首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiac ryanodine receptor (RyR2) governs the release of Ca2+ from the sarcoplasmic reticulum, which initiates muscle contraction. Mutations in RyR2 have been linked to ventricular tachycardia (VT) and sudden death, but the precise molecular mechanism is unclear. It is known that when the sarcoplasmic reticulum store Ca2+ content reaches a critical level, spontaneous Ca2+ release occurs, a process we refer to as store-overload-induced Ca2+ release (SOICR). In view of the well documented arrhythmogenic nature of SOICR, we characterized the effects of disease-causing RyR2 mutations on SOICR in human embryonic kidney (HEK)293 cells and found that, at elevated extracellular Ca2+ levels, HEK293 cells expressing RyR2 displayed SOICR in a manner virtually identical to that observed in cardiac cells. Using this cell model, we demonstrated that the RyR2 mutations linked to VT and sudden death, N4104K, R4496C, and N4895D, markedly increased the occurrence of SOICR. At the molecular level, we showed that these RyR2 mutations increased the sensitivity of single RyR2 channels to activation by luminal Ca2+ and enhanced the basal level of [3H]ryanodine binding. We conclude that disease-causing RyR2 mutations, by enhancing RyR2 luminal Ca2+ activation, reduce the threshold for SOICR, which in turn increases the propensity for triggered arrhythmia. Abnormal RyR2 luminal Ca2+ activation likely contributes to the enhanced SOICR commonly observed in various cardiac conditions, including heart failure, and may represent a unifying mechanism for Ca2+ overload-associated VT.  相似文献   

2.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by life threatening arrhythmias and mutations in the gene encoding the ryanodine receptor (RyR2). Disagreement exists on whether (1) RyR2 mutations induce abnormal calcium transients in the absence of adrenergic stimulation; (2) decreased affinity of mutant RyR2 for FKBP12.6 causes CPVT; (3) K201 prevent arrhythmias by normalizing the FKBP12.6-RyR2 binding. We studied ventricular myocytes isolated from wild-type (WT) and knock-in mice harboring the R4496C mutation (RyR2(R4496C+/-)). Pacing protocols did not elicit delayed afterdepolarizations (DADs) (n=20) in WT but induced DADs in 21 of 33 (63%) RyR2(R4496C+/-) myocytes (P=0.001). Superfusion with isoproterenol (30 nmol/L) induced small DADs (45%) and no triggered activity in WT myocytes, whereas it elicited DADs in 87% and triggered activity in 60% of RyR2(R4496C+/-) myocytes (P=0.001). DADs and triggered activity were abolished by ryanodine (10 micromol/L) but not by K201 (1 micromol/L or 10 micromol/L). In vivo administration of K201 failed to prevent induction of polymorphic ventricular tachycardia (VT) in RyR2(R4496C+/-) mice. Measurement of the FKBP12.6/RyR2 ratio in the heavy sarcoplasmic reticulum membrane showed normal RyR2-FKBP12.6 interaction both in WT and RyR2(R4496C+/-) either before and after treatment with caffeine and epinephrine. We suggest that (1) triggered activity is the likely arrhythmogenic mechanism of CPVT; (2) K201 fails to prevent DADs in RyR2(R4496C+/-) myocytes and ventricular arrhythmias in RyR2(R4496C+/-) mice; and (3) RyR2-FKBP12.6 interaction in RyR2(R4496C+/-) is identical to that of WT both before and after epinephrine and caffeine, thus suggesting that it is unlikely that the R4496C mutation interferes with the RyR2/FKBP12.6 complex.  相似文献   

3.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by adrenergically mediated polymorphic ventricular tachycardia leading to syncope and sudden cardiac death. The autosomal dominant form of CPVT is caused by mutations in the RyR2 gene encoding the cardiac isoform of the ryanodine receptor. In vitro functional characterization of mutant RyR2 channels showed altered behavior on adrenergic stimulation and caffeine administration with enhanced calcium release from the sarcoplasmic reticulum. As of today no experimental evidence is available to demonstrate that RyR2 mutations can reproduce the arrhythmias observed in CPVT patients. We developed a conditional knock-in mouse model carrier of the R4496C mutation, the mouse equivalent to the R4497C mutations identified in CPVT families, to evaluate if the animals would develop a CPVT phenotype and if beta blockers would prevent arrhythmias. Twenty-six mice (12 wild-type (WT) and 14RyR(R4496C)) underwent exercise stress testing followed by epinephrine administration: none of the WT developed ventricular tachycardia (VT) versus 5/14 RyR(R4496C) mice (P=0.02). Twenty-one mice (8 WT, 8 RyR(R4496C), and 5 RyR(R4496C) pretreated with beta-blockers) received epinephrine and caffeine: 4/8 (50%) RyR(R4496C) mice but none of the WT developed VT (P=0.02); 4/5 RyR(R4496C) mice pretreated with propranolol developed VT (P=0.56 nonsignificant versus RyR(R4496C) mice). These data provide the first experimental demonstration that the R4496C RyR2 mutation predisposes the murine heart to VT and VF in response caffeine and/or adrenergic stimulation. Furthermore, the results show that analogous to what is observed in patients, beta adrenergic stimulation seems ineffective in preventing life-threatening arrhythmias.  相似文献   

4.
Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol's solution, and patch clamping in a knockin (RyR2/RyR2(R4496C)) mouse model to investigate the arrhythmogenic mechanisms in catecholaminergic polymorphic VT. In isolated hearts, spontaneous ventricular arrhythmias occurred in 54% of 13 RyR2/RyR2(R4496C) and in 9% of 11 wild-type (P=0.03) littermates perfused with Ca2+and isoproterenol; 66% of 12 RyR2/RyR2(R4496C) and 20% of 10 wild-type hearts perfused with caffeine and epinephrine showed arrhythmias (P=0.04). Epicardial mapping showed that monomorphic VT, bidirectional VT, and polymorphic VT manifested as concentric epicardial breakthrough patterns, suggesting a focal origin in the His-Purkinje networks of either or both ventricles. Monomorphic VT was clearly unifocal, whereas bidirectional VT was bifocal. Polymorphic VT was initially multifocal but eventually became reentrant and degenerated into ventricular fibrillation. Endocardial mapping confirmed the Purkinje fiber origin of the focal arrhythmias. Chemical ablation of the right ventricular endocardial cavity with Lugol's solution induced complete right bundle branch block and converted the bidirectional VT into monomorphic VT in 4 anesthetized RyR2/RyR2(R4496C) mice. Under current clamp, single Purkinje cells from RyR2/RyR2(R4496C) mouse hearts generated delayed afterdepolarization-induced triggered activity at lower frequencies and level of adrenergic stimulation than wild-type. Overall, the data demonstrate that the His-Purkinje system is an important source of focal arrhythmias in catecholaminergic polymorphic VT.  相似文献   

5.
Jiang D  Wang R  Xiao B  Kong H  Hunt DJ  Choi P  Zhang L  Chen SR 《Circulation research》2005,97(11):1173-1181
Ventricular tachycardia (VT) is the leading cause of sudden death, and the cardiac ryanodine receptor (RyR2) is emerging as an important focus in its pathogenesis. RyR2 mutations have been linked to VT and sudden death, but their precise impacts on channel function remain largely undefined and controversial. We have previously shown that several disease-linked RyR2 mutations in the C-terminal region enhance the sensitivity of the channel to activation by luminal Ca2+. Cells expressing these RyR2 mutants display an increased propensity for spontaneous Ca2+ release under conditions of store Ca2+ overload, a process we referred to as store overload-induced Ca2+ release (SOICR). To determine whether common defects exist in disease-linked RyR2 mutations, we characterized 6 more RyR2 mutations from different regions of the channel. Stable inducible HEK293 cell lines expressing Q4201R and I4867M from the C-terminal region, S2246L and R2474S from the central region, and R176Q(T2504M) and L433P from the N-terminal region were generated. All of these cell lines display an enhanced propensity for SOICR. HL-1 cardiac cells transfected with disease-linked RyR2 mutations also exhibit increased SOICR activity. Single channel analyses reveal that disease-linked RyR2 mutations primarily increase the channel sensitivity to luminal, but not to cytosolic, Ca2+ activation. Moreover, the Ca2+ dependence of [3H]ryanodine binding to RyR2 wild type and mutants is similar. In contrast to previous reports, we found no evidence that disease-linked RyR2 mutations alter the FKBP12.6-RyR2 interaction. Our data indicate that enhanced SOICR activity and luminal Ca2+ activation represent common defects of RyR2 mutations associated with VT and sudden death. A mechanistic model for CPVT/ARVD2 is proposed.  相似文献   

6.
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.  相似文献   

7.
Different forms of ventricular arrhythmias have been linked to mutations in the cardiac ryanodine receptor (RyR)2, but the molecular basis for this phenotypic heterogeneity is unknown. We have recently demonstrated that an enhanced sensitivity to luminal Ca(2+) and an increased propensity for spontaneous Ca(2+) release or store-overload-induced Ca(2+) release (SOICR) are common defects of RyR2 mutations associated with catecholaminergic polymorphic or bidirectional ventricular tachycardia. Here, we investigated the properties of a unique RyR2 mutation associated with catecholaminergic idiopathic ventricular fibrillation, A4860G. Single-channel analyses revealed that, unlike all other disease-linked RyR2 mutations characterized previously, the A4860G mutation diminished the response of RyR2 to activation by luminal Ca(2+), but had little effect on the sensitivity of the channel to activation by cytosolic Ca(2+). This specific impact of the A4860G mutation indicates that the luminal Ca(2+) activation of RyR2 is distinct from its cytosolic Ca(2+) activation. Stable, inducible HEK293 cells expressing the A4860G mutant showed caffeine-induced Ca(2+) release but exhibited no SOICR. Importantly, HL-1 cardiac cells transfected with the A4860G mutant displayed attenuated SOICR activity compared with cells transfected with RyR2 WT. These observations provide the first evidence that a loss of luminal Ca(2+) activation and SOICR activity can cause ventricular fibrillation and sudden death. These findings also indicate that although suppressing enhanced SOICR is a promising antiarrhythmic strategy, its oversuppression can also lead to arrhythmias.  相似文献   

8.
Background- Catecholaminergic polymorphic ventricular tachycardia is directly linked to mutations in proteins (eg, type 2 ryanodine receptor [RyR2](R4496C)) responsible for intracellular Ca(2+) homeostasis in the heart. However, the mechanism of Ca(2+) release dysfunction underlying catecholaminergic polymorphic ventricular tachycardia has only been investigated in isolated cells but not in the in situ undisrupted myocardium. Methods and Results- We investigated in situ myocyte Ca(2+) dynamics in intact Langendorff-perfused hearts (ex vivo) from wild-type and RyR2(R4496C+/-) mice using laser scanning confocal microscopy. We found that myocytes from both wild-type and RyR2(R4496C+/-) hearts displayed uniform, synchronized Ca(2+) transients. Ca(2+) transients from beat to beat were comparable in amplitude with identical activation and decay kinetics in wild-type and RyR2(R4496C+/-) hearts, suggesting that excitation-contraction coupling between the sarcolemmal Ca(2+) channels and mutated RyR2(R4496C+/-) channels remains intact under baseline resting conditions. On adrenergic stimulation, RyR2(R4496C+/-) hearts exhibited a high degree of Ca(2+) release variability. The varied pattern of Ca(2+) release was absent in single isolated myocytes, independent of cell cycle length, synchronized among neighboring myocytes, and correlated with catecholaminergic polymorphic ventricular tachycardia. A similar pattern of action potential variability, which was synchronized among neighboring myocytes, was also revealed under adrenergic stress in intact hearts but not in isolated myocytes. Conclusions- Our studies using an in situ confocal imaging approach suggest that mutated RyR2s are functionally normal at rest but display a high degree of Ca(2+) release variability on intense adrenergic stimulation. Ca(2+) release variability is a Ca(2+) release abnormality, resulting from electric defects rather than the failure of the Ca(2+) release response to action potentials in mutated ventricular myocytes. Our data provide important insights into Ca(2+) release and electric dysfunction in an established model of catecholaminergic polymorphic ventricular tachycardia.  相似文献   

9.
AIMS: Mutations in cardiac ryanodine receptors (RyR2s) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT), characterized by risk of polymorphic ventricular tachyarrhythmias and sudden death during exercise. Arrhythmias are caused by gain-of-function defects in RyR2, but cellular arrhythmogenesis remains elusive. METHODS AND RESULTS: We recorded endocardial monophasic action potentials (MAPs) at right ventricular septum in 15 CPVT patients with a RyR2 mutation (P2,328S, Q4,201R, and V4,653F) and in 12 control subjects both at baseline and during epinephrine infusion (0.05 microg/kg/min). At baseline 3 and during epinephrine infusion, four CPVT patients, but none of the control subjects, showed delayed afterdepolarizations (DADs) occasionally coinciding with ventricular premature complexes. In order to study the underlying mechanisms, we expressed two types of mutant RyR2 (P2,328S and V4,653F) causing CPVT as well as wild-type RyR2 in HEK 293 cells. Confocal microscopy of Fluo-3 loaded cells transfected with any of the three RyR2s showed no spontaneous subcellular Ca(2+) release events at baseline. Membrane permeable cAMP analogue (Dioctanoyl-cAMP) triggered subcellular Ca(2+) release events as Ca(2+) sparks and waves. Cells expressing mutant RyR2s showed spontaneous Ca(2+) release events at lower concentrations of cAMP than cells transfected with wild-type RyR2. CONCLUSION: CPVT patients show DADs coinciding with premature action potentials in MAP recordings. Expression studies suggest that DADs are caused by increased propensity of abnormal RyR2s to generate spontaneous Ca(2+) waves in response to cAMP stimulation. Increased sensitivity of mutant RyR2s to cAMP may explain the occurrence of arrhythmias during exercise or emotional stress in CPVT.  相似文献   

10.
Ca2+ release from the sarcoplasmic reticulum mediated by the cardiac ryanodine receptor (RyR2) is a fundamental event in cardiac muscle contraction. RyR2 mutations suggested to cause defective Ca2+ channel function have recently been identified in catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) affected individuals. We report expression of three CPVT-linked human RyR2 (hRyR2) mutations (S2246L, N4104K, and R4497C) in HL-1 cardiomyocytes displaying correct targeting to the endoplasmic reticulum. N4104K also localized to the Golgi apparatus. Phenotypic characteristics including intracellular Ca2+ handling, proliferation, viability, RyR2:FKBP12.6 interaction, and beat rate in resting HL-1 cells expressing mutant hRyR2 were indistinguishable from wild-type (WT) hRyR2. However, Ca2+ release was augmented in cells expressing mutant hRyR2 after RyR activation (caffeine and 4-chloro-m-cresol) or beta-adrenergic stimulation (isoproterenol). RyR2:FKBP12.6 interaction remained intact after caffeine or 4-CMC activation, but was dramatically disrupted by isoproterenol or forskolin, an activator of adenylate cyclase. Isoproterenol and forskolin elevated cyclic-AMP to similar magnitudes in all cells and were associated with equivalent hyperphosphorylation of mutant and WT hRyR2. CPVT-linked mutations in hRyR2 did not alter resting cardiomyocyte phenotype but mediated augmented Ca2+ release on RyR-agonist or beta-AR stimulation. Furthermore, equivalent interaction between mutant and WT hRyR2 and FKBP12.6 was demonstrated.  相似文献   

11.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease characterized by life-threatening arrhythmias elicited by adrenergic activation. CPVT is caused by mutations in the cardiac ryanodine receptor gene (RyR2). In vitro studies demonstrated that RyR2 mutations respond to sympathetic activation with an abnormal diastolic Ca(2+) leak from the sarcoplasmic reticulum; however the pathways that mediate the response to adrenergic stimulation have not been defined. In our RyR2(R4496C+/-) knock-in mouse model of CPVT we tested the hypothesis that inhibition of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) counteracts the effects of adrenergic stimulation resulting in an antiarrhythmic activity. CaMKII inhibition with KN-93 completely prevented catecholamine-induced sustained ventricular tachyarrhythmia in RyR2(R4496C+/-) mice, while the inactive congener KN-92 had no effect. In ventricular myocytes isolated from the hearts of RyR2(R4496C+/-) mice, CaMKII inhibition with an autocamtide-2 related inhibitory peptide or with KN-93 blunted triggered activity and transient inward currents induced by isoproterenol. Isoproterenol also enhanced the activity of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), increased spontaneous Ca(2+) release and spark frequency. CaMKII inhibition blunted each of these parameters without having an effect on the SR Ca(2+) content. Our data therefore indicate that CaMKII inhibition is an effective intervention to prevent arrhythmogenesis (both in vivo and in vitro) in the RyR2(R4496C+/-) knock-in mouse model of CPVT. Mechanistically, CAMKII inhibition acts on several elements of the EC coupling cascade, including an attenuation of SR Ca(2+) leak and blunting catecholamine-mediated SERCA activation. CaMKII inhibition may therefore represent a novel therapeutic target for patients with CPVT.  相似文献   

12.
Recombinant type 3 ryanodine receptor (RyR3) has been purified in quantities sufficient for structural characterization by cryoelectron microscopy and three-dimensional (3D) reconstruction. Two cDNAs were prepared and expressed in HEK293 cells, one encoding the wild-type RyR3 and the other encoding RyR3 containing glutathione S-transferase (GST) fused to its amino terminus (GST-RyR3). RyR3 was purified from detergent-solubilized transfected cells by affinity chromatography using 12.6-kDa FK506-binding protein in the form of a GST fusion as the affinity ligand. Purification of GST-RyR3 was achieved by affinity chromatography by using glutathione-Sepharose. Purified recombinant RyR3 and GST-RyR3 proteins exhibited high-affinity [(3)H]ryanodine binding that was sensitive to activation by Ca(2+) and caffeine and to inhibition by Mg(2+). 3D reconstructions of both recombinant RyR3 and GST-RyR3 appeared very similar to that of the native RyR3 purified from bovine diaphragm. Comparison of the 3D reconstructions of RyR3 and GST-RyR3 revealed that the GST domains and, hence, the amino termini of the RyR3 subunits are located in the "clamp" structures that form the corners of the square-shaped cytoplasmic region of homotetrameric RyR3. This study describes the 3D reconstruction of a recombinant ryanodine receptor and it demonstrates the potential of this technology for characterizing functional and structural perturbations introduced by site-directed mutagenesis.  相似文献   

13.
Arrhythmogenic cardiac ryanodine receptor (RyR2) mutations are associated with stress-induced malignant tachycardia, frequently leading to sudden cardiac death (SCD). The causative mechanisms of RyR2 Ca2+ release dysregulation are complex and remain controversial. We investigated the functional impact of clinically-severe RyR2 mutations occurring in the central domain, and the C-terminal I domain, a key locus of RyR2 autoregulation, on interdomain interactions and Ca2+ release in living cells. Using high-resolution confocal microscopy and fluorescence resonance energy transfer (FRET) analysis of interaction between fusion proteins corresponding to amino- (N-) and carboxyl- (C-) terminal RyR2 domains, we determined that in resting cells, RyR2 interdomain interaction remained unaltered after introduction of SCD-linked mutations and normal Ca2+ regulation was maintained. In contrast, after channel activation, the abnormal Ca2+ release via mutant RyR2 was intrinsically linked to altered interdomain interaction that was equivalent with all mutations and exhibited threshold characteristics (caffeine >2.5 mmol/L; Ca2+ >150 nmol/L). Noise analysis revealed that I domain mutations introduced a distinct pattern of conformational instability in Ca2+ handling and interdomain interaction after channel activation that was absent in signals obtained from the central domain mutation. I domain-linked channel instability also occurred in intact RyR2 expressed in CHO cells and in HL-1 cardiomyocytes. These new insights highlight a critical role for mutation-linked defects in channel autoregulation, and may contribute to a molecular explanation for the augmented Ca2+ release following RyR2 channel activation. Our findings also suggest that the mutational locus may be an important mechanistic determinant of Ca2+ release channel dysfunction in arrhythmia and SCD.  相似文献   

14.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.  相似文献   

15.
We have shown previously that at physiologically relevant oxygen tension (pO(2) approximately 10 mmHg), NO S-nitrosylates 1 of approximately 50 free cysteines per ryanodine receptor 1 (RyR1) subunit and transduces a calcium-sensitizing effect on the channel by means of calmodulin (CaM). It has been suggested that cysteine-3635 is part of a CaM-binding domain, and its reactivity is attenuated by CaM [Porter Moore, C., Zhang, J. Z., Hamilton, S. L. (1999) J. Biol. Chem. 274, 36831-36834]. Therefore, we tested the hypothesis that the effect of NO was mediated by C3635. The full-length RyR1 single-site C3635A mutant was generated and expressed in HEK293 cells. The mutation resulted in the loss of CaM-dependent NO modulation of channel activity and reduced S-nitrosylation by NO to background levels but did not affect NO-independent channel modulation by CaM or the redox sensitivity of the channel to O(2) and glutathione. Our results reveal that different cysteines within the channel have been adapted to serve in nitrosative and oxidative responses, and that S-nitrosylation of the cysteine-containing CaM-binding domain underlies the mechanism of CaM-dependent regulation of RyR1 by NO.  相似文献   

16.
Cardiac excitation-contraction coupling occurs by a calcium ion-mediated mechanism in which the signal of action potential is converted into Ca2+ influx into the cardiomyocytes through the sarcolemmal L-type calcium channels. This is followed by Ca2+-induced release of additional Ca2+ ions from the lumen of the sarcoplasmic reticulum into the cytosol via type 2 ryanodine receptors (RyR2). RyR2 channels form large complexes with additional regulatory proteins, including FKBP12.6 and calsequestrin 2 (CASQ2). Catecholamines, released into the body fluids during emotional or physical stress, activate Ca2+-induced Ca2+ release by protein kinase A-mediated phosphorylation of RyR2. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an insidious, early-onset and highly malignant, inherited disorder characterized by effort-induced ventricular arrhythmias in the absence of structural alterations of the heart. At least some cases of sudden, unexplained death in young individuals may be ascribed to CPVT. Mutations of the RyR2 gene cause autosomal dominant CPVT, while mutations of the CASQ2 gene may cause an autosomal recessive or dominant form of CPVT. The steps of the molecular pathogenesis of CPVT are not entirely clear, but inappropriate "leakiness" of RyR2 channels is thought to play a role; the underlying mechanisms may involve an increase in the basal activity of the RyR2 channel, alterations in its phosphorylation status, a defective interaction of RyR2 with other molecules or ions, such as FKBP12.6, CASQ2, or Mg2+, or its abnormal activation by extra- or intraluminal Ca2+ ions. Beta-adrenergic antagonists have proven to be of value in prevention of arrhythmias in CPVT patients, but occasional treatment failures call for alternative measures. There is great interest at present for the development of novel antiarrhythmic drugs for CPVT, as the same approaches may be applied for treatment of more common forms of life-threatening arrhythmias, such as those arising during ischemia and heart failure.  相似文献   

17.
Kisspeptin plays an important role in puberty and subsequent fertility by activating its receptor, G-protein-coupled receptor 54 (GPR54), and increasing cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and gonadotropin-releasing hormone (GnRH) secretion in GnRH neurons. Yet the mechanism by which kisspeptin increases [Ca(2+)](i) in GnRH neurons remains to be fully elucidated. In other neurons, voltage-gated Ca(2+) channel (VGCC) activity has been shown to be inversely related to [Ca(2+)](i). We used whole-cell patch-clamp recording to examine the effects of kisspeptin-10 (KP-10) on VGCC activity evoked by step depolarizations in GnRH neurons in brain slices from pubertal male GnRH-green fluorescent protein transgenic mice. Prolonged (>30 s) KP-10 application inhibited Ca(2+) currents. The GPR54 antagonist peptide 234, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid, substitution of Ba(2+) for Ca(2+), the calmodulin antagonists calmidazolium and trifluoperazine, the phospholipase C inhibitor edelfosine, the canonical transient receptor potential (TRPC) channel and inositol 1,4,5-trisphosphate receptor (IP(3)R) antagonist 2-APB, the TRPC channel antagonist BTP2 and the endoplasmic reticulum Ca(2+)-ATPase blocker cyclopiazonic acid each prevented inhibition. The IP(3)R antagonists caffeine (10 μM), heparin and intracellular 2-APB prevented inhibition to a lesser extent. The ryanodine receptor (RyR) antagonists ryanodine and dantrolene prevented inhibition, and the RyR agonist caffeine (30 mM) mimicked the effects of KP-10 on Ca(2+) currents. Our results suggest that kisspeptin induces Ca(2+) influx through TRPC channels and Ca(2+) release via IP(3)Rs and RyRs, and that this is followed by Ca(2+)/CaM-dependent inhibition of VGCCs.  相似文献   

18.
Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2(R176Q/+) mice revealed no evidence of fibrofatty infiltration or structural abnormalities characteristic of arrhythmogenic right ventricular dysplasia, but right ventricular end-diastolic volume was decreased in RyR2(R176Q/+) mice compared with controls, indicating subtle functional impairment due to the presence of a single mutant allele. Ventricular tachycardia (VT) was observed after caffeine and epinephrine injection in RyR2(R176Q/+), but not in WT, mice. Intracardiac electrophysiology studies with programmed stimulation also elicited VT in RyR2(R176Q/+) mice. Isoproterenol administration during programmed stimulation increased both the number and duration of VT episodes in RyR2(R176Q/+) mice, but not in controls. Isolated cardiomyocytes from RyR2(R176Q/+) mice exhibited a higher incidence of spontaneous Ca(2+) oscillations in the absence and presence of isoproterenol compared with controls. Our results suggest that the R176Q mutation in RyR2 predisposes the heart to catecholamine-induced oscillatory calcium-release events that trigger a calcium-dependent ventricular arrhythmia.  相似文献   

19.
The ryanodine receptor (RyR) family of proteins constitutes a unique type of calcium channel that mediates Ca(2+) release from endoplasmic reticulum/sarcoplasmic reticulum stores. Ryanodine has been widely used to identify contributions made by the RyR to signaling in both muscle and nonmuscle cells. Ryanodine, through binding to high- and low-affinity sites, has been suggested to block the channel pore based on its ability to induce partial conductance states and irreversible inhibition. We examined the effect of ryanodine on an RyR type 1 (RyR1) point mutant (E4032A) that exhibits a severely compromised phenotype. When expressed in 1B5 (RyR null/dyspedic) myotubes, E4032A is relatively unresponsive to stimulation by cell membrane depolarization or RyR agonists, although the full-length protein is correctly targeted to junctions and interacts with dihydropyridine receptors (DHPRs) inducing their arrangement into tetrads. However, treatment of E4032A-expressing cells with 200-500 microM ryanodine, concentrations that rapidly activate and then inhibit wild-type (wt) RyR1, restores the responsiveness of E4032A-expressing myotubes to depolarization and RyR agonists. Moreover, the restored E4032A channels remain resistant to subsequent exposure to ryanodine. In single-channel studies, E4032A exhibits infrequent (channel-open probability, P(o) < 0.005) and brief (<250 micros) gating events and insensitivity to Ca(2+). Addition of ryanodine restores Ca(2+)-dependent channel activity exhibiting full, 3/4, 1/2, and 1/4 substates. This evidence suggests that, whereas ryanodine does not occlude the RyR pore, it does bind to sites that allosterically induce substantial conformational changes in the RyR. In the case of E4032A, these changes overcome unfavorable energy barriers introduced by the E4032A mutation to restore channel function.  相似文献   

20.
BACKGROUND: Sudden infant death syndrome (SIDS) is the leading cause of postneonatal mortality in the United States. Mutations in the RyR2-encoded cardiac ryanodine receptor cause the highly lethal catecholaminergic polymorphic ventricular tachycardia (CPVT1) in the young. OBJECTIVE: The purpose of this study was to determine the spectrum and prevalence of RyR2 mutations in a large cohort of SIDS cases. METHODS: Using polymerase chain reaction, denaturing high performance liquid chromatography, and direct DNA sequencing, a targeted mutational analysis of RyR2 was performed on genomic DNA isolated from frozen necropsy tissue on 134 unrelated cases of SIDS (57 females, 77 males; 83 white, 50 black, 1 Hispanic; average age = 2.7 months). RyR2 mutations were engineered by site-directed mutagenesis, heterologously expressed in HEK293 cells, and functionally characterized using single-channel recordings in planar lipid bilayers. RESULTS: Overall, two distinct and novel RyR2 mutations were identified in two cases of SIDS. A 6-month-old black female hosted an R2267H missense mutation, and a 4-week-old white female infant harbored a S4565R mutation. Both nonconservative amino acid substitutions were absent in 400 reference alleles, involved conserved residues, and were localized to key functionally significant domains. Under conditions that simulate stress [Protein Kinase A (PKA) phosphorylation] during diastole (low activating [Ca2+]), SIDS-associated RyR2 mutant channels displayed a significant gain-of-function phenotype consistent with the functional effect of previously characterized CPVT-associated RyR2 mutations. CONCLUSIONS: Here we report a novel pathogenic mechanism for SIDS, whereby SIDS-linked RyR2 mutations alter the response of the channels to sympathetic nervous system stimulation such that during stress the channels become "leaky" and thus potentially trigger fatal cardiac arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号