首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose. The objective of this study was to examine the effect of a citric acid-citrate buffer system on the chemical instability of lyophilized amorphous samples of quinapril hydrochloride (QHCl). Methods. Molecular dispersions of QHCl and citric acid were prepared by colyophilization from their corresponding aqueous solutions with a molar ratio of QHCl to citric acid from 1:1 to 6:1 and solution pH from 2.49 to 3.05. Solid samples were subjected to a temperature of 80°C and were analyzed for degradation using high-performance liquid chromatography. The glass transition temperature, Tg, of all samples was measured by differential scanning calorimetry. Results. Samples were first examined by varying the Tg and maintaining the initial solution pH constant. At pH 2.49 the rate of reaction was found to be less dependent on the sample Tg, whereas at pH 2.75 the rate decreased with an increase in Tg. In a second set of experiments at a constant Tg of 70°C, the reaction rate increased as the pH increased. Conclusion. The overall solid-state chemical reactivity of amorphous quinapril depends on the relative amount of QHCl and Q+–, the zwitterionic form of quinapril. At high proportions of Q+– (higher pH values) the reaction rate seems to be strongly influenced by the Tg of the mixture, and hence the molecular mobility, whereas at higher proportions of QHCl (lower pH) the reaction rate is less sensitive to Tg, presumably because of different mechanistic rate determining steps for the two sets of conditions.  相似文献   

2.
Purpose. To measure the water vapor absorption behavior of sucrose-poly(vinyl pyrrolidone) (PVP) and sucrose-poly(vinyl pyrrolidone co-vinyl acetate) (PVP/VA) mixtures, prepared as amorphous solid solutions and as physical mixtures, and the effect of absorbed water on the amorphous properties, i.e., crystallization and glass transition temperature, Tg, of these systems. Methods. Mixtures of sucrose and polymer were prepared by co-lyophilization of aqueous sucrose-polymer solutions and by physically mixing amorphous sucrose and polymer. Absorption isotherms for the individual components and their mixtures were determined gravimetrically at 30°C as a function of relative humidity. Following the absorption experiments, mixtures were analyzed for evidence of crystallization using X-ray powder diffraction. For co-lyophilized mixtures showing no evidence of crystalline sucrose, Tg was determined as a function of water content using differential scanning calorimetry. Results. The absorption of water vapor was the same for co-lyophilized and physically mixed samples under the same conditions and equal to the weighted sums of the individual isotherms where no sucrose crystallization was observed. The crystallization of sucrose in the mixtures was reduced relative to sucrose alone only when sucrose was molecularly dispersed (co-lyophilized) with the polymers. In particular, when co-lyophilized with sucrose at a concentration of 50%, PVP was able to maintain sucrose in the amorphous state for up to three months, even when the Tg was reduced well below the storage temperature by the absorbed water. Conclusions. The water vapor absorption isotherms for co-lyophilized and physically mixed amorphous sucrose-PVP and sucrose-PVP/VA mixtures at 30°C are similar despite interactions between sugar and polymer which are formed when the components are molecularly dispersed with one another. In the presence of absorbed water the crystallization of sucrose was reduced only by the formation of a solid-solution, with PVP having a much more pronounced effect than PVP/VA. The effectiveness of PVP in preventing sucrose crystallization when significant levels of absorbed water are present was attributed to the molecular interactions between sucrose, PVP and water.  相似文献   

3.
Purpose. The aim was to investigate the influence of polymer content and molecular weight on the morphology and heat- and moisture-induced transformations, as indicators of stability, of spray-dried composite particles of amorphous lactose and poly(vinylpyrrolidone) (PVP). Methods. Amorphous lactose and composite particles of amorphous lactose with different contents and molecular weights of PVP were prepared by spray drying. The nanostructure of the particles was analyzed by x-ray powder diffractometry, the morphology by light microscopy and SEM, the glass transition temperatures (Tg), crystallization temperatures (Tc), heats of crystallization and melting temperatures by differential scanning calorimetry, and moisture-induced crystallizations gravimetrically and by microcalorimetry. Results. All the types of particles prepared were amorphous. The Tg was unchanged or only marginally increased as a result of the inclusion of PVP. However, crystallization temperature, time to moisture-induced crystallization, and particle morphology were affected by both content and molecular weight of PVP. Conclusions. Increased content and molecular weight of PVP may have the potential to increase the physical stability of amorphous lactose. However, Tg seems not to be a relevant indicator for the stability of this type of amorphous composite materials.  相似文献   

4.
Purpose. To evaluate thermomechanical analysis (TMA) as a technique for determining the viscosity of amorphous pharmaceutical materials. This property of amorphous drugs and excipients is related to their average rate of molecular mobility and thus to their physical and chemical stability. Methods. Indomethacin was selected as a model amorphous drug whose viscosity has previously been reported in the literature. A Seiko TMA 120C thermomechanical analyzer was utilized in isothermal penetration mode to determine the viscosity of the amorphous drug over the maximum possible range of temperatures. Results. Using a cylindrical penetration geometry it was possible to accurately determine the viscosity of amorphous indomethacin samples by TMA over the temperature range from 35 to 75°C. The results were consistent with those reported in the literature using a controlled strain rheometer over the range 44–75°C. The limiting lower experimental temperature for the TMA technique was extended to significantly below the calorimetric glass transition temperature (Tg 42°C), thus allowing a direct experimental determination of the viscosity at Tg to be made. Conclusions. Thermomechanical analysis can be used to accurately determine the viscosity of amorphous pharmaceutical materials at temperatures near and above their calorimetric glass transition temperatures.  相似文献   

5.
To determine the surface acidity and stability profiles of quinapril hydrochloride (QHCl) coground with silicates, solid-state equivalent pH (pHeq) of amorphous samples was measured by diffuse reflectance spectroscopy using pH indicator probes. Calibration curves for pH indicators were developed in buffer solutions. Amorphous samples with and without pH indicators were prepared by cryogrinding. Different pH grades of silicates and various QHCl/silicate ratios were used to make amorphous samples over a range of surface acidity. Diffuse reflectance spectra of amorphous samples were measured and pHeq was determined using the calibration curves of pH indicators developed in solution. Suspension pH of amorphous samples was also measured. The chemical stability of coground amorphous samples was assessed at 40°C and 0% or 48% RH. The chemical stability of neat amorphous quinapril lyophilized from solutions over a range of pH was also assessed at 40°C/0% RH and the reconstituted pH-stability profile of lyophiles was determined. For all silicate and QHCl/silicate amorphous samples, the same pH rank order was obtained based on pHeq and suspension pH. However, the pHeq was significantly lower than the corresponding suspension pH. Discrepancies between pH-stability profiles based on the pHeq and the suspension pH were observed. In general, the pHeq- and reconstituted pH-stability profiles were essentially identical, but the suspension pH-stability profile deviated from the reconstituted pH-stability profile by 2-3 pH units. The results indicate that solid-state surface acidity measurement provides a more accurate prediction of the effective surface acidity of amorphous formulations than the suspension pH. In conclusion, solid-state surface acidity measurement of excipients and solid formulations using pH indicator probes as surrogates can be used to determine the ionization state of the drug and to predict the chemical stability profile of the drug in actual solid formulations.  相似文献   

6.
Purpose. The purpose of this work was to investigate the effects of trehalose and trehalose/sodium tetraborate mixtures on the recovery of lactate dehydrogenase (LDH) activity following freeze-thawing and centrifugal vacuum-drying/rehydration. The storage stability of LDH under conditions of either high relative humidity or high temperature was also studied. Methods. LDH was prepared in buffered aqueous formulations containing trehalose alone and trehalose/'borate' mixtures. Enzymatic activity was measured immediately following freeze-thawing and vacuum-drying/rehydration processes, and also after vacuum-dried formulations were stored in either high humidity or high temperature environments. Also, glass transition temperatures (Tg) were measured for both freeze-dried and vacuum-dried formulations. Results. The Tgvalues of freeze-dried trehalose/borate mixtures are considerably higher than that of trehalose alone. Freezing and vacuum-drying LDH in the presence of 300 mM trehalose resulted in the recovery of 80% and 65% of the original activity, respectively. For vacuum-dried mixtures, boron concentrations below 1.2 mole boron/ mole trehalose had no effect on recovered LDH. After several weeks storage in either humid (100% relative humidity) or warm (45°C) environments, vacuum-dried formulations that included trehalose and borate showed greater enzymatic activities than those prepared with trehalose alone. We attribute this stability to the formation of a chemical complex between trehalose and borate. Conclusions. The high Tgvalues of trehalose/borate mixtures offer several advantages over the use of trehalose alone. Most notable is the storage stability under conditions of high temperature and high relative humidity. In these cases, formulations that contain trehalose and borate are superior to those containing trehalose alone. These results have practical implications for long-term storage of biological materials.  相似文献   

7.
Purpose. The purpose of this study is to highlight the importance of knowing the glass transition temperature, Tg, of a lyophilized amorphous solid composed primarily of a sugar and a protein in the interpretation of accelerated stability data. Methods. Glass transition temperatures were measured using DSC and dielectric relaxation spectroscopy. Aggregation of protein in the solid state was monitored using size-exclusion chromatography. Results. Sucrose formulation (Tg ~ 59°C) when stored at 60°C was found to undergo significant aggregation, while the trehalose formulation (Tg ~ 80°C) was stable at 60°C. The instability observed with sucrose formulation at 60°C can be attributed to its Tg (~59°C) being close to the testing temperature. Increase in the protein/sugar ratio was found to increase the Tgs of the formulations containing sucrose or trehalose, but to different degrees. Conclusions. Since the formulations exist in glassy state during their shelf-life, accelerated stability data generated in the glassy state (40°C) is perhaps a better predictor of the relative stability of formulations than the data generated at a higher temperature (60°C) where one formulation is in the glassy state while the other is near or above its Tg.  相似文献   

8.
Breen  E. D.  Curley  J. G.  Overcashier  D. E.  Hsu  C. C.  Shire  S. J. 《Pharmaceutical research》2001,18(9):1345-1353
Purpose. To determine the effect of moisture and the role of the glass transition temperature (Tg) on the stability of a high concentration, lyophilized, monoclonal antibody. Methods. A humanized monoclonal antibody was lyophilized in a sucrose/histidine/polysorbate 20 formulation. Residual moistures were from 1 to 8%. Tg values were measured by modulated DSC. Vials were stored at temperatures from 5 to 50°C for 6 or 12 months. Aggregation was monitored by size exclusion chromatography and Asp isomerization by hydrophobic interaction chromatography. Changes in secondary structure were monitored by Fourier transform infrared (FTIR). Results. Tg values varied from 80°C at 1% moisture to 25°C at 8% moisture. There was no cake collapse and were no differences in the secondary structure by FTIR. All formulations were stable at 5°C. High moisture cakes had higher aggregation rates than drier samples if stored above their Tg values. Intermediate moisture vials were more stable to aggregation than dry vials. High moisture samples had increased rates of Asp isomerization at elevated temperatures both above and below their Tg values. Chemical and physical degradation pathways followed Arrhenius kinetics during storage in the glassy state. Only Asp isomerization followed the Arrhenius model above the Tg value. Both chemical and physical stability at T Tg were fitted to Williams-Landel-Ferry (WLF) kinetics. The WLF constants were dependent on the nature of the degradation system and were not characteristic of the solid system. Conclusion. High moisture levels decreased chemical stability of the formulation regardless of whether the protein was in a glassy or rubbery state. In contrast, physical stability was not compromised, and may even be enhanced, by increasing residual moisture if storage is below the Tg value.  相似文献   

9.
Molecular dynamic simulations have been successfully utilised with molecular modelling to estimate the glass transition temperature (Tg) of polymers. In this paper, we use a similar approach to predict the Tg of a small pharmaceutical molecule, beclomethasone dipropionate (BDP). Amorphous beclomethasone dipropionate was prepared by spray-drying. The amorphous nature of the spray-dried material was confirmed with scanning electron microscopy, differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). Molecular models for amorphous BDP were constructed using the amorphous cell module in Discovery studio™. These models were used in a series of molecular dynamic simulations to predict the glass transition temperature. The Tg of BDP was determined by isothermal-isobaric molecular dynamic simulations, and different thermodynamic parameters were obtained in the temperature range of −150 to 400 °C. The discontinuity at a specific temperature in the plot of temperature versus amorphous cell volume (V) and density (ρ) was considered to be the simulated Tg. The predicted Tg from four different simulation runs was 63.8 °C ± 2.7 °C. The thermal properties of amorphous BDP were experimentally determined by DSC and the experimental Tg was found to be ∼65 °C, in good agreement with computational simulations.  相似文献   

10.
The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon–Taylor equation. In the amorphous lactose–sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon–Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.  相似文献   

11.
Purpose. To examine whether the glass transition temperature (Tg) of freeze-dried formulations containing polymer excipients can be accurately predicted by molecular dynamics simulation using software currently available on the market. Molecular dynamics simulations were carried out for isomaltodecaose, a fragment of dextran, and -glucose, the repeated unit of dextran, in the presence or absence of water molecules. Estimated values of Tg were compared with experimental values obtained by differential scanning calorimetry (DSC). Methods. Isothermal-isobaric molecular dynamics simulations (NPTMD) and isothermal molecular dynamics simulations at a constant volume (NVTMD) were carried out using the software package DISCOVER (Material Studio) with the Polymer Consortium Force Field. Mean-squared displacement and radial distribution function were calculated. Results. NVTMD using the values of density obtained by NPTMD provided the diffusivity of glucose-ring oxygen and water oxygen in amorphous -glucose and isomaltodecaose, which exhibited a discontinuity in temperature dependence due to glass transition. Tg was estimated to be approximately 400K and 500K for pure amorphous -glucose and isomaltodecaose, respectively, and in the presence of one water molecule per glucose unit, Tg was 340K and 360K, respectively. Estimated Tg values were higher than experimentally determined values because of the very fast cooling rates in the simulations. However, decreases in Tg on hydration and increases in Tg associated with larger fragment size could be demonstrated. Conclusions. The results indicate that molecular dynamics simulation is a useful method for investigating the effects of hydration and molecular weight on the Tg of lyophilized formulations containing polymer excipients, although the relationship between cooling rates and Tg must first be elucidated to predict Tg vales observed by DSC measurement. January 16  相似文献   

12.
The effects of drug/silicate ratio and moisture content on chemical stability of amorphous quinapril hydrochloride (QHCl) coground with magnesium aluminometasilicates (Neusilin US2 and Neusilin FL2) were investigated. Amorphous QHCl/Neusilin samples containing 0–95% (w/w) Neusilin were prepared by cryogrinding. All samples were found to be amorphous and remained so for the duration of the study. The chemical stability of neat amorphous QHCl and QHCl coground with various percentages of Neusilin was studied at 40°C and at various moisture contents, as dictated by varying storage relative humidity (%RH). QHCl hydrolysis, forming a dicarboxylic acid (DCA) product, slightly increased with increasing percentages of Neusilin in the coground amorphous samples. On the contrary, QHCl cyclization, forming a diketopiperazine (DKP) product, was slow at both lower (e.g., 5%) and higher (e.g., 95%) percentages of Neusilin and markedly faster at intermediate percentages (e.g., 50%) of Neusilin. This complex effect of drug/silicate ratio on cyclization of quinapril was correlated with the surface acidity of the coground amorphous systems. For neat amorphous QHCl, increasing moisture resulted in increased DKP and DCA formation, as expected. Similarly, higher DCA formation was observed in QHCl/Neusilin coground amorphous samples with increasing moisture. However, DKP formation in coground amorphous samples was high both at lower (e.g., 0% RH) and higher (e.g., 75% RH) humidity, and low at intermediate (e.g., 48% RH) humidity. This complex relationship between DKP formation and moisture content for coground amorphous samples can be explained by the competitive adsorption of drug and water molecules on Neusilin surfaces, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. Therefore, drug/silicate ratio, solid-state equivalent pH (surface acidity), and moisture have significant effects on chemical stability and should be considered in formulation and packaging optimization to develop both chemically and physically stable amorphous drug formulations using silicates.  相似文献   

13.
The effect of pH grade of silicates on chemical stability of amorphous drugs coground with silicates (Neusilin and Aerosil) was investigated using quinapril HCl (QHCl) as a model drug. The ability of pH-modifiers (ascorbic acid and MgO) to improve chemical stability was explored. PXRD and polarized light microscopy indicated complete amorphization of all samples by cryo-grinding. All samples remained amorphous during stability study at 40°C and 48% RH. In general, drug degradation was greater in the QHCl/silicate (1:3) coground amorphous samples than the neat amorphous QHCl. The rate of diketopiperazine formation by cyclization of QHCl was higher in the presence of lower pH grades than higher pH grades of silicates. However, the pH-stability profile of coground amorphous systems prepared with different pH grades of silicates was not consistent with the pH-stability profile of the drug in solution. A basic pH-modifier (MgO) in a lower pH grade silicate (Neusilin US2) stabilized coground amorphous QHCl. Also, an acidic pH-modifier (ascorbic acid) in a higher pH grade silicate (Neusilin FL2) suppressed QHCl hydrolysis. The pH grade of silicates is a major factor affecting the chemical stability of a coground amorphous drug and pH-modifiers are useful for chemical stabilization without compromising physical stability. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3358–3372, 2009  相似文献   

14.
Purpose. To compare the enthalpy relaxation of amorphous sucrose and co-lyophilized sucrose-additive mixtures near the calorimetric glass transition temperature, so as to measure the effects of additives on the molecular mobility of sucrose. Methods. Amorphous sucrose and sucrose-additive mixtures, containing poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl-acetate) (PVP/VA) dextran or trehalose, were prepared by lyophilization. Differential scanning calorimetry (DSC) was used to determine the area of the enthalpy recovery endotherm following aging times of up to 750 hours for the various systems. This technique was also used to compare the enthalpy relaxation of a physical mixture of amorphous sucrose and PVP. Results. Relative to sucrose alone, the enthalpy relaxation of co-lyophilized sucrose-additive mixtures was reduced when aged for the same length of time at a comparable degree of undercooling in the order: dextran PVP > PVP/VA > trehalose. Calculated estimates of the total enthalpy change required for sucrose and the mixtures to relax to an equilibrium supercooled liquid state (H) were essentially the same and were in agreement with enthalpy changes measured at longer aging times (750 hours). Conclusions. The observed decrease in the enthalpy relaxation of the mixtures relative to sucrose alone indicates that the mobility of sucrose is reduced by the presence of additives having a Tg that is greater than that of sucrose. Comparison with a physically mixed amorphous system revealed no such effects on sucrose. The formation of a molecular dispersion of sucrose with a second component, present at a level as low as 10%, thus reduces the mobility of sucrose below Tg, most likely due to the coupling of the molecular motions of sucrose to those of the additive through molecular interactions.  相似文献   

15.
Amorphous matrices, composed of sugars, are markedly plasticized by moisture uptake, which results in physical instability. Our previous studies, in the compression pressure range ≤443 MPa, indicated that when a matrix is compressed, the amount of sorbed water at given relative humidities (RHs) decreases, whereas the glass transition temperature (Tg) remains constant. Herein, the effect of higher compression pressures than those used previously was explored to investigate the feasibility of using compression to improve the physical stability of amorphous sugar matrix against water uptake and subsequent collapse. Amorphous sugar samples were prepared by freeze-drying and then compressed at 0–665 MPa, followed by rehumidification at given RHs. The physical stability of the amorphous sugar sample was evaluated by measuring Tg and crystallization temperature (Tcry). The amounts of sorbed water, different in the interaction state, were determined using an FTIR technique. It was found that the compression at pressures of ≥443 MPa decreased the amount of sorbed water, which is a major factor in plasticization and crystallization, and thus markedly increased the Tg and Tcry relative to that for the uncompressed sample. Hence, the compression at several hundreds MPa appears to be feasible for improving the physical stability of amorphous sugar matrix. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2187–2197, 2013  相似文献   

16.
Freeze-dried samples of sucrose with buffer salts, amino acids, or dextran have been analyzed with differential scanning calorimetry (DSC) to evaluate the use of DSC thermograms in predicting the physical storage stability. The glass transition temperature, T g, of the amorphous cake, crystallization, and melting of sucrose are observed with DSC. T g appeared to be an important characteristic of the physical stability of the amorphous freeze-dried cake. A storage temperature above T g results in collapse or shrinkage of the cake, which for a sucrose-based formulation, may be accompanied by crystallization of the sucrose. The T g of the amorphous sucrose is influenced by other components present in the cake. Dextran-40 raised T g, while the addition of glycine to the formulation lowered T g. The residual moisture content strongly influences T g, since water acts as a plasticizer of the system; the higher the moisture content, the lower the T g and the less physically stable the freeze-dried cake. Crystallization of amorphous sucrose is shown to be inhibited by high molecular weight components or ionic compounds. DSC analysis of freeze-dried cakes proved to be a powerful tool in formulation studies.  相似文献   

17.
Purpose. To study the miscibility of proteins and polymer excipients in frozen solutions and freeze-dried solids as protein formulation models. Methods. Thermal profiles of frozen solutions and freeze-dried solids containing various proteins (lysozyme, ovalbumin, BSA), nonionic polymers (Ficoll, polyvinylpyrrolidone [PVP]), and salts were analyzed by differential scanning calorimetry (DSC). The polymer miscibility was determined from the glass transition temperature of maximally freeze-concentrated solute (Tg) and the glass transition temperature of freeze-dried solid (Tg). Results. Frozen Ficoll or PVP 40k solutions showed Tg at –22°C, while protein solutions did not show an apparent Tg. All the protein and nonionic polymer combinations (5% w/w, each) were miscible in frozen solutions and presented single Tgs that rose with increases in the protein ratio. Various salts concentration-dependently lowered the single Tgs of the proteins and Ficoll combinations maintaining the mixed amorphous phase. In contrast, some salts induced the separation of the proteins and PVP combinations into protein-rich and PVP-rich phases among ice crystals. The Tgs of these polymer combinations were jump-shifted to PVP's intrinsic Tg at certain salt concentrations. Freeze-dried solids showed varied polymer miscibilities identical to those in frozen solutions. Conclusions. Freeze-concentration separates some combinations of proteins and nonionic polymers into different amorphous phases in a frozen solution. Controlling the polymer miscibility is important in designing protein formulations.  相似文献   

18.
Purpose. The dependence of the molecular mobility of lyophilized formulations on pharmaceutical polymer excipients was studied. Molecular mobility as determined by NMR relaxation-based critical temperature of molecular mobility (Tmc) and glass transition temperature (Tg) is discussed in relation to the plasticizing effect of water in formulations. Methods. The Tmc and Tg of lyophilized -globulin formulations containing 6 different polymer excipients such as dextran, polyvinylpyrrolidone (PVP) and methylcellulose (MC) was determined by NMR and DSC. The molecular mobility of water in the formulations was determined by proton NMR and dielectric relaxation spectrometry (DRS). Results. Tmc varied with polymer excipients. Tmc increased as the ratio of bound water to mobile water increased and as the molecular mobility of mobile water decreased. The formulation containing MC exhibited a lower Tmc than the formulation containing dextran because of the smaller ratio of bound water and the higher molecular mobility of mobile water. The Tmc of the formulation containing PVP was higher than that expected from the higher T2 values of water because of the lower molecular mobility of mobile water regardless of the higher ratio of mobile water. The Tmc of these lyophilized formulations was higher than their Tg by 23°C to 34°C, indicating that the formulations became a NMR-detected microscopically liquidized state below their Tg. Conclusions. The quantity and the molecular mobility of mobile water in lyophilized formulations can be considered to affect the Tmc of lyophilized formulations, which in turn governs their stability.  相似文献   

19.
This study was designed to investigate the relationships between the solid-state chemical instability and physical characteristics of a model drug, quinapril hydrochloride (QHCl), in the amorphous state. Amorphous QHCl samples were prepared by rapid evaporation from dichloromethane solution and by grinding and subsequent heating of the crystalline form. Physical characteristics, including the glass transition temperature and molecular mobility, were determined using differential scanning calorimetry, thermogravimetric analysis, powder x-ray diffractometry, polarizing microscopy, scanning electron microscopy, and infrared spectroscopy. The amorphous form of QHCl, produced by both methods, has a T(g) of 91 degrees C. Isothermal degradation studies showed that cyclization of QHCl occurred at the same rate for amorphous samples prepared by the two methods. The activation energy was determined to be 30 to 35 kcal/mol. The rate of the reaction was shown to be affected by sample weight, dilution through mixing with another solid, and by altering the pressure above the sample. The temperature dependence for chemical reactivity below T(g) correlated very closely with the temperature dependence of molecular mobility. Above T(g), however, the reaction was considerably slower than predicted from molecular mobility. From an analysis of all data, it appears that agglomeration and sintering of particles caused by softening of the solid, particularly above T(g), and a resulting reduction of the particle surface/volume ratio play a major role in affecting the reaction rate by decreasing the rate of removal of the gaseous HCl product.  相似文献   

20.
Purpose. To show that thermally stimulated depolarization currents (TSDC), which is a dielectric experimental technique relatively unknown in the pharmaceutical scientists community, is a powerful technique to study molecular mobility in pharmaceutical solids, below their glass transition temperature (Tg). Indomethacin (Tg = 42°C) is used as a model compound. Methods. TSDC is used to isolate the individual modes of motion present in indomethacin, in the temperature range between –165°C and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in indomethacin. Results. Two different relaxational processes were detected and characterized: the glass transition relaxation, or -process, and a sub-Tg relaxation, or secondary process. The lower temperature secondary process presents a very low intensity, a very low activation energy, and a very low degree of cooperativity. The fragility index (Angell's scale) of indomethacin obtained from TSDC data is m = 64, which can be compared with other values reported in the literature and obtained from other experimental techniques. Conclusions. TSDC data indicate that indomethacin is a relatively strong glass former (fragility similar to glycerol but lower than sorbitol, trehalose, and sucrose). The high-resolution power of the TSDC technique is illustrated by the fact that it detected and characterized the secondary relaxation in indomethacin, which was not possible by other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号