首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This study was designed to examine the roles of intracellular free magnesium ion concentration ([Mg(2+)](i)) in ethanol-induced intoxication and development of tolerance in cultured canine cerebral vascular smooth muscle cells and astrocytes as well as intact rat brain. The basal, resting level of [Mg(2+)](i) in cerebrovascular cells was 732.5 +/- 82.4 microM. Exposure of cultured canine cerebral vascular smooth muscle cells to ethanol (10 and 25 mM) for 24 h reduced the concentrations of [Mg(2+)](i) to 521.1 +/- 59.6 microM, and 308.2 +/- 37.8 microM, respectively. However, exposure of these cultured vascular cells to the same concentrations of ethanol, after initial pretreatment with ethanol for 24 h, failed to interfere with the levels of [Mg(2+)](i). Measurement of [Mg(2+)](i) at 48 h and 72 h indicated that the decreased levels of [Mg(2+)](i) induced by ethanol at 24 h treatment returned toward baseline. Similar experiments were performed in cultured type-2 astrocytes isolated from neonatal rat brain. The basal level of [Mg(2+)](i) in type-2 astrocytes was about 125 microM. Incubation of these cells with 10 mM ethanol for 10 min resulted in a 27% reduction in the level of [Mg(2+)](i), whereas incubation with 25 mM ethanol resulted in almost a 50% reduction in [Mg(2+)](i). The decreased levels of [Mg(2+)](i) lasted around 30 min, until the measurement finished. Continuous incubation of these cultured astrocytes, with ethanol (either 10 mM or 25 mM), for more than 24 h, indicated that the concentrations of [Mg(2+)](i) in type-2 astrocytes were equivalent to those at basal, resting levels. In vivo 31P-NMR spectroscopy, performed on intact rat brains, indicated that an initial administration of 4 mg/kg ethanol ( approximately 20-25 mM blood alcohol level) resulted (after 20-40 min of exposure) in severe deficits in whole brain [Mg(2+)](i) (550 +/- 33 microM to 358 +/- 24 microM). Repeated injections of ethanol (4 mg/kg) over the next 24-72 h resulted in progressively diminishing effects on brain [Mg(2+)](i). These experimental data indicate that chronic ethanol treatment can induce a tolerance to depletion of [Mg(2+)](i) in cerebrovascular smooth muscle cells, type-2 astrocytes as well as intact rat brain. The results suggest that [Mg(2+)](i) might play a major role in alcohol-induced tolerance in the brain.  相似文献   

2.
Neuronal excitability is inhibited by somatostatin, which might play important roles in seizure and neuroprotection. The possibility of whether the effect of somatostatin on neurotransmission is susceptible to desensitization was investigated. We tested the effects of prolonged exposure to somatostatin on 0.1 mM extracellular Mg(2+) concentration ([Mg(2+)](o))-induced intracellular free Ca(2+) concentration ([Ca(2+)](i)) spikes in cultured rat hippocampal neurons using fura-2-based microfluorimetry. Reducing [Mg(2+)](o) to 0.1 mM elicited repetitive [Ca(2+)](i) spikes. These [Ca(2+)](i) spikes were inhibited by exposure to somatostatin-14. The inhibitory effects of somatostatin were blocked by pretreatment with pertussis toxin (PTX, 100 ng/ml) for 18-24 h. Prolonged exposure to somatostatin induced a desensitization of the somatostatin-induced inhibition of [Ca(2+)](i) spikes in a concentration-dependent manner. The somatostatin-induced desensitization was retarded by the nonspecific protein kinase C (PKC) inhibitor staurosporin (100 nM) or chronic treatment with phorbol dibutyrate (1 microM) for 24 h, but not by the protein kinase A inhibitor KT5720. The desensitization was significantly retarded by the novel PKCepsilon translocation inhibitor peptide (1 microM). In addition, suramin (3 microM), an inhibitor of G-protein-coupled receptor kinase 2 (GRK2), caused a reduction in the desensitization. After tetrodotoxin (TTX, 1 microM) completely blocked the low [Mg(2+)](o)-induced [Ca(2+)](i) spikes, glutamate-induced [Ca(2+)](i) transients were slightly inhibited by somatostatin and the inhibition was desensitized by prolonged exposure to somatostatin. These results indicate that the prolonged activation of somatostatin receptors induces the desensitization of somatostatin-induced inhibition on low [Mg(2+)](o)-induced [Ca(2+)](i) spikes through the activation of GRK2 and partly a novel PKCepsilon in cultured rat hippocampal neurons.  相似文献   

3.
Systemic administration of 3-nitropropionic acid (3-NPA, a mycotoxin) induces brain damage accompanied by disturbance in the blood-brain barrier (BBB). Since the endothelial cells are important components of the BBB and the first target of a systemic intoxication, in the present study, the effect of 3-NPA on primary cultured rat brain endothelial cells (rBECs) was examined by studying intracellular Ca(2+) ([Ca(2+)](i)) response using imaging techniques with fura-2. rBECs were prepared using a method of Kis et al. [Eur. J. Pharmacol. 368 (1999) 35-42] and Szabo et al. [Neurobiology 5 (1997) 1-16]. Almost all cells were immunoreactive to antibody against the factor VIII-related antigen (von-Willebrand factor). They showed a typical dose-dependent increase of [Ca(2+)](i) in response to ATP or bradykinin. Low concentrations of 3-NPA (1.7 mM, 3.4 mM) caused no changes, and a medium concentration (6.8 mM) increased the [Ca(2+)](i) gradually and progressively, and the increase was reversed incompletely back to the resting level after washing. A high concentration (13.6 mM) increased the [Ca(2+)](i) irreversibly. These elevations of [Ca(2+)](i) were absent in a Ca(2+)-free medium. In endothelial cells treated with 17beta-estradiol (above 10(-5) M) or with a selective estrogen receptor modulator, tamoxifen (5 x 10(-7) M), no elevation of [Ca(2+)](i) was observed with 3-NPA treatment. The response to ATP was impaired after application of 3-NPA, but it was preserved by cotreatment with 17beta-estradiol or tamoxifen. An estrogen receptor antagonist ICI 182,780 inhibited these effects by 17beta-estradiol or tamoxifen. Lysosomal neutral red uptake and TUNEL experiments revealed the necrotic but not apoptotic cell death at least in this acute stage. Data indicate that a medium to high concentration of 3-NPA induces damage on rBECs as revealed by an accumulation of [Ca(2+)](i), but the damage was protected by cotreatment with 17beta-estradiol or tamoxifen, suggesting that estrogen may be protective for the brain vascular damage via estrogen receptor.  相似文献   

4.
Protein kinase C (PKC) is an important family of kinases regulated by lipid second messengers and cofactors that interact with cellular membranes. Both Ca(2+)-dependent and -independent isoforms of PKC have been described in rat cerebrocortical presynaptic nerve terminals (synaptosomes). In the present study, synaptosomes were prepared from human cerebral cortex obtained from standard temporal lobe specimens removed due to epilepsy. In order to measure free cytosolic Ca(2+) ([Ca(2+)](i)) and PKC activity continuously, the synaptosomes were loaded with the fluorescent probes fura-2 and fim-1. Membrane depolarisation by 4-aminopyridine (4-AP) 1 mM increased the [Ca(2+)](i) fluorescence by 14.4+/-2.2% and the PKC activity fluorescence by 16.7+/-1.6%. Partial depolarisation with 4-AP 0.3 mM increased the [Ca(2+)](i) fluorescence by 9.0+/-1.5% and the PKC activity fluorescence by 4.5+/-0.7%. When CaCl(2) was omitted from the media, PKC activity fluorescence increased by 7.9+/-1.2% subsequent to stimulation with 4-AP 1 mM. This method is thus well suited for studying presynaptic [Ca(2+)](i) and PKC activity involved in neurotransmission, both under physiological conditions and under the influence of neuropharmacological agents.  相似文献   

5.
Low serum concentrations of Mg(2+) ions have been reported, recently, in patients with coronary disease, atherosclerosis, and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [alpha-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Mg(2+) ([Mg(2+)](i)) depletion associated with cerebral vascular injury induced by alcohol. Exposure of cultured canine cerebral vascular smooth muscle cells to alcohol (10-100 mM) for 24 h induced marked depletion in [Mg(2+)](i) (i.e., approximately 30-65%, depending upon alcohol concentration). Treatment of the cultured cells with either PDTC (0.1 microM) or alpha-tocopherol (15 microM) for 24 h, alone, failed to interfere with basal [Mg(2+)](i) levels. However, preincubation of the cells with either alpha-tocopherol or PDTC for 24 h completely inhibited the depletion of [Mg(2+)](i) induced by exposure to 10-100 mM ethanol. These results indicate that alpha-tocopherol and PDTC prevent decreases in [Mg(2+)](i) produced by ethanol. Moreover, these new results suggest that such protective effects of alpha-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in prevention and amelioration of cerebral vascular injury and stroke in alcoholics.  相似文献   

6.
Yoko Higure  Mitsuo Nohmi   《Brain research》2002,954(1):467-150
Cytosolic free calcium concentration ([Ca(2+)](i)) was recorded from cultured bullfrog sympathetic ganglion cells loaded with the Ca(2+)-indicator Fura-2 or Fura-6F. Repetitive application of caffeine at a low concentration, which either failed to produce any [Ca(2+)](i) elevation or induced a small gradual increase in [Ca(2+)](i) at first challenge, produced a drastic increase in the amplitude of Ca(2+) release (caffeine response). The caffeine response eventually reached peak amplitude and then remained constant even if caffeine application were continued. This augmentation was maintained for up to 2 h, and was achieved not only by repetitive application but also by a long exposure of caffeine. However, this augmentation was neither achieved by repetitive administration of high K(+)-solution, nor caused by inhibition of phosphodiesterase by caffeine. The repetitive or sustained application of caffeine is suggested to increase the caffeine sensitivity of the calcium release channel to calcium, thus causing the potentiation of the caffeine response.  相似文献   

7.
Low serum concentrations of Mg(2+) ions have been reported, recently, in patients with coronary disease, atherosclerosis and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [alpha-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Ca(2+) ([Ca(2+)](i)) overload associated with cerebral vascular injury induced by low extracellular free Mg(2+) ([Mg(2+)](o)). Exposure of cultured canine cerebral vascular smooth muscle cells to low [Mg(2+)](o) (0.15-0.6 mM) vs. normal [Mg(2+)](o) (1.2 mM) for either 10 min or 2 h induced concentration-dependent rises in [Ca(2+)](i). Treatment of the cultured cells with either PDTC (0.1 microM) or alpha-tocopherol (15 microM) for 24 h, alone, failed to interfere with basal [Ca(2+)](i) levels. However, preincubation of the cells with either alpha-tocopherol or PDTC for 24 h completely inhibited the elevation of [Ca(2+)](i) induced by exposure to low [Mg(2+)](o), not only for 10 min, but also for 2 h. These results indicate that alpha-tocopherol and PDTC prevent rises in [Ca(2+)](i) produced by low [Mg(2+)](o), which probably result from low [Mg(2+)](o)-induced lipid peroxidation of cerebral vascular smooth muscle cell membranes. Moreover, these new results suggest that such protective effects of alpha-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in cerebral vascular injury associated with low [Mg(2+)](o) and accumulation of [Ca(2+)](i).  相似文献   

8.
Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.  相似文献   

9.
10.
11.
Low serum concentrations of Mg2+ ions have been reported, recently, in patients with coronary disease, atherosclerosis, and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [α-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Mg2+ ([Mg2+]i) depletion associated with cerebral vascular injury induced by alcohol. Exposure of cultured canine cerebral vascular smooth muscle cells to alcohol (10–100 mM) for 24 h induced marked depletion in [Mg2+]i (i.e., 30–65%, depending upon alcohol concentration). Treatment of the cultured cells with either PDTC (0.1 μM) or α-tocopherol (15 μM) for 24 h, alone, failed to interfere with basal [Mg2+]i levels. However, preincubation of the cells with either α-tocopherol or PDTC for 24 h completely inhibited the depletion of [Mg2+]i induced by exposure to 10–100 mM ethanol. These results indicate that α-tocopherol and PDTC prevent decreases in [Mg2+]i produced by ethanol. Moreover, these new results suggest that such protective effects of α-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in prevention and amelioration of cerebral vascular injury and stroke in alcoholics.  相似文献   

12.
Sodium valproate (VPA) has been used clinically for treatment of not only epilepsy but also mood disorder. Although VPA is effective for treatment of epilepsy via inhibition of gamma-aminobutyric acid transaminase, it remains unknown why VPA is effective for the treatment of mood disorder. The authors examined the effect of VPA at therapeutic concentrations (300 and 600 microM) on the elevation of intracellular free calcium concentration ([Ca(2+)](i)) induced by carbachol, a muscarinic receptor agonist, in 1321N1 human astrocytoma cells. Treatment of the cells with 300 and 600 microM VPA for 2 min did not change the carbachol-induced [Ca(2+)](i) elevation. Treatment with 300 and 600 microM VPA for 48 h, however, reduced the elevation. Since we have shown that Li(+) reduced carbachol-induced [Ca(2+)](i) elevation in protein kinase C (PKC)-downregulated 1321N1 cells [Kurita, M., Mashiko, H., Rai, M., Kumasaka, T., Kouno, S., Niwa, S., Nakahata, N., 2002. Lithium chloride at a therapeutic concentration reduces Ca(2+)response in protein kinase C down-regulated human astrocytoma cells, Eur. J. Pharmacol. 442, 17-22.], the activity of PKC was examined. Treatment with VPA at the same concentrations for 24 or 48 h weakly reduced protein kinase C activity in membrane and cytosol fractions from the cells. On the other hand, the treatment of the cells with 600 microM VPA for 24 or 48 h slightly increased the B(max) value, but not the K(d) value, in the binding of [(3)H]quinuclidinyl benzylate, a muscarinic receptor ligand, to the membranes, suggesting that the number or affinity of muscarinic receptor did not decrease after VPA treatment. These results indicate that VPA at therapeutic concentrations slightly decreases the PKC activity and inhibits muscarinic receptor-mediated [Ca(2+)](i) elevation probably through change in the intracellular signaling pathway. VPA-induced reduction of PKC activity and [Ca(2+)](i) elevation may play a role in the treatment of mood disorder.  相似文献   

13.
The effects of dexamethasone on adenosine 5'-triphosphatase (ATPase) activity and the intracellular Ca(2+) concentration ([Ca(2+)](i)) were investigated in acidotic mouse brain. Dexamethasone (3 mg/kg, i.p.) or vehicle was administered 3 h before decapitation ischemia, and the brain concentration of adenosine 5'-triphosphate (ATP) was determined 0.5-2 min after ischemia. The effects of dexamethasone (0.3-3 mg/kg, i.p.) on Na(+),K(+)-activated ATPase (Na(+),K(+)-ATPase) and Ca(2+)-ATPase activities were evaluated at pH 7.4 and 6.8. Changes in [Ca(2+)](i) in an acidic medium were determined in hippocampal slices by microfluorometry using rhod-2 acetoxymethyl ester as a Ca(2+) marker, and the effects of dexamethasone (240 microg/l) was evaluated. Decapitation ischemia for 0.5 and 1 min reduced the brain ATP contents to 32% and 16% of the basal level, respectively. Dexamethasone slightly suppressed the extent of the decrease in the ATP level. Although dexamethasone did not affect Na(+),K(+)-ATPase activity at pH 7.4, the activity was suppressed by dexamethasone (3 mg/kg) to 68% at pH 6.8. The activity of Ca(2+)-ATPase was not affected by dexamethasone at either pH 7.4 or pH 6.8. When the pH of the medium of the brain slices was changed from 7.4 to 6.8, almost no increase in [Ca(2+)](i) was observed in the control group. The dexamethasone treatment increased [Ca(2+)](i) in the CA1 field and dentate gyrus immediately after induction of the acidic medium, the effect being significant after 150 s. Because anaerobic glucose metabolism in the early stage of ischemia enhances intracellular lactic acidosis, the findings may suggest a mechanism for the aggravation of ischemic neuronal damage by glucocorticoids.  相似文献   

14.
We have monitored real-time alterations in [Ca(2+)](i) in fluo-3-loaded cerebellar granule neurons exposed to domoate, and ascertained the influence of pharmacological blockers of various Ca(2+) entry pathways on intracellular Ca(2+) accumulation, excitatory amino acid (EAA) release and neuronal death. Domoate produced a rapid and concentration-dependent increase in [Ca(2+)](i), the magnitude of which correlated closely with the severity of neuron loss. The increase in [Ca(2+)](i) was derived from activation of NMDA receptors, L-type voltage-sensitive calcium channels (VSCC) and the reversed mode of operation of the Na(+)/Ca(2+) exchanger. When the level of neuroprotection conferred by pharmacological manipulation of these calcium entry pathways was regressed with the corresponding reductions in [Ca(2+)](i) load, it was observed that neuronal vulnerability is controlled preferentially by NMDA receptors. This observation is consistent with our previous study of brevetoxin-induced autocrine excitotoxicity and with the source specificity hypothesis of others [J. Neurochem. 71 (1998) 2349], which suggests that elevation of [Ca(2+)](i) in the vicinity of the NMDA receptor ion channel activates processes leading to neuronal death.  相似文献   

15.
Ca(2+)-activated non-selective cation (CAN) channels are activated by cytoplasmic Ca(2+) and I(CAN) underlies many slow depolarizing processes in neurons including a putative role in excitotoxicity. CAN channels in many non-neuronal cells are blocked by non-steroidal antiinflammatory drugs that are derivatives of diphenylamine-2-carboxylate (DPC). The DPC derivative flufenamate (FFA) has a complex effect on certain neurons, whereby it blocks CAN channels and increases [Ca(2+)](i). We report here that FFA, but not the parent compound, DPC, blocks CAN channels in hippocampal CA1 neurons. As was the case in other neurons, the effects of FFA are complex and include a maintained rise in [Ca(2+)](i). Furthermore, the CAN channel blocking ability of FFA persists even when the channels have been potentiated by a Ca(2+)-dependent process. The use of a CAN channel-blocking drug is important for delineating CAN channel-dependent processes and may provide a basis for therapy for CAN channel-dependent events in ischemia.  相似文献   

16.
Ikeda M  Toyoda H  Yamada J  Okabe A  Sato K  Hotta Y  Fukuda A 《Brain research》2003,984(1-2):149-159
A recent study suggested that gamma-aminobutyric acid (GABA) plays differential roles in activity-dependent plasticity between the visual cortex (VC) and the dorsal lateral geniculate nucleus (dLGN). In the present study, to investigate differential GABAergic functions in postnatal visual system development, the development of [Cl(-)](i), cation-Cl(-) cotransporter expression, and the [Ca(2+)](i) responses evoked by GABA were compared between VC and dLGN during the early stages of development. Using rat brain slices from postnatal days (P) 0-17, GABA-evoked [Ca(2+)](i) responses and resting [Cl(-)](i) were measured by means of optical imaging of Ca(2+) and Cl(-), respectively. Changes in the expression of cation-Cl(-) cotransporters (viz. the outwardly-directed K(+)-Cl(-) cotransporter, KCC2, and the inwardly-directed Na(+),K(+)-2Cl(-) cotransporter, NKCC1) were examined in VC and dLGN by in situ hybridization. At birth, the excitatory actions of GABA were powerful in VC, but missing in dLGN (as indicated by neuronal [Ca(2+)](i) transients), and the resting [Cl(-)](i) was significantly higher in VC than in dLGN. Signals for KCC2 mRNA expression were significantly higher in dLGN than in VC at P0. This suggests that extrusion of Cl(-) from neurons is stronger in dLGN than in VC at P0, so that a GABAergic excitatory effect was not observed in dLGN because of more negative equilibrium potential for Cl(-). The present study indicates clear differences in the molecular and physiological bases of Cl(-) homeostasis and GABA actions between the developing VC and dLGN. Such differential GABAergic actions may underlie the distinct mechanisms involved in VC and dLGN development within the visual system.  相似文献   

17.
Using single-cell Ca(2+) imaging and a growth hormone (GH) radioimmunassay, we investigated somatostatin-14 (SS(14)) inhibition of cAMP-dependent, stimulated GH secretion from primary cultures of dispersed goldfish pituitary cells. The dopamine-D1 receptor agonist SKF-38393, and the hypothalamic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) both elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) and stimulated GH release. When increases in [Ca(2+)](i) were prevented by intracellular loading of BAPTA, a Ca(2+) chelator, SKF-38393- and PACAP-stimulated GH release were inhibited, suggesting that these Ca(2+) signals are required for stimulated GH release. SS(14) inhibited SKF-38393- and PACAP-stimulated GH release, but did not prevent these Ca(2+) signals. Kinetic analysis revealed that SS(14) lowered the maximum amplitude of the SKF-38393- and PACAP-evoked Ca(2+) responses, but had no effect on other aspects of the Ca(2+) signal. We then examined the ability of SS(14) to act subsequent to dopamine-D1 or PACAP receptor activation using the adenylate cyclase activator forskolin, or the membrane permeant cAMP analogue 8Br-cAMP. Forskolin and 8Br-cAMP both increased [Ca(2+)](i) and GH secretion and, as expected, SS(14) inhibited the resultant GH release. Although SS(14) significantly increased the time to maximum amplitude of the forskolin-evoked Ca(2+) signals, it had no detectable effect on any of the kinetic parameters used to describe the Ca(2+) signals evoked by 8Br-cAMP. Taken together, these results establish that SS(14) has the ability to suppress Ca(2+)-dependent exocytosis by acting distal to elevations in [Ca(2+)](i). Furthermore, it appears likely that the cellular mechanisms underlying the observed effects of SS(14) on Ca(2+) signalling are upstream of cAMP and may be unrelated to those responsible for inhibiting GH release.  相似文献   

18.
Recently, a negative feedback effect of nitric oxide (NO) on the adenosine 5'-triphosphate (ATP)-induced Ca2+ response has been described in cochlear inner hair cells. We here investigated the role of NO on the ATP-induced Ca2+ response in outer hair cells (OHCs) of the guinea pig cochlea using the NO-sensitive dye DAF-2 and Ca2+ -sensitive dye fura-2. Extracellular ATP induced NO production in OHCs, which was inhibited by L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor, and suramin, a P2 receptor antagonist. ATP failed to induce NO production in the Ca2+ -free solution. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, enhanced the ATP-induced increase of the intracellular Ca2+ concentrations ([Ca2+]i), while L-NAME inhibited it. SNAP accelerated ATP-induced Mn2+ quenching in fura-2 fluorescence, while L-NAME suppressed it. 8-Bromoguanosine-cGMP, a membrane permeable analog of cGMP, mimicked the effects of SNAP. 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase inhibited the ATP-induced [Ca2+]i increase. Selective neuronal NOS inhibitors, namely either 7-nitro-indazole or 1-(2-trifluoromethylphenyl) imidazole, mimicked the effects of L-NAME regarding both ATP-induced Ca2+ response and NO production. Immunofluorescent staining of neuronal nitric oxide synthase (nNOS) in isolated OHCs showed the localization of nNOS in the apical region of OHCs. These results suggest that the ATP-induced Ca2+ influx via a direct action of P2X receptors may be the principal source for nNOS activity in the apical region of OHCs. Thereafter, NO can be produced while conversely enhancing the Ca2+ influx via the NO-cGMP-PKG pathway by a feedback mechanism.  相似文献   

19.
Previously we reported that 1-methyl-4-phenylpyridinium ion (MPP(+)), a dopaminergic neurotoxin, induced apoptosis of GH3 cells established from rat anterior pituitary. In the present study, the role of MPP(+) along with that of other apoptotic factors such as Ca(2+) and H(2)O(2) in cell death was examined. Ionomycin induced DNA fragmentation and lactate dehydrogenase (LDH) leakage in GH3 cells. H(2)O(2) also induced LDH leakage. Co-addition of MPP(+), in conditions where MPP(+) had no effect by itself, enhanced ionomycin- and H(2)O(2)-induced cell death. Because the stimulation of phospholipase A(2) (PLA(2)) causing arachidonic acid (AA) release has been proposed to be involved in neuronal cell death, the effect of MPP(+) on AA release in GH3 cells was investigated. MPP(+) treatment for 8 h enhanced ionomycin- and H(2)O(2)-stimulated AA release mediated by activation of cytosolic PLA(2) in a concentration-dependent manner, although MPP(+) by itself had no effect on AA release. An inhibitor of cytosolic PLA(2) inhibited MPP(+)-induced cell death. These findings suggest a synergistic effect of MPP(+) on Ca(2+)- and H(2)O(2)-induced cell death, and the involvement of cytosolic PLA(2) activation in MPP(+)-induced cell death in GH3 cells. Pretreatment with a caspase inhibitor or EGF did not modify the ionomycin- or H(2)O(2)-induced AA release, or enhancement by MPP(+), but the pretreatment inhibited the cell death in the presence and absence of MPP(+). The involvement of caspase(s) on activation of PLA(2) by MPP(+) was excluded, and EGF inhibited MPP(+)-induced cell death downstream of the AA release.  相似文献   

20.
Reversal of the dopamine (DA) membrane transporter is the main mechanism through which many drugs of abuse increase DA levels. However, drug-induced modulation of exocytotic DA release by electrical (depolarization) and neurochemical inputs (e.g., acetylcholine (ACh)) may also contribute. We therefore investigated effects of methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and meta-chlorophenylpiperazine (mCPP) (1-1000 μM) on these inputs by measuring drug-induced changes in basal, depolarization- and ACh-evoked intracellular calcium concentrations ([Ca(2+)](i)) using a dopaminergic model (PC12 cells) and Fura 2 calcium imaging. The strongest drug-induced effects were observed on cholinergic input. At 0.1mM all drugs inhibited the ACh-evoked [Ca(2+)](i) increases by 40-75%, whereas ACh-evoked [Ca(2+)](i) increases were nearly abolished following higher drug exposure (1mM, 80-97% inhibition). Additionally, high MDMA and mCPP concentrations increased basal [Ca(2+)](i), but only following prior stimulation with ACh. Interestingly, low concentrations of methamphetamine or amphetamine (10 μM) potentiated ACh-evoked [Ca(2+)](i) increases. Depolarization-evoked [Ca(2+)](i) increases were also inhibited following exposure to high drug concentrations, although drugs were less potent on this endpoint. Our data demonstrate that at high drug concentrations all tested drugs reduce stimulation-evoked increases in [Ca(2+)](i), thereby probably reducing dopaminergic output through inhibition of electrical and cholinergic input. Furthermore, the increases in basal [Ca(2+)](i) at high concentrations of MDMA and mCPP likely increases dopaminergic output. Similarly, the increases in ACh-evoked [Ca(2+)](i) upon cholinergic stimulation following exposure to low concentrations of amphetamines can contribute to drug-induced increases in DA levels observed in vivo. Finally, this study shows that mCPP, which is regularly found in ecstasy tablets, is the most potent drug regarding the investigated endpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号