首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons in premotor and motor cortex show preparatory activity during an instructed-delay task. It has been suggested that such activity primarily reflects visuospatial aspects of the movement, such as target location or reach direction and extent. We asked whether a more dynamic feature, movement speed, is also reflected. Two monkeys were trained to reach at different speeds ("slow" or "fast," peak speed being approximately 50-100% higher for the latter) depending on target color. Targets were presented in seven directions and at two distances. Of 95 neurons with tuned delay-period activity, 95, 78, and 94% showed a significant influence of direction, distance, and instructed speed, respectively. Average peak modulations with respect to direction, distance and speed were 18, 10, and 11 spikes/s. Although robust, modulations of firing rate with target direction were not necessarily invariant: for 45% of neurons, the preferred direction depended significantly on target distance and/or instructed speed. We collected an additional dataset, examining in more detail the effect of target distance (5 distances from 3 to 12 cm in 2 directions). Of 41 neurons with tuned delay-period activity, 85, 83, and 98% showed a significant impact of direction, distance, and instructed speed. Statistical interactions between the effects of distance and instructed speed were common, but it was nevertheless clear that distance "tuning" was not in general a simple consequence of speed tuning. We conclude that delay-period preparatory activity robustly reflects a nonspatial aspect of the upcoming reach. However, it is unclear whether the recorded neural responses conform to any simple reference frame, intrinsic or extrinsic.  相似文献   

2.
3.
4.
The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.  相似文献   

5.
6.
We examined neuronal activity in three motor cortical areas while a rhesus monkey adapted to novel visuomotor transforms. The monkey moved a joystick that controlled a cursor on a video screen. Each trial began with the joystick centered. Next, the cursor appeared in one of eight positions, arranged in a circle around a target stimulus at the center of the screen. To receive reinforcement, the monkey moved the joystick so that the cursor contacted the target continuously for 1s. The video monitor provided continuous visual feedback of both cursor and target position. With those elements of the task constant, we modified the transform between joystick movement and that of the cursor at the beginning of a block of trials. Neuronal activity was studied as the monkey adapted to these novel joystick-cursor transforms. Some novel tasks included spatial transforms such as single-axis inversions, asymmetric double-axis inversions and angular deviations (also known as rotations). Other tasks involved changes in the spatiotemporal pattern and magnitude of joystick movement. As the monkey adapted to various visuomotor tasks, 209 task-related neurons (selected for stable background activity) showed significant changes in their task-related activity: 88 neurons in the primary motor cortex (M1), 32 in the supplementary motor cortex (M2), and 89 in the caudal part of the dorsal premotor cortex (PMdc). Slightly more than half of the sample in each area showed significant changes in the magnitude of activity modulation during adaptation, with the number of increases approximately equaling the number of decreases. These data support the prediction that changes in task-related neuronal activity can be observed in M1 during motor adaptation, but fail to support the hypothesis that M1 and PMdc differ in this regard. When viewed in population averages, motor cortex continued to change its activity for at least dozens of trials after performance reached a plateau. This slow, apparently continuing change in the pattern and magnitude of task-related activity may reflect the initial phases of consolidating the motor memory for preparing and executing visuomotor skills.  相似文献   

7.
Five rhesus monkeys (Macaca mulatta) were trained to learn novel conditional visuomotor associations, to perform this task with familiar stimuli, and to perform a visual matching-to-sample task with the same familiar stimuli. Removal of the orbital and ventral prefrontal cortex (PFv+o) in 1 hemisphere and inferotemporal cortex (IT) in the other, thus completing a surgical disconnection of these 2 regions, yielded an impairment on all 3 tasks. Addition of a premotor cortex lesion to the hemisphere containing the PFv+o lesion did not worsen the impairments. The results indicate that PFv+o interacts with IT in both the learning and retention of conditional visuomotor associations. In addition to those associations, which might be considered lower order rules for choosing a response, frontotemporal interaction also appears to be important for higher order rules, such as those involved in the matching task.  相似文献   

8.
A previous study found that as monkeys learned novel mappings between visual cues and responses, neuronal activity patterns evolved at approximately the same time in both the dorsal premotor cortex (PMd) and the putamen. Here we report that, in both regions, the population activity for novel mappings came to resemble that for familiar ones as learning progressed. Both regions showed activity differences on trials with correct responses versus those with incorrect ones. In addition to these common features, we observed two noteworthy differences between PMd and putamen activity during learning. After a response choice had been made, but prior to feedback about the correctness of that choice (reward or nonreward), the putamen showed a sustained activity increase in activity, whereas PMd did not. Also in the putamen, this prereward activity was highly selective for the specific visuomotor mapping that had just been performed, and this selectivity was maintained until the time of the reward. After performance reached an asymptote, the degree of this selectivity decreased markedly to the level typical for familiar visuomotor mappings. These findings support the hypothesis that neurons in the striatum play a pivotal role in associative learning. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
Recent studies suggest that the human primary motor cortex (M1) is involved in motor learning, but the nature of that involvement is not clear. Here, learning-related changes in M1 excitability were studied with transcranial magnetic stimulation (TMS) while na subjects practiced either a ballistic or a ramp pinch task to the 0.5-Hz beat of a metronome. Subjects rapidly learned to optimize ballistic contractions as indicated by a significant increase in peak pinch acceleration and peak force after the 60-min practice epoch. The increase in force and acceleration was associated with an increase in motor evoked potential (MEP) amplitude in a muscle involved in the training (flexor policis brevis) but not in a muscle unrelated to the task (abductor digiti minimi). MEPs returned to their baseline amplitude after subjects had acquired the new skill, whereas no practice-induced changes in MEP amplitude were observed after subjects had overlearned the task, or after practicing slow ramp pinches. Since the changes in MEP amplitude were observed only after TMS of M1 but not after direct stimulation of the corticospinal tract, these findings indicate task- and effector-specific involvement of human M1 in rapid motor learning.  相似文献   

10.
The brainstem projection of the saccular nerve was investigated by transganglionic tracing with horseradish peroxidase in the cat. The labeled fibers were located most caudally and laterally (dorsolaterally) in the vestibular nerve root. This was unique when compared with the locations of the fibers from the nerves of the other vestibular-end organs that were studied by the present authors by the same approach previously. In addition, such a comparison revealed a specific location, from lateral to medial, for the fibers from each of the five divisions of the vestibular nerve. In the present study, labeled fibers from the sacculus, of fine caliber, were found close to the restiform body, both medially and laterally, some even penetrating through this structure. Labeled terminals were present in cell group "y". This was unique, compared with the nerves from the other end organs. Such terminals were also found in the four main vestibular nuclei, except for the medial vestibular nucleus, where no labeled terminals could be detected. No labeled terminals were found in the interstitial nucleus of the vestibular nerve. Together with the findings from our previous studies, this suggests that, in contrast to the ampullar nerves, the nerves from the maculae do not project to this structure. This study confirms, but also extends, findings reported from a previous investigation in the cat, using an experimental degeneration technique. This article is based on experimental material that was prepared before the untimely death of Dr. Siegborn in 1997. He took active part in the planning of this study, and he carried out all of the microsurgery  相似文献   

11.
To examine functional roles of the medial prefrontal cortex (mPFC) in visuomotor association learning, neuronal activity in the mPFC of a behaving monkey was recorded during this learning. The monkey was presented a cueing visual stimulus, and required to push, pull or turn a manipulator according to the cue following a delay period. Under the control condition, three cues (circle, triangle and square) instructed the monkey to the three responses in a block of trials. After 2 months of training the animal was familiar with these cue-response associations. Under the learning condition, two of the three familiar cues and one novel cue were presented in a block. The monkey initially did not know what the novel cue instructed at first and learned a new cue-response association by trial and error. Neurons in the mPFC showed marked responses to cue presentation, and cue responses changed depending on whether cues were familiar or novel. A group of mPFC neurons responded to novel cues, but not to familiar cues. Another group of neurons responded to familiar cues, but not to novel cues. In a subgroup of these familiar cue-selective neurons, cue response was increased under the learning condition compared to the control condition. These results suggest that mPFC neurons differentiate between familiar and novel instructions, and that the neurons responsive to familiar stimuli enhance their modulations when both familiar and novel instructions have to be processed during task performance.  相似文献   

12.
13.
During motor skill acquisition, the brain learns a mapping between intended limb motion and requisite muscular forces. We propose that regions where sensory and motor representations overlap are crucial for motor learning. In primary motor cortex, for example, cells that modulate their activity for motor actions at a joint tend to receive input from that same portion of the periphery. We predict that this correspondence reflects a default strategy--a Bayesian prior--in which subjects tend to associate loads at a joint with motion at that joint (local sensorimotor association) when there is ambiguity regarding the nature of the load. As predicted, we found that in the presence of uncertainty, humans inappropriately generalized elbow loads as though they were based on elbow velocity. Generalization improved when we reduced uncertainty by decreasing coupling between elbow velocity and load during training. These results illustrate a key link between motor learning and the underlying neural circuitry.  相似文献   

14.
Neurons in monkey orbitofrontal cortex (OF) are known to respond to reward-predicting cues with a strength that depends on the value of the predicted reward as determined 1) by intrinsic attributes including size and quality and 2) by extrinsic factors including the monkey's state of satiation and awareness of what other rewards are currently available. We pose here the question whether another extrinsic factor critical to determining reward value-the delay expected to elapse before delivery-influences neuronal activity in OF. To answer this question, we recorded from OF neurons while monkeys performed a memory-guided saccade task in which a cue presented early in each trial predicted whether the delay before the monkey could respond and receive a reward of fixed size would be short or long. OF neurons tended to fire more strongly in response to a cue predicting a short delay. The tendency to fire more strongly in anticipation of a short delay was correlated across neurons with the tendency to fire more strongly before a large reward. We conclude that neuronal activity in OF represents the time-discounted value of the expected reward.  相似文献   

15.
Synaptic plasticity of local connections in rat motor cortex   总被引:3,自引:0,他引:3  
This paper reviews studies that investigated mechanisms of the induction of long-term synaptic efficacy increase in local horizontal connections in slices of adult rat motor cortex. Long-term potentiation (LTP) could be induced by electrical stimulation of afferents using theta burst stimulation (TBS) conditionally, when synaptic inhibition was transiently blocked by focal application of GABA(A) receptor antagonist. Robust, long-lasting enhancement of synaptic transmission in horizontal connections was induced by brief application of the potassium channel blocker, tetraethylammonium (TEA, 25 mM), to the incubation medium. This TEA-LTP could be blocked by nifedipine, a voltage-dependent calcium channel blocker. A transient exposure of slices to elevated extracellular calcium (5 mM) resulted in a long-lasting enhancement of responses, termed Ca-LTP, which could be blocked by the antagonist of NMDA receptors, APV. The induction of both TEA-LTP and Ca-LTP, could be prevented by inhibitors of the extracellular signal regulated kinase (ERK) cascade U0126 and PD98059. A transient activation of the ERK, 15 min after application of TEA or elevated [Ca2+], was demonstrated using immunofluorescence. Both forms of plasticity could also be prevented by the inhibitor of cAMP-dependent protein kinases (PKA), Rp-cAMPS. These studies indicate the involvement of the ERK and PKA signaling mechanisms in synaptic plasticity of the motor cortex in vitro. Since LTP in horizontal connections of the motor cortex has previously been shown to be related to the acquisition of a motor skill, it is suggested that the ERK and PKA signaling pathways may be involved in motor learning.  相似文献   

16.
In noninvasive neuroimaging, neural activity is inferred from local fluctuations in deoxyhemoglobin. A fundamental question of functional magnetic resonance imaging (fMRI) is whether the inferred neural activity is driven primarily by synaptic or spiking activity. The answer is critical for the interpretation of the blood oxygen level-dependent (BOLD) signal in fMRI. Here, we have used well-established visual-system circuitry to create a stimulus that elicits synaptic activity without associated spike discharge. In colocalized recordings of neural and metabolic activity in cat primary visual cortex, we observed strong coupling between local field potentials (LFPs) and changes in tissue oxygen concentration in the absence of spikes. These results imply that the BOLD signal is more closely coupled to synaptic activity.  相似文献   

17.
The deployment of spatial attention induces retinotopically specific increases in neural activity that occur even before a target stimulus is presented. Although this preparatory activity is thought to prime the attended regions, thereby improving perception and recognition, it is not yet clear whether this activity is a manifestation of signal enhancement at the attended locations or suppression of interference from distracting stimuli (or both). We investigated the functional role of these preparatory shifts by isolating a distractor suppression component of selection. Behavioral data have shown that manipulating the probability that visual distractors will appear modulates distractor suppression without concurrent changes in signal enhancement. In 2 experiments, functional magnetic resonance imaging revealed increased cue-evoked activity in retinotopically specific regions of visual cortex when increased distractor suppression was elicited by a high probability of distractors. This finding directly links cue-evoked preparatory activity in visual cortex with a distractor suppression component of visual selective attention.  相似文献   

18.
Brain-computer interfaces (BCIs) provide a defined link between neural activity and devices, allowing a detailed study of the neural adaptive responses generating behavioral output. We trained monkeys to perform two-dimensional center-out movements of a computer cursor using a BCI. We then applied a perturbation by randomly selecting a subset of the recorded units and rotating their directional contributions to cursor movement by a consistent angle. Globally, this perturbation mimics a visuomotor transformation, and in the first part of this article we characterize the psychophysical indications of motor adaptation and compare them with known results from adaptation of natural reaching movements. Locally, however, only a subset of the neurons in the population actually contributes to error, allowing us to probe for signatures of neural adaptation that might be specific to the subset of neurons we perturbed. One compensation strategy would be to selectively adapt the subset of cells responsible for the error. An alternate strategy would be to globally adapt the entire population to correct the error. Using a recently developed mathematical technique that allows us to differentiate these two mechanisms, we found evidence of both strategies in the neural responses. The dominant strategy we observed was global, accounting for ~86% of the total error reduction. The remaining 14% came from local changes in the tuning functions of the perturbed units. Interestingly, these local changes were specific to the details of the applied rotation: in particular, changes in the depth of tuning were only observed when the percentage of perturbed cells was small. These results imply that there may be constraints on the network's adaptive capabilities, at least for perturbations lasting only a few hundreds of trials.  相似文献   

19.
Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys (Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.  相似文献   

20.
Summary In the present study, two different physiological parameters were measured to describe brain activity related to visuomotor learning: performance-related DC-potential shifts and regional cerebral blood flow (rCBF) by Tc-99m HMPAO brain SPECT (Single Photon Emission Computerized Tomography). Visuomotor learning was required in a conflicting situation: a visual target moved on a screen and had to be tracked by moving the right hand in an inverted fashion (IT), e.g. movements of the target to the right side required hand movement to the left and vice versa. Compared to a normal, non-inverted control task (T), IT required the development of a novel motor program and the prevention of returning to routine direct pursuit. These additional demands in IT caused a relative hyperperfusion in regions including the middle frontal gyri, frontomedial cortex (including the supplementary motor area, SMA), right basal ganglia (caudate-putamen) and left cerebellum. Correlations of rCBF values between the middle frontal gyrus and basal ganglia may indicate a functional relation between these two brain structures. Visuomotor performance was accompanied by slow negative DC-potential shifts. In frontal and to a lesser degree in central recordings, amplitudes of DC-negativity were larger in IT than they were in T. This additional frontal negativity covaried with the success of learning. Results substantiate, now using a dual approach, previous suggestions that the frontal lobe plays an important role in visuomotor learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号