the electron microscopic level. Degenerating CT terminal boutons formed asymmetric axodendritic synapses and contained small, clear, spherical synaptic vesicles that were densely packed and evenly distributed throughout the ending, with no accumulation at the active synaptic. The degenerating CT terminated on the dendrites of TH-immunoreactive neurons in 36% (35/97) of the cases. The most frequent termination pattern involved the CT and two or three other inputs in synaptic contact with a single immunoreactive dendrite, resulting in a glomerular-like structure that was enclosed by glial processes. In 64% (62/97) of the cases, the degenerating CT was in synaptic contact with unlabeled dendrites, often forming a calyx-like synaptic profile that surrounded much of the perimeter of a single unlabeled dendrite. These results indicate that the TH-immunoreactive neurons of the gustatory NST receive direct input from the CT and taste receptors of the anterior tongue and that the termination patterns of the CT vary with its target neuron in the gustatory NST. The glomerular-like structure that characterizes many of the terminations of the CT provides an opportunity for the convergence of several functionally distinct inputs (both gustatory and somatosensory) onto putative dopaminergic neurons that may shape their responsiveness to the stimulation of the oral cavity. J. Comp. Neurol. 392:78–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Glutamic acid decarboxylase (GAD) immunoelectron microscopy in combination with anterograde degeneration was applied in rats to study the synaptic targets of olfactory bulb afferents to the lateral subdivision (LEA) of the entorhinal area (EA). Immunoreactive neurons and terminals are scattered throughout all layers of LEA. After olfactory bulb resection, terminal degeneration occurs in layer Ia of EA. Using the electron microscope we examined serial thin sections of 12 and 14 immunoreactive neurons sampled from layer Ia of the dorsal (DLEA) and ventral (VLEA) subdivisions of LEA, respectively. The morphology of all these neurons is similar: they are small (short axis 5-9 micron, long axis 7-12 micron) and possess eccentrically located, indented nuclei provided with filamentous nuclear rodlets. The immunoreactive neurons have thin, smooth dendrites which usually emerge abruptly from the somata. We observed a single cilium on 5 of the immunoreactive neurons. In layer Ia of both DLEA and VLEA, the somata of the immunoreactive neurons are contacted by degenerating, non-immunoreactive boutons showing asymmetric synaptic junctions. In addition to these boutons, 4 other categories of axo-somatic terminals can be distinguished: normal, non-immunoreactive boutons forming asymmetric synapses and containing spherical synaptic vesicles; normal, non-immunoreactive boutons with symmetric synapses and pleomorphic synaptic vesicles; normal, non-immunoreactive boutons with asymmetric synapses, containing dense-cored vesicles in addition to spherical synaptic vesicles; and normal, immunoreactive boutons with symmetric synapses and pleomorphic synaptic vesicles. It is suggested that the GAD-immunoreactive neurons which receive olfactory bulb input correspond to local circuit neurons with intralaminar axons which innervate each other as well as the distal segments of the apical dendrites of projection neurons with cell bodies in layers II and III. Thus, the olfactory input in EA seems to be wired not only for excitation of layers II and III pyramidal neurons but also for feed-forward inhibition using GABAergic intermediary neurons, strategically located in the area of termination of olfactory bulb fibers.  相似文献   

8.
The synaptic organization of projections from the lateral mammillary neurons within the dorsal tegmental nucleus of Gudden is studied in the rat with the aid of anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The dorsal tegmental nucleus consists of the pars ventralis (TDV) and the pars dorsalis (TDD). The normal neuropil of the dorsal tegmental nucleus contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic vesicles. They make up 44%, 5%, and 51%, respectively, of all axodendritic terminals in the TDV, and 62%, 1%, and 37% in the TDD. Injection of WGA-HRP into the lateral mammillary nucleus permits ultrastructural recognition of many anterograde labeled terminals within both the TDV and TDD. In the TDV, 81% of the labeled terminals contain round synaptic vesicles and make asymmetric synaptic contacts. A few of the labeled terminals contain pleomorphic vesicles and make symmetric synaptic contacts. More than 50% of the labeled terminals contact intermediate dendrites (1-2 microns diameter). In the TDD, almost all labeled terminals are small, contain round vesicles, and make asymmetric synaptic contacts. These terminals mainly contact intermediate as well as distal (less than 1 micron diameter) dendrites. There are only a few labeled terminals with pleomorphic vesicles and no terminals with flat vesicles. The termination pattern of the lateral mammillary neurons in the TDV is similar to that in the TDD. Anterograde labeled axon terminals often contact retrograde labeled dendrites in the TDV. No reciprocal connections are present in the TDD. These results suggest that the TDV and the TDD receive mainly excitatory and a few inhibitory inputs from the lateral mammillary nucleus. The TDV neurons also have direct reciprocal connections with the lateral mammillary neurons.  相似文献   

9.
A Golgi electron microscopic study was undertaken to investigate the distribution of terminals from the piriform cortex that synapse on identified dendrites of neurons in the central segment of the mediodorsal thalamic nucleus of the rat. The piriform cortical terminals were identified as degenerating terminals following lesions in the cortex. They consisted of two types, i.e., large (LR type) and small (SR type) presynaptic terminals, both of which had round synaptic vesicles and formed asymmetric synaptic contacts. SR boutons terminated preferentially onto distal dendrites and never synapsed on primary dendrites. LR terminals synapsed preferentially on proximal dendrites, but were also found on more distal dendritic segments.  相似文献   

10.
The mode and pattern of termination of the afferents to the lateral reticular nucleus (LRN) of the cat were examined at the cellular level through the ultrastructural localization of induced degeneration. Examination of the LRN following hemicordotomy at the fifth and sixth cervical levels revealed that most of the degenerating terminals were in contact with intermediate and distal dendrites, and that most of these degenerating terminals were small and contained round vesicles. Fewer degenerating terminals were observed on the somata and proximal dendrites after spinal hemisection, and most of these terminals were large and contained round vesicles. Following lesions of the pericruciate cortex, small degenerating terminals were occasionally observed making contact onto intermediate and distal dendrites. Degenerating rubral terminals were observed synapsing on somata, somatic and dendritic spines, proximal dendrites and most commonly on intermediate and distal dendrites following lesioning of the red nucleus. The degenerating axosomatic rubro-LRN terminals belonged to the large, round-vesicle terminal population, while those degenerating terminals contacting intermediate and distal dendrites belonged to the small, round-vesicle population. Small, degenerating terminals were occasionally seen following lesions of the fastigial nucleus, and they made synaptic contact mainly onto intermediate and distal dendrites and dendritic spines. The present ultrastructural observations taken together with the convergence pattern of LRN afferents and the available electrophysiological data on inputs to the LRN suggest an extensive integration of converging impulses from two or more afferent sources to the rostral LRN neurons. The results of this study therefore support the view that the rostral LRN functions as a comparator of command signals from the motor cortex and red nucleus and feedback signals from the spinal cord and cerebellum during ongoing movement.  相似文献   

11.
Although the excitatory neurotransmitter glutamate is known to be present in the cat superior colliculus (SC), the types of synapses that contain glutamate have not been examined. We, therefore, studied the ultrastructure of synaptic profiles labeled by a glutamate antibody by using electron microscopic postembedding immunocytochemistry. In addition, unilateral aspiration lesions of areas 17–18 were made at 5–28 days before death in order to determine whether degenerating terminals from visual cortex were glutamate immunoreactive (Glu-ir). Three types of axon terminal were glu-ir: 1) those containing large, round synaptic vesicles and pale mitochondria, characteristic of retinal terminals (RT profiles); 2) those containing small, round synaptic vesicles and dark mitochondria (RSD profiles); and 3) those containing large, round synaptic vesicles and dark mitochondria (RLD profiles). Measures of mean gold particle density revealed that RT, RSD, and RLD profiles had similar average grain densities (11.3–12.7 particles/unit area). Other labeled profile types included cell bodies, large-calibre dendrites, and myelinated axons. Axon terminals containing flattened synaptic vesicles and vesicle-containing presynaptic dendrites, both of which contain γ-aminobutyric acid (GABA), had many fewer gold particles (3.6 and 4.8 mean particles/unit area, respectively). Following unilateral removal of visual cortex, normal RSD terminals were observed infrequently in the SC ipsilateral to the lesion. Synaptic terminals in the initial stages of degeneration were heavily labeled by the glutamate antibody, as were axon terminals and myelinated axons undergoing hypertrophied or neurofilamentous degeneration. These results show that both major sensory afferents to the superficial layers of cat SC contain glutamate—RT terminals from the retina and RSD terminals from visual cortex. The origin of RLD terminals is unknown. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The coexistence in individual neurons of parvalbumin and gamma-aminobutyric acid (GABA) was studied in the dorsal lateral geniculate nucleus (dLGN) of the cat using pre- and postembedding immunocytochemical methods. PV(+) cell bodies and processes were found in the perigeniculate nucleus (PGN) and throughout all laminae of the dLGN. PV(+) neurons were relatively small and had circular to fusiform shapes. Electron microscopy revealed PV(+) reaction product within the perikarya, axons, and dendrites of labeled cells. It was associated preferentially with microtubules, postsynaptic densities, and intracellular membranes. PV(+) presynaptic boutons were identified on the basis of their synaptic relations and ultrastructure as retinal terminals (RLP) and as profiles originating from inhibitory interneurons (F1 and F2). Immunopositive somata and dendrites received asymmetric synaptic contacts from labeled RLP and non-identified, non-immunoreactive synaptic boutons. Moreover, PV(+) dendrites were postsynaptic to labeled F profiles. In the PGN all neurons were both PV(+) and GABA-immunoreactive and in the dLGN the vast majority of PV(+) neurons showed GABA-immunoreactivity. It is suggested that the high incidence of PV in GABAergic neurons is related to the particular activation patterns of these neurons and the resulting demand for calcium buffer systems.  相似文献   

13.
M Watanabe 《Brain research》1987,401(2):279-291
The nucleus dorsolateralis anterior thalami (DLA) of birds is the homologue of the mammalian dorsal lateral geniculate nucleus. The positions of terminals from the retina and visual Wulst upon identified relay neurons in the DLA were examined in Japanese quail with both light and electron microscopic techniques. Injection of horseradish peroxidase (HRP) into the visual Wulst showed that relay neurons projecting ipsilaterally or contralaterally were located in a rostrolateral subdivision (DLAlr) and in Zones A and B of a lateral subdivision (DLL) of the DLA. Removal of the contralateral eye resulted in dense terminal degeneration in the DLAlr and moderate terminal degeneration in Zones A and B. By contrast, lesions in the visual Wulst produced dense degenerating terminals in Zones A and B of the DLL. The somata and proximal dendrites of relay neurons or terminals from the retina in the DLA were identified electron microscopically following HRP injection into the visual Wulst or optic nerve, respectively. Terminals from the retina contained spherical vesicles, glycogen granules, and mitochondria with widely spaced cristae. Terminals from the retina made synaptic contact with proximal dendrites and somata of HRP-labeled relay neurons. Presynaptic dendrites formed symmetric synaptic contact with dendrites of relay neurons. Synaptic glomeruli were observed in the DLAlr that involved dendrites of relay neurons, terminals from the retina and presynaptic dendrites. Lesions of the visual Wulst resulted in degeneration of small terminals with spherical vesicles. These terminals were not involved in the synaptic glomeruli of the DLA, but made asymmetric contacts with spines of unidentified neurons and with terminals of presynaptic dendrites.  相似文献   

14.
The relationship of the calcium binding protein parvalbumin (PV) with gamma-aminobutyric acidergic (GABAergic) neurons differs within different thalamic nuclei and animal species. In this study, the distribution of PV and GABA throughout the thalamus of the guinea pig was investigated at the light microscopic level by using immunoperoxidase methods. Intense PV labelling was found in all the GABAergic neurons of the reticular nucleus and in scattered GABAergic neurons in the anteroventral nucleus, whereas GABAergic interneurons in the ventrobasal and lateral geniculate nuclei were not PV labelled. At the electron microscopic level, preembedding immunuperoxidase for PV was combined with postembedding immunogold for GABA. In the ventrobasal nucleus, four types of profiles were recognized: 1) terminals with flattened vesicles and forming symmetric synapses, which were labelled with both PV and GABA and could therefore be identified as afferents from the reticular nucleus; 2) boutons morphologically similar to presynaptic dendrites of interneurons, labelled only with GABA; 3) large terminals with round vesicles and asymmetric synapses, labelled only with PV, which contacted GABAergic presynaptic dendrites in glomerular arrangements and resembled ascending excitatory afferents; and 4) terminals unlabelled by either antiserum. In the ventrobasal nucleus of the guinea pig a double immunocytochemical labelling permits therefore the differentiation of two populations of GABAergic vesicle-containing profiles, i. e., the terminals originating from reticular nucleus (that are double labelled) and the presynaptic dendrites originating from interneurons (that are GABA-labelled only). The possibility to differentiate GABAergic inputs from the reticular nucleus and from interneurons can shed light to the functional interpretation of synaptic circuits in thalamic sensory nuclei. © 1994 Wiley-Liss, Inc.  相似文献   

15.
The synaptic organization of the feline subthalamic nucleus (STN) was studied electron microscopically. Following horseradish peroxidase (HRP) injections into the globus pallidus (GP) and electrolytic lesions of the nucleus tegmenti pedunculopontinus pars compacta (TCP) in the same cat, both degenerating and HRP-labeled terminals were found in the STN with abundant retrogradely HRP-labeled neurons. Degenerating terminals of TPC origin were medium-sized and characterized by asymmetric synaptic contacts. They synapsed widely on the STN neuronal surface, including the somata, dendrites of varying dimensions, dendritic spines and vesicle-containing processes. They formed 25.1%, 65.1%, 4.7%, and 4.7%, respectively, of all TPC efferent terminals. Some of the postsynaptic components were labeled with HRP. Occasionally both degenerating terminals and HRP-labeled terminals were in synaptic contact with the same HRP-labeled neuron: therefore, afferents of TPC and GP converge on the same STN projection neuron. In order to discover the origin of these HRP-labeled terminals, a mixed solution containing HRP and kainic acid was injected into the GP. Numerous degenerating terminals were observed to synapse with HRP-labeled STN neurons, but no HRP-labeled terminal was observed. These degenerating terminals were similar in appearance to the above-mentioned HRP-labeled terminals. They were characterized by their relatively large size, predominantly symmetric synapses, and preferential distribution on the somata and large or medium-sized dendrites. They formed 39.6%, 20.1%, and 31.1%, respectively, of all GP efferent terminals. Therefore, it became clear that both the HRP-labeled terminals of the first experiment and the degenerating terminals of the second experiment originated from the GP. Following surgical ablations of the primary sensorimotor cortex (Cx), some axon terminals in the STN showed degeneration. These degenerating terminals were small and formed asymmetric synapses mainly with dendritic spines, small dendrites and vesicle-containing processes. They formed 48.0%, 28.0%, and 12.0%, respectively, of all Cx efferent terminals. These electron microscopic investigations reveal the convergence of TPC and GP afferents and that STN projection neurons relay the TPC and pallidal inputs directly to the GP.  相似文献   

16.
Tsumori T  Yokota S  Ono K  Yasui Y 《Brain research》2002,957(2):231-241
The ventrolateral part of the parafascicular thalamic nucleus (PF), which is considered to take part in the control mechanism of orofacial motor functions, receives projection fibers not only from the dorsolateral part of the substantia nigra pars reticulata (SNr) but also from the ventral part of the reticular thalamic nucleus (RT) [Tsumori et al., Brain Res. 858 (2000) 429]. In order to better understand the influence of these fibers upon the PF projection neurons, the morphology, synaptology and chemical nature of them were examined in the present study. After ipsilateral injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) into the dorsolateral part of the SNr and biotinylated dextran amine (BDA) into the ventral part of the RT, overlapping distributions of PHA-L-labeled SNr fibers and BDA-labeled RT fibers were seen in the ventrolateral part of the PF. At the electron microscopic level, the SNr terminals made synapses predominantly with the medium to small dendrites and far less frequently with the somata and large dendrites, whereas approximately half of the RT terminals made synapses with the somata and large dendrites and the rest did with the medium to small dendrites of PF neurons. Some of single dendritic as well as single somatic profiles received convergent synaptic inputs from both sets of terminals. These terminals were packed with pleomorphic synaptic vesicles and formed symmetrical synapses. After combined injections of PHA-L into the dorsolateral part of the SNr, BDA into the ventral part of the RT and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the ventrolateral part of the striatum or into the rostroventral part of the lateral agranular cortex, WGA-HRP-labeled neurons were embedded in the plexus of PHA-L- and BDA-labeled axon terminals within the ventrolateral part of the PF, where the PHA-L- and/or BDA-labeled terminals were in synaptic contact with single somatic and dendritic profiles of the WGA-HRP-labeled neurons. Furthermore, the SNr and RT axon terminals were revealed to be immunoreactive for gamma-aminobutyric acid (GABA), by using the anterograde BDA tracing technique combined with immunohistochemistry for GABA. The present data suggest that GABAergic SNr and RT fibers may exert different inhibitory influences on the PF neurons for regulating the thalamic outflow from the PF to the cerebral cortex and/or striatum in the control of orofacial movements.  相似文献   

17.
In the nucleus raphe dorsalis of the cat, an electron microscopic immunocytochemistry method was used to identify the fine structure of serotoninergic dendritic profiles and axon terminals analyzed in serial sections. Two classes of serotoninergic dendrites were distinguished in the nucleus. The first class was constituted by conventional serotonin (5-HT) dendrites that were contacted by unlabeled axon terminals containing differing populations of synaptic vesicles. The second class consisted of serotoninergic dendrites that contained vesicles in their dendritic shafts. Such 5-HT dendrites were further subdivided into two groups according to their synaptic contacts. In some 5-HT vesicle-containing dendrites, the vesicles were densely packed in small clusters and were associated with a well-defined synaptic specialization. These dendrites were classified as serotoninergic presynaptic dendrites and established synaptic contacts with unlabeled and labeled dendrites and were contacted by unlabeled axon terminals. In other 5-HT vesicle-containing dendrites, extensive serial section examination showed that the vesicles could be observed near the membrane but were never found to be associated with any synaptic membrane specialization. Serotoninergic axon terminals that were presumed to be recurrent collaterals of 5-HT neurons were present in the nucleus. Some of them were observed in synaptic contact with dendrites or dendritic protrusions whereas others did not exhibit synaptic specializations. The existence of serotoninergic dendrodendritic synaptic contacts and axon terminals suggests direct local interactions between serotoninergic neurons within the nucleus raphe dorsalis.  相似文献   

18.
Dynorphin and other kappa opioid agonists are thought to elicit aversive actions and changes in motor activity through direct or indirect modulation of dopamine neurons in ventral tegmental area (VTA) and substantia nigra (SN), respectively. We comparatively examined the immunoperoxidase localization of anti-dynorphin A antiserum in sections through the VTA and SN of adult rat brain to assess whether there were common or differential distributions of this opioid peptide relative to the dopamine neurons. We also more directly examined the relationship between dynorphin terminals and dopamine neurons in VTA and SN by combining immunoperoxidase labeling of rabbit dynorphin antiserum and immunogold-silver detection of mouse antibodies against tyrosine hydroxylase (TH) in single sections through the VTA and SN. Light microscopy showed dynorphin-like immunoreactivity (DY-LI) in varicose processes. These were relatively sparse in VTA and were unevenly distributed in the SN, with little labeling in the pars compacta (pcSN) and the highest density of DY-LI in the medial and lateral pars reticulata (prSN). Electron microscopy established that the regional differences were attributed to differences in density (number/unit area) of immunoreactive profiles. The profiles containing DY-LI were designated as axon terminals based on having diameters greater than 0.1 μm, few microtubules and many synaptic vesicles. In both the VTA and SN, the dynorphin-labeled terminals contained primarily small (35–40 nm) clear vesicles. These vesicles were rimmed with peroxidase immunoreactivity and were often seen clustered above axodendritic synapses. These synaptic specializations were usually symmetric; however a few asymmetric densities also were formed by immunoreactive terminals in both VTA and SN. Additionally, most of the dynorphin-labeled terminals contained 1–2, but occasionally 7 or more intensely peroxidase positive dense core vesicles (DCVs). Approximately 60% of the DCVs were located near axolemmal surfaces. The axolemmal surfaces contacted by immunoreactive DCVs were more often apposed to dendrites in the VTA; while in the SN other axon terminals were the most commonly apposed neuronal profiles. In both regions, a substantial proportion of the plasmalemmal surface in contact with the labeled DCVs was apposed to astrocytic processes. In dually labeled sections through the VTA, 22% (n = 138) of the terminals containing DY-LI formed synapseson or were apposed to TH-labeled dendrites, while 16% were in contact with unlabeled dendrites. The remainder were apposed to other dynorphin labeled and unlabeled terminals and/or astrocytes. In dually labeled sections through the prSN, 37% (n = 216) of the terminals containing DY-LI formed synapses or were apposed to TH-labeled dendrites, while 28% contacted unlabeled dendrites. The remainder were in contact with axon terminals or astrocytes. These findings demonstrate the morphologically heterogeneous terminals containing DY-LI in rat VTA and SN provide a substantial monosynaptic input to dopamine and non-dopamine targets. The finding of symmetric and asymmetric synapses, mixed vesicle populations, and associations with dendrites, terminals, and astrocytes suggests multiple sites for dynorphin actions in both VTA and SN.  相似文献   

19.
The synaptic circuitry of the intrinsic GABAergic system of the central extended amygdala (CEA) in relation to efferent neurons and cortical afferents was examined in the present study. Neurons in the CEA projecting to the dorsal vagal complex and the parabrachial complex were identified by the retrograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). Postembedding GABA-immunocytochemistry revealed that GABA-immunoreactive (GABA-IR) terminals formed largely symmetrical synaptic contacts with the perikarya and proximal dendritic processes of almost all WGA-HRP-labeled neurons in the CEA. To determine the relationship between cortical afferents and CEA GABAergic neurons, WGA-HRP was used to anterogradely label afferents from the insular cortex in combination with postembedding immunogold detection of GABA. Cortical afferents formed asymmetrical synaptic contacts predominantly on small dendrites and dendritic spines. Many of the dendrites postsynaptic to cortical terminals in the central nucleus were immunoreactive for GABA although only relatively few spines were GABA-IR. Combining pre-embedding GAD-immunocytochemistry with cortical lesions resulted in approximately 40% of degenerating terminals of insular cortical origin in the central nucleus in contact with small, GAD-IR dendrites and spines. The present results demonstrate that the neurons providing the major CEA outputs to the brainstem receive an extensive GABAergic innervation, strongly supporting our proposal that CEA efferent neurons are under strong tonic inhibition by intrinsic GABAergic neurons. Further, our finding that the major cortical input to the central nucleus preferentially innervates intrinsic GABAergic neurons suggests that these neurons in the CEA may serve as an interface between the principal inputs and outputs of this forebrain region. © Wiley-Liss, Inc.  相似文献   

20.
Axons of olivocochlear neurons originate in the superior olivary complex and project to the cochlea. Along their course, medial olivocochlear axons give off branches to the cochlear nucleus. We labeled these branches with horseradish peroxidase and used electron microscopy to determine their target dendrites. Target dendrites were of two classes: “large” dendrites and “varicose” dendrites. Using serial sections, we reconstructed the dendrites and, in addition to the labeled olivocochlear input, we determined the synaptic profile of unlabeled inputs onto the dendrites. We classified the terminals on the basis of the shape and size of their synaptic vesicles. On large dendrites, the predominant type of unlabeled terminal had small round (SmRnd) vesicles. These terminals are likely to be excitatory, and some of them may originate from unlabeled medial olivocochlear branches. On varicose dendrites, the predominant type of terminal had pleomorphic vesicles. These terminals are likely to be inhibitory. They may be from descending inputs that arise in higher centers. A final type of terminal onto large dendrites exhibited signs of neuronal degeneration, possibly because the cell body of origin was damaged during the injection procedure. These terminals often had long, perforated synaptic densities and may originate from type II primary afferents. Thus, medial olivocochlear efferents and type II afferents, which both contact outer hair cells in the periphery, appear to synapse onto the same targets in the cochlear nucleus. In contrast, where examined, the target dendrites did not receive terminals with large vesicles from afferents that contact inner hair cells. Thus, target neurons appear to function in a neural circuit associated more closely with outer than with inner hair cells. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号