首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Red blood cells (RBCs) parasitized by Plasmodium falciparum are rigid and poorly deformable and show abnormal circulatory behavior. During parasite development, knob-associated histidine-rich protein (KAHRP) and P falciparum erythrocyte membrane protein 3 (PfEMP3) are exported from the parasite and interact with the RBC membrane skeleton. Using micropipette aspiration, the membrane shear elastic modulus of RBCs infected with transgenic parasites (with kahrp or pfemp3 genes deleted) was measured to determine the contribution of these proteins to the increased rigidity of parasitized RBCs (PRBCs). In the absence of either protein, the level of membrane rigidification was significantly less than that caused by the normal parental parasite clone. KAHRP had a significantly greater effect on rigidification than PfEMP3, contributing approximately 51% of the overall increase that occurs in PRBCs compared to 15% for PfEMP3. This study provides the first quantitative information on the contribution of specific parasite proteins to altered mechanical properties of PRBCs.  相似文献   

2.
Shalev  O; Hebbel  RP 《Blood》1996,88(1):349-352
Red blood cells (RBCs) from patients with sickle cell anemia and thalassemia carry abnormal accumulations of molecular Fe(III) at the cytosol/membrane interface. The avidity of the red cell membrane for this iron has not been defined. Using open ghost membranes prepared from sickle RBC, we examined the ability of membrane-associated Fe(III) to resist removal by 15 chelators representing a 40-log range of affinities for Fe(III). Efficacy of chelators was compared with literature values for their idealized affinity for iron as represented by the cummulative stability constant (beta n), their effective stability constant reflecting affinity under biologic conditions (Keff), and an indicator of their ability to chelate Fe(III) in the presence of an insoluble phase of iron (Ksol). Deferoxamine, a very high affinity chelator having log beta n = 30.6, was found to be the lowest affinity chelator able to remove RBC membrane Fe(III). Regardless of chelator beta n, only those agents able to preserve log Keff > or = 12 were able to do so, indicating that the membrane's effective avidity for Fe(III) is on the order of 10(12). Additional confirmation that membrane avidity for Fe(III) is extremely high is found in the observation that only chelators having log Ksol > 0 were effective. Potential physiologic iron chelators in cytoplasm of pathologic red cells are unable to prevent or reverse iron accumulation on the membrane because they do not have sufficiently high affinity for iron. These data argue that RBC membrane Fe(III) is truly pathologic.  相似文献   

3.
Lytton  SD; Mester  B; Libman  J; Shanzer  A; Cabantchik  ZI 《Blood》1994,84(3):910-915
Iron chelation treatment of red blood cells infected with Plasmodium falciparum selectively intervenes with iron-dependent metabolism of malaria parasites and inhibits their development. Highly permeant hydroxamate iron chelator RSFileum2 affects all parasite stages when cultures are continuously exposed to drug, but affects primarily ring stages when assessed for irreversible effects, ie, sustained inhibition remaining after drug removal. On the other hand, the hydrophilic and poorly permeant desferrioxamine (DFO) affects primarily trophozoite/schizont stages when tested either in the continuous mode or irreversible mode. Unlike parasites, mammalian cells subjected to similar drug treatment show complete growth recovery once drugs are removed. Our studies indicate that parasites display a limited capacity to recover from intracellular iron depletion evoked by iron chelators. Based on these findings we provide a working model in which the irreversible effects of RSFs on rings are explained by the absence of pathways for iron acquisition/utilization by early forms of parasites. Trophozoite/schizonts can partially recover from RSFileum2 treatments, but show no DNA synthesis following DFO treatment even after drug removal and iron replenishment by permeant iron carriers. At trophozoite stage, the parasite uses a limited pathway for refurnishing its iron-containing enzymes, thus overcoming iron deprivation caused by permeant RSFileum2, but not by DFO because this latter drug is not easily removable from parasites. Their DNA synthesis is blocked by the hydroxamate iron chelators probably by affecting synthesis of ribonucleotide reductase (RNRase). Presumably in parasites, prolonged repression of the enzyme leads also to irreversible loss of activity. The action profiles of RSFileum2 and DFO presented in this study have implications for improved chemotherapeutic performance by combined drug treatment and future drug design based on specific intervention at parasite DNA synthesis.  相似文献   

4.
The mechanism by which P. falciparum takes up iron from transferrin has been explored. Binding of 125I labelled transferrin to parasitized red cells at 37 degrees C is two-fold greater than to control cells; at 0 degrees C there is no significant difference. The binding is non-specific as judged from the following: it is not saturable; it is not limited to transferrin as lactoferrin (which has iron binding domains) and bovine serum albumin (which does not) also bind in excess to parasitized red cells. A transferrin receptor complex could not be demonstrated when parasitized red cells, to which 125I transferrin was bound, were solubilized in Triton X100. Previous observation showed that uptake of transferrin iron by parasitized red cells is not accompanied by equimolar uptake of transferrin protein. We therefore suggest that nonspecifically bound transferrin is endocytosed, that the protein is degraded and the iron selectively retained.  相似文献   

5.
To understand the molecular mechanisms that lead to sequestration of red blood cells infected with mature stages of Plasmodium falciparum and to examine the relevance of earlier studies on adherence properties of laboratory-derived P falciparum parasites to the natural parasite population, we analyzed Gambian and Tanzanian isolates for in vitro cytoadherence and antibody-mediated microagglutination. Eighteen cryopreserved isolates of ring-stage parasites were cultured for 20 to 30 hours in vitro, in the patients original erythrocytes, to the trophozoite and schizont stage. All parasites were positive in the microagglutination assay with at least one of four African hyperimmune sera. In a rosetting assay, only 2 of the 18 isolates were strongly positive (35% and 41% of parasitized erythrocytes with more than two uninfected cells bound). Thirteen isolates showed either intermediate (5% to 18%) or low (less than 5%) rosetting while three isolates did not form rosettes. Infected cell-binding of the different isolates to immobilized CD36 or thrombospondin, or C32 melanoma cells correlated with the percentage of mature parasites in the blood samples (r = .932 for CD36, r = .946 for thrombospondin, and r = .881 for C32 melanoma cells). There was a high correlation between binding to CD36 and thrombospondin (r = .982). The extent of infected cell rosetting with uninfected cells in these blood samples was not correlated with these other receptor properties. We also observed coexpression of rosetting and cytoadherence receptors on the same parasitized erythrocytes.  相似文献   

6.
The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC(50)), assessed by parasite incorporation of [(3)H]hypoxanthine, were between 0.2 and 1.1 microM. CLT concentrations of 2 microM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (approximately 48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 microM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria.  相似文献   

7.
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.  相似文献   

8.
PURPOSE OF REVIEW: Plasmodium falciparum malaria parasites carry approximately 60 var genes that encode variable adhesins termed P. falciparum erythrocyte membrane protein-1. Clonal expression of a single P. falciparum erythrocyte membrane protein-1 variant on the surface of the parasitized host erythrocyte promotes binding of the cell to blood elements (including noninfected erythrocytes, leukocytes) and walls of microvessels. These binding events enable parasitized erythrocytes to sequester and avoid clearance by the spleen, and they also contribute to disease by causing microvascular inflammation and obstruction. RECENT FINDINGS: Steps by which P. falciparum erythrocyte membrane protein-1 is exported to the parasitized erythrocyte surface have recently been elucidated. The ability of parasites to cytoadhere and cause disease depends on the variant of P. falciparum erythrocyte membrane protein-1 as well as its amount and distribution at the erythrocyte surface. An example of a host polymorphism that affects P. falciparum erythrocyte membrane protein-1 display is hemoglobin C, which may protect against malaria by impairing the parasite's ability to adhere to microvessels and induce inflammation. Interference with P. falciparum erythrocyte membrane protein-1-mediated phenomena appears to diminish cytoadherence in vivo and to protect against disease in animal models. SUMMARY: Plasmodium falciparum erythrocyte membrane protein-1-mediated sequestration of parasitized erythrocytes plays a central role in malaria pathogenesis. Clinical interventions aimed at reducing cytoadherence and microvascular inflammation may improve disease outcome.  相似文献   

9.
Theileria parva-reactive cytotoxic lymphocytes and their precursors were examined in the blood of African buffalo infected with T. parva and uninfected African buffalo. Peripheral blood mononuclear cells (PBM) from eight of 11 infected buffalo were found to have potent cytotoxic activity after stimulation with autologous parasitized cells for 6 days in vitro, while PBM from uninfected buffalo or PBM from infected buffalo not stimulated in vitro had no cytotoxic activity. The cytotoxic activity was specific for parasitized cells and genetically restricted since there was no killing on uninfected autologous lymphoblasts and a lower percentage of killing on parasitized allogeneic lymphocytes than on targets of autologous parasitized cells. The cytotoxic cells tested for parasite strain specificity were shown to kill autologous cells transformed with different stocks of both cattle-derived (T. parva parva) and buffalo-derived (T. parva lawrencei) parasites.  相似文献   

10.
The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T. gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T. gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space.  相似文献   

11.
Transfection of Plasmodium falciparum within human red blood cells.   总被引:19,自引:2,他引:19       下载免费PDF全文
Plasmodium falciparum malaria parasites within human red blood cells (RBCs) have been successfully transfected to produce chloramphenicol acetyltransferase (CAT). Electroporation of parasitized RBCs was used to introduce plasmids that have CAT-encoding DNA flanked by 5' and 3' untranslated sequences of the P. falciparum hsp86, hrp3, and hrp2 genes. These flanking sequences were required for expression as their excision abolished CAT activity in transfected parasites. Transfection signals from native CAT-encoding DNA compared well with those from a synthetic DNA sequence adapted to the P. falciparum major codon bias, demonstrating effective expression of the bacterial sequence despite its use of rare P. falciparum codons. Transfected ring-stage parasites produced CAT signals at least as strong as transfected schizont-stage parasites even though ring stages are surrounded by more RBC cytoplasm than schizonts. The transfection of erythrocyte-stage P. falciparum parasites advances our ability to pursue genetic analysis of this major pathogen.  相似文献   

12.
The mechanism(s) underlying the apparent resistance to malaria in certain inherited red cell disorders and iron deficiency anaemia remain poorly understood. The possibility that microcytic erythrocytes might inhibit parasite development, by physical restriction or reduced supply of nutrients, has been considered for many years, and never formally investigated. We sought to determine whether in vitro growth studies of P. falciparum could provide evidence to suggest that small red cell size contributes to malaria resistance in those red cell disorders in which microcytosis is a characteristic feature.
Invasion and development of P. falciparum in iron deficient red cells (mean values for mean cell volume [MCV] 66 fl, mean cell haemoglobin [MCH] 19 pg) and in the red cells of two gene deletion forms of α-thalassaemia (mean MCV 71 fl, MCH 22 pg) were normal, assessed both morphologically, and by 3H-hypoxanthine incorporation. Although parasite appearances were normal in all cell types, morphological abnormalities were noted in iron deficient and thalassaemic cells parasitized by mature stages of P. falciparum , notably cellular ballooning and extreme hypochromia of the red cell cytoplasm. Using electron microscopy, the red cell cytoplasm in parasitized thalassaemic cells showed reduced electron density and abnormal reticulation. Normal invasion rates were observed following schizogony in microcytic cells of both types.
Our findings indicate that whilst minor morphological abnormalities may be detected in parasitized iron deficiency and thalassaemic erythrocytes, development of P. falciparum in these conditions is not limited by small erythrocyte size.  相似文献   

13.
Cryosections of human red blood cells infected by Plasmodium falciparum were analyzed by energy dispersive x-ray microanalysis to determine the elemental composition of the parasites and their red cell hosts separately. The effects of two antimalarial drugs, qinghaosu and chloroquine, on potassium, sodium, and phosphorus concentrations were studied. Malarial infection causes a decrease in potassium concentration and an increase in sodium concentration in the host red cells. The drastic change in the cation composition, however, occurs only in red cells infected by late stage parasites (late trophozoite and schizont). Red cells infected by early stage parasites (ring stage) show only small changes in sodium concentration. Furthermore, the noninfected red cells in parasitized cultures show no difference in composition from those of normal red cells. Treatment of the parasitized cultures with qinghaosu (10(-6) M) or chloroquine (10(-6) M) for 8 hr causes phosphorus concentration of both early and late parasites to decrease. An 8 hr treatment with qinghaosu also produces a reduction in potassium and an increase in sodium concentrations in early and late parasites. In contrast, 8 hr treatment with chloroquine only causes a change in the sodium and potassium concentrations of the late stage parasites and does not affect the early stage parasites.  相似文献   

14.
The intraerythrocytic development of the malaria parasite is accompanied by distinct morphological and biochemical changes in the host cell membrane, yet little is known about development-related alterations in the transbilayer organization of membrane phospholipids in parasitized cells. This question was examined in human red cells infected with Plasmodium falciparum. Normal red cells were infected with strain FCR3 or with clonal derivatives that either produce (K+) or do not produce (K-) knobby protuberances on the infected red cells. Parasitized cells were harvested at various stages of parasite development, and the bilayer orientation of red cell membrane phospholipids was determined chemically using 2,4,6-trinitrobenzene sulphonic acid (TNBS) or enzymatically using bee venom phospholipase A2 (PLA2) and sphingomyelinase C (SMC). We found that parasite development was accompanied by distinct alterations in the red cell membrane transbilayer distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). Increases in the exoplasmic membrane leaflet exposure of PE and PS were larger in the late-stage parasitized cells than in the early-stage parasitized cells. Similar results were obtained for PE membrane distribution using either chemical (TNBS) or enzymatic (PLA2 plus SMC) methods, although changes in PS distribution were observed only with TNBS. Uninfected cohort cells derived from mixed populations of infected and uninfected cells exhibited normal patterns of membrane phospholipid organization. The observed alterations in P falciparum-infected red cell membrane phospholipid distribution, which is independent of the presence or absence of knobby protuberances, might be associated with the drastic changes in cell membrane permeability and susceptibility to early hemolysis observed in the late stages of parasite development.  相似文献   

15.
Sickle trait, the heterozygous state of normal hemoglobin A (HbA) and sickle hemoglobin S (HbS), confers protection against malaria in Africa. AS children infected with Plasmodium falciparum are less likely than AA children to suffer the symptoms or severe manifestations of malaria, and they often carry lower parasite densities than AA children. The mechanisms by which sickle trait might confer such malaria protection remain unclear. We have compared the cytoadherence properties of parasitized AS and AA erythrocytes, because it is by these properties that parasitized erythrocytes can sequester in postcapillary microvessels of critical tissues such as the brain and cause the life-threatening complications of malaria. Our results show that the binding of parasitized AS erythrocytes to microvascular endothelial cells and blood monocytes is significantly reduced relative to the binding of parasitized AA erythrocytes. Reduced binding correlates with the altered display of P. falciparum erythrocyte membrane protein-1 (PfEMP-1), the parasite's major cytoadherence ligand and virulence factor on the erythrocyte surface. These findings identify a mechanism of protection for HbS that has features in common with that of hemoglobin C (HbC). Coinherited hemoglobin polymorphisms and naturally acquired antibodies to PfEMP-1 may influence the degree of malaria protection in AS children by further weakening cytoadherence interactions.  相似文献   

16.
17.
Sickle erythrocytes have increased ferritin and increased molecular iron on the inner membrane leaflet, and we postulated that cytosolic labile iron is also elevated. We used the fluorescent metallosensor, calcein, and a permeant Fe2+ chelator to estimate labile cytoslic Fe2+, and calcein plus an Fe3+ chelator to estimate total cytosolic labile iron (Fe2+ + Fe3+). We measured membrane nonheme iron by its reactivity with ferrozine. As estimated by calcein and Fe2+ chelator, the mean +/- SD labile Fe2+ concentration was significantly lower in hemoglobin (Hb) SS (n = 29) than hemoglobin AA (n = 17) erythrocytes (0.56 +/- 0.35 microM versus 1.25 +/- 0.65 microM; P <.001). In contrast, as estimated by calcein and Fe3+ chelator, total erythrocyte labile iron was similar in hemoglobin SS (n = 12) and hemoglobin AA (n = 10) participants (1.75 +/- 0.41 microM versus 2.14 +/- 0.93 microM; P =.2). Mean membrane nonheme iron levels were higher in hemoglobin SS cells than hemoglobin AA cells (0.0016 x 10-4 versus 0.0004 x 10-4 fmol/cell; P =.01), but much lower than the mean amounts of total labile iron (1.6-1.8 x 10-4 fmol/cell) or hemoglobin iron (18 000-19 000 x 10-4 fmol/cell). Both membrane iron and total labile iron were much less than the mean amount of iron potentially present in erythrocyte ferritin as calculated from results of other investigators (15 x 10-4 versus 34 x 10-4 fmol/cell in HbAA versus HbSS erythrocytes). We conclude that cytosolic labile iron is not elevated in hemoglobin SS erythrocytes and that elemental membrane iron is present in only trace amounts.  相似文献   

18.
Gamain B  Smith JD  Miller LH  Baruch DI 《Blood》2001,97(10):3268-3274
Adhesion of mature Plasmodium falciparum parasitized erythrocytes to microvascular endothelial cells or to placenta contributes directly to the virulence and severe pathology of P falciparum malaria. Whereas CD36 is the major endothelial receptor for microvasculature sequestration, infected erythrocytes adhering in the placenta bind chondroitin sulfate A (CSA) but not CD36. Binding to both receptors is mediated by different members of the large and diverse protein family P falciparum erythrocyte membrane protein-1 (PfEMP-1) and involves different regions of the molecule. The PfEMP-1-binding domain for CD36 resides in the cysteine-rich interdomain region 1 (CIDR-1). To explore why CSA-binding parasites do not bind CD36, CIDR-1 domains from CD36- or CSA-binding parasites were expressed in mammalian cells and tested for adhesion. Although CIDR-1 domains from CD36-adherent strains strongly bound CD36, those from CSA-adherent parasites did not. The CIDR-1 domain has also been reported to bind CSA. However, none of the CIDR-1 domains tested bound CSA. Chimeric proteins between CIDR-1 domains that bind or do not bind CD36 and mutagenesis experiments revealed that modifications in the minimal CD36-binding region (M2 region) are responsible for the inability of CSA-selected parasites to bind CD36. One of these modifications, mapped to a 3-amino acid substitution in the M2 region, ablated binding in one variant and largely reduced binding of another. These findings provide a molecular explanation for the inability of placental sequestered parasites to bind CD36 and provide additional insight into critical residues for the CIDR-1/CD36 interaction.  相似文献   

19.
Studies were conducted to determine how malaria parasites are cleared from the blood after antimalarial treatment. Neither artesunate nor quinine decreased parasitized red cell deformability or increased antibody binding. In acute falciparum malaria, ring-infected erythrocyte surface antigen (RESA) was observed in erythrocytes without malaria parasites (RESA-red blood cell [RBC]), indicating prior parasitization. In uncomplicated malaria, RESA-RBC numbers increased significantly (P=.002) within 24 h of starting artesunate but rose much more slowly (7 days) after quinine treatment. In severe malaria, RESA-RBC increased significantly (P=. 001) within hours of starting artesunate but not with quinine treatment (P=.43). RESA-RBCs were not produced after drug treatment of malaria parasite cultures in vitro. Rapid malaria parasite clearance after treatment with artemisinin derivatives results mainly from the extraction of drug-affected parasites from host erythrocytes-presumably by the spleen. This explains why the fall in hematocrit after treatment of hyperparasitemia is often less than that predicted from loss of parasitized cells.  相似文献   

20.
Summary The extent of reduced glutathione, activity of glutathione peroxidase, amount of membrane lipid peroxidation products, and the extent of hemoglobin release from host erythrocytes during in vitroPlasmodium falciparum growth was studied. Highly synchronized parasite cultures were studied to examine the alterations caused by different growth stages of the parasite. There was a moderate increase in the reduced glutathione content as the parasite matured, which was significant only in schizontrich erythrocyte lysates (p<0.05) whereas the activity of glutathione peroxidase was significantly low in all the parasitized red blood cells (ring-infected RBC,p<0.005; trophozoite- and schizont-infected RBC,p<0.001). The lipid peroxidation product, malonyldialdehyde, of the host red cells increased gradually to more than fourfold in schizont-rich cells as compared with normal erythrocytes (p<0.001). The hemoglobin release from cultured cells was significantly higher in all parasitized red cell cultures as well as in uninfected cells kept in in vitro, as compared with normal erythrocytes. The consequence of such changes induced by the malarial parasites in the host red cells in the pathogenesis of erythrocyte destruction and anemia ofP. falciparum malaria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号