首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background: The mechanisms underlying interindividual variability in pain perception and cognitive responses are undefined but highly heritable. α2C‐ and α2A‐adrenergic receptors regulate noradrenergic activity and are important mediators of pain perception and analgesia. We hypothesized that common genetic variants in these genes, particularly the ADRA2C 322–325 deletion variant, affect pain perception or cognitive responses. Methods: We studied 73 healthy subjects (37 Caucasians and 36 African–Americans) aged 25.4 ± 4.6 years. Pain response to a cold pressor test was measured using a 10 cm visual analog scale and again on the next day, after three infusions of the selective α2‐agonist dexmedetomidine. Standardized cognitive tests were administered at baseline and after each infusion. The contribution of ADRA2C deletion genotype, dexmedetomidine concentration, and other covariates to pain perception and cognitive responses was determined using multiple linear regression models. Secondary analysis examined the effects of ADRA2A and other ADRA2C variants on pain perception. Results: ADRA2C Del homozygotes had higher pain scores in response to cold at baseline (6.3 ± 1.8 cm) and after dexmedetomidine (5.6 ± 2.2 cm) than insertion allele carriers (4.6 ± 2.1 cm [baseline] and 3.8 ± 1.9 cm [after dexmedetomidine]; adjusted P‐values = 0.019 and 0.004, respectively). Cognitive responses were unrelated to ADRA2C Ins/Del genotype. None of the other ADRA2A and ADRA2C variants was significantly related to cold pain sensitivity before dexmedetomidine; after dexmedetomidine, ADRA2A rs1800038 was marginally associated (P = 0.03). Conclusion: The common ADRA2C del322–325 variant affected pain perception before and after dexmedetomidine but did not affect other cognitive responses, suggesting that it contributes to interindividual variability in pain perception.  相似文献   

3.
4.
5.
6.
Due to the widespread emergence of resistant bacterial strains, an urgent need for the development of new antibacterial agents with novel modes of action has emerged. The discovery of naturally occurring monocyclic β‐lactams in the late 1970s, mainly active against aerobic Gram‐negative bacteria, has introduced a new approach in the design and development of novel antibacterial β‐lactam agents. The main goal was the derivatization of the azetidin‐2‐one core in order to improve their antibacterial potency, broaden their spectrum of activity, and enhance their β‐lactamase stability. In that respect, our review covers the updates in the field of monocyclic β‐lactam antibiotics during the last three decades, taking into account an extensive collection of references. An overview of the relationships between the structural features of these monocyclic β‐lactams, classified according to their N‐substituent, and the associated antibacterial or β‐lactamase inhibitory activities is provided. The different paragraphs disclose a number of well‐established classes of compounds, such as monobactams, monosulfactams, monocarbams, monophosphams, nocardicins, as well as other known representative classes. Moreover, this review draws attention to some less common but, nevertheless, possibly important types of monocyclic β‐lactams and concludes by highlighting the recent developments on siderophore‐conjugated classes of monocyclic β‐lactams.  相似文献   

7.
When aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL‐1β (1–10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL‐1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL‐1β‐treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL‐1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL‐1β‐mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long‐term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques.  相似文献   

8.
9.
Summary. Background: Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen‐derived triple‐helical peptides have identified the GXX’GER motif as an adhesive ligand for platelet integrin α2β1, and (GPO)n as a binding sequence for the signaling collagen receptor, glycoprotein VI (GPVI). Objective: The potency was investigated of triple‐helical peptides, consisting of GXX’GER sequences within (GPO)n or (GPP)n motifs, to support flow‐dependent thrombus formation. Results: At a high‐shear rate, immobilized peptides containing both the high‐affinity α2β1‐binding motif GFOGER and the (GPO)n motif supported platelet aggregation and procoagulant activity, even in the absence of von Willebrand factor (VWF). With peptides containing only one of these motifs, co‐immobilized VWF was needed for thrombus formation. The (GPO)n but not the (GPP)n sequence induced GPVI‐dependent platelet aggregation and procoagulant activity. Peptides with intermediate affinity (GLSGER, GMOGER) or low‐affinity (GASGER, GAOGER) α2β1‐binding motifs formed procoagulant thrombi only if both (GPO)n and VWF were present. At a low‐shear rate, immobilized peptides with high‐ or low‐affinity α2β1‐binding motifs mediated formation of thrombi with procoagulant platelets only in combination with (GPO)n. Conclusions: Triple‐helical peptides with specific receptor‐binding motifs mimic the properties of native collagen I in thrombus formation by binding to both platelet collagen receptors. At a high‐shear rate, either GPIb or high‐affinity (but not low‐affinity) GXX’GER mediates GPVI‐dependent formation of procoagulant thrombi. By extension, high‐affinity binding for α2β1 can control the overall platelet‐adhesive activity of native collagens.  相似文献   

10.
Summary. Background: Collagen‐induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α2β1. Adhesion and degranulation‐promoting adapter protein (ADAP) regulates αIIbβ3 in platelets and αLβ2 in T cells, and is phosphorylated in GPVI‐deficient platelets activated by collagen. Objectives: To determine whether ADAP plays a role in collagen‐induced platelet activation and in the regulation and function of α2β1. Methods: Using ADAP?/? mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. Results and Conclusions: Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP?/? platelets. However, aggregation and signaling induced by collagen‐related peptide (CRP), a GPVI‐selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α2β1‐selective ligand GFOGER and to a peptide (III‐04), which supports adhesion that is dependent on both GPVI and α2β1, was reduced in ADAP?/? platelets. An impedance‐based label‐free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non‐fluorescent differential‐interference contrast microscopy, which revealed reduced filpodia formation in ADAP?/? platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen‐binding integrin α2β1. In addition, we found that ADAP?/? mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild‐type animals. This may reflect increased removal of platelets from the circulation.  相似文献   

11.
12.
Inflammation is one of the key regulators of the repair process in bone tissues. Current data about the effect of interleukin‐1β (IL‐1β) on MSCs and osteoblasts are conflicting. We investigated the long‐term effect of IL‐1β on direct osteogenic differentiation of hMSCs in vitro. IL‐1β‐stimulated cells showed enhanced proliferation and entered maturation prior to non‐stimulated ones, as monitored by ALP activity. The process of calcification was accelerated during long‐term stimulation of hMSCs with IL‐1β. Since donor variability is a well‐known issue, we suggest a new method to illustrate global changes of a random chosen donor population through collative analysis. We further demonstrate an absorbance assay to evaluate the degree of calcification during in vitro culture of monolayer expanded hMSCs. Our findings support the importance of IL‐1β in osteogenic differentiation of hMSCs in an in vitro monolayer culture model. A new online absorbance assay is a useful method to evaluate the osteogenic differentiation of hMSCs at early stages. These findings will be helpful in optimizing predifferentiation of hMSCs in vitro for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Summary. Background: Studies of Glanzmann thrombasthenia (GT)‐causing mutations has generated invaluable information on the formation and function of integrin αIIbβ3. Objective: To characterize the mutation in four siblings of an Israeli Arab family affected by GT, and to analyze the relationships between the mutant protein structure and its function using artificial mutations. Methods and Results: Sequencing disclosed a new A97G transversion in the αIIb gene predicting Asn2Asp substitution at blade 1 of the β‐propeller. Alignment with other integrin α subunits revealed that Asn2 is highly conserved. No surface expression of αIIbβ3 was found in patients’ platelets and baby hamster kidney (BHK) cells transfected with mutated αIIb and WT β3. Although the αIIbβ3 was formed, the mutation impaired its intracellular trafficking. Molecular dynamics simulations and modeling of the αIIbβ3 crystal indicated that the Asn2Asp mutation disrupts a hydrogen bond between Asn2 and Leu366 of a calcium binding domain in blade 6, thereby impairing calcium binding that is essential for intracellular trafficking of αIIbβ3. Substitution of Asn2 to uncharged Ala or Gln partially decreased αIIbβ3 surface expression, while substitution by negatively or positively charged residues completely abolished surface expression. Unlike αIIbβ3, αVβ3 harboring the Asn2Asp mutation was surface expressed by transfected BHK cells, which is consistent with the known lower sensitivity of αVβ3 to calcium chelation compared with αIIbβ3. Conclusion: The new GT causing mutation highlights the importance of calcium binding domains in the β‐propeller for intracellular trafficking of αIIbβ3. The mechanism by which the mutation exerts its deleterious effect was elucidated by molecular dynamics.  相似文献   

14.
15.
16.
17.
18.
Summary. Background: CD40 ligand (CD40L, CD154) in the circulatory system is mainly contained in platelets, and surface‐expressed CD40L on activated platelets is subsequently cleaved by proteolytic activity to generate soluble CD40L (sCD40L). However, the enzyme responsible for the shedding of CD40L in activated platelets has not been clearly identified yet. We have recently found that molecular interaction of matrix metalloproteinase‐2 (MMP‐2) with integrin αIIbβ3 is required for the enhancement of platelet activation. Objectives: To elucidate the biochemical mechanism of MMP‐2‐associated sCD40L release. Methods: Localization of MMP‐2 and CD40L in platelets was analyzed by flow cytometry and fluorescence microscopy. The release of sCD40L from activated platelets was measured by enzyme‐linked immunosorbent assay. MMP‐2 binding to αIIbβ3 was analyzed by immunoprecipitation and western blotting. Recombinant hemopexin‐like domain and MMP‐2‐specific inhibitor were used to characterize the nature of MMP‐2 binding and catalytic activity. Results: It was revealed that interaction of MMP‐2 with αIIbβ3 is required for effective production of sCD40L in activated human platelets. Platelet activation and release of sCD40L were significantly affected by inhibition of platelet‐derived MMP‐2 activity or by inhibition of binding between the enzyme and the integrin. It was also found in platelet‐rich plasma that MMP‐2 activity is responsible for generating sCD40L. Conclusions: The results presented here strongly suggest that MMP‐2 interacts with αIIbβ3 to regulate the shedding of CD40L exposed on the surfaces of activated human platelets.  相似文献   

19.
Summary. Background: The cytoplasmic tails of αIIb and β3 regulate essential αIIbβ3 functions. We previously described a variant Glanzmann thrombasthenia mutation in the β3 cytoplasmic tail, IVS14: ?3C>G, which causes a frameshift with an extension of β3 by 40 residues. Objectives: The aim of this study was to characterize the mechanism by which the mutation abrogates transition of αIIbβ3 from a resting state to an active state. Methods: We expressed the natural mutation, termed 742ins, and three artificial mutations in baby hamster kidney (BHK) cells along with wild‐type (WT) αIIb as follows: β3‐742stop, a truncated mutant to evaluate the effect of deleted residues; β3‐749stop, a truncated mutant that preserves the NPLY conserved sequence; and β3‐749ins, in which the aberrant tail begins after the conserved sequence. Flow cytometry was used to determine ligand binding to BHK cells. Results and conclusions: Surface expression of αIIbβ3 of all four mutants was at least 60% of WT expression, but there was almost no binding of soluble fibrinogen following activation with activating antibodies (anti‐ligand‐induced‐binding‐site 6 [antiLIBS6] or PT25‐2). Activation of the αIIbβ3 mutants was only achieved when both PT25‐2 and antiLIBS6 were used together or following treatment with dithiothreitol. These data suggest that the ectodomain of the four mutants is tightly locked in a resting conformation but can be forced to become active by strong stimuli. These data and those of others indicate that the middle part of the β3 tail is important for maintaining αIIbβ3 in a resting conformation.  相似文献   

20.
Idiopathic thrombotic thrombocytopenic purpura (TTP) patients have ADAMTS13 deficiency, which is usually caused by ADAMTS13 autoantibodies. However, the triggering factors for the autoantibody production remain unclear. Interferon‐α (IFN‐α) is a cytokine involved with many autoimmune processes such as inducing the activation of peripheral dendritic cells and stimulating T cells and B cells. It also plays an important role in some autoimmune diseases. Elevated IFN‐α levels have been observed in some TTP patients and previous case reports have shown the occurrence of TTP after IFN‐α treatment. Thus, we hypothesized that high levels of IFN‐α would correlate with presence of ADAMTS13 autoantibodies. However, we did not observe elevated IFN‐α levels in 36 TTP patients (mean 5.29 pg/ml, standard deviation (SD) 26.56 pg/ml) compared to healthy controls (mean 0 pg/ml, SD 0 pg/ml), P = 0.59. IFN‐α levels of most patients (94%) were undetectable. Only two patients had increased IFN‐α levels and ADAMTS13 autoantibodies were detected in these two patients. Interestingly, both the patients had an underlying autoimmune disease. Although there have been cases of secondary TTP following IFN‐α treatment, no evidence supports a role of IFN‐α in the development of idiopathic TTP in our patient population. J. Clin. Apheresis 29:336–338 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号