首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Behavioral and neuropsychological studies have suggested that tonal and verbal short‐term memory are supported by specialized neural networks. To date however, neuroimaging investigations have failed to confirm this hypothesis. In this study, we investigated the hypothesis of distinct neural resources for tonal and verbal memory by comparing typical nonmusician listeners to individuals with congenital amusia, who exhibit pitch memory impairments with preserved verbal memory. During fMRI, amusics and matched controls performed delayed‐match‐to‐sample tasks with tones and words and perceptual control tasks with the same stimuli. For tonal maintenance, amusics showed decreased activity in the right auditory cortex, inferior frontal gyrus (IFG) and dorso‐lateral‐prefrontal cortex (DLPFC). Moreover, they exhibited reduced right‐lateralized functional connectivity between the auditory cortex and the IFG during tonal encoding and between the IFG and the DLPFC during tonal maintenance. In contrasts, amusics showed no difference compared with the controls for verbal memory, with activation in the left IFG and left fronto‐temporal connectivity. Critically, we observed a group‐by‐material interaction in right fronto‐temporal regions: while amusics recruited these regions less strongly for tonal memory than verbal memory, control participants showed the reversed pattern (tonal > verbal). By benefitting from the rare condition of amusia, our findings suggest specialized cortical systems for tonal and verbal short‐term memory in the human brain.  相似文献   

2.
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Advances in our understanding of sensory-motor integration suggest a unique role of the frontal lobe circuits in cognition and behaviour. Long-range afferent connections convey higher order sensory information to the frontal cortex, which in turn responds to internal and external stimuli with flexible and adaptive behaviour. Long-range connections from and to frontal lobes have been described in detail in monkeys but little is known about short intralobar frontal connections mediating local connectivity in humans. Here we used spherical deconvolution diffusion tractography and post-mortem dissections to visualize the short frontal lobe connections of the human brain. We identified three intralobar tracts connecting: i) posterior Broca's region with supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) (i.e., the frontal 'aslant' tract - FAT); ii) posterior orbitofrontal cortex with anterior polar region (i.e., fronto-orbitopolar tract - FOP); iii) posterior pre-central cortex with anterior prefrontal cortex (i.e., the frontal superior longitudinal - FSL faciculus system). In addition more complex systems of short U-shaped fibres were identified in the regions of the central, pre-central, perinsular and fronto-marginal sulcus (FMS). The connections between Broca and medial frontal areas (i.e. FAT) and those between the hand-knob motor region and post-central gyrus (PoCG) were found left lateralized in a group of twelve healthy right-handed subjects. The existence of these short frontal connections was confirmed using post-mortem blunt dissections. The functional role of these tracts in motor learning, verbal fluency, prospective behaviour, episodic and working memory is discussed. Our study provides a general model for the local connectivity of the frontal lobes that could be used as an anatomical framework for studies on lateralization and future clinical research in neurological and psychiatric disorders.  相似文献   

4.
Purpose: Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Methods: Thirty‐two children aged 8–13 years with FLE of unknown cause and 41 healthy age‐matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Key Findings: Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Significance: Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad‐range cognitive impairments in children with FLE.  相似文献   

5.
The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients.Key words: coverbal gestures, integration, fMRI, psychophysiological interaction, concretism  相似文献   

6.
The default network exhibits correlated activity at rest and has shown decreased activation during performance of cognitive tasks. There has been little investigation of changes in connectivity of this network during task performance. In this study, we examined task‐related modulation of connectivity between two seed regions from the default network posterior cingulated cortex (PCC) and medial prefrontal cortex (mPFC) and the rest of the brain in 12 healthy adults. The purpose was to determine (1) whether connectivity within the default network differs between a resting state and performance of a cognitive (working memory) task and (2) whether connectivity differs between these nodes of the default network and other brain regions, particularly those implicated in cognitive tasks. There was little change in connectivity with the other main areas of the default network for either seed region, but moderate task‐related changes in connectivity occurred between seed regions and regions outside the default network. For example, connectivity of the mPFC with the right insula and the right superior frontal gyrus decreased during task performance. Increased connectivity during the working memory task occurred between the PCC and bilateral inferior frontal gyri, and between the mPFC and the left inferior frontal gyrus, cuneus, superior parietal lobule, middle temporal gyrus and cerebellum. Overall, the areas showing greater correlation with the default network seed regions during task than at rest have been previously implicated in working memory tasks. These changes may reflect a decrease in the negative correlations occurring between the default and task‐positive networks at rest. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
This work examines the effect of midazolam‐induced light sedation on intrinsic functional connectivity of human brain, using a randomized, double‐blind, placebo‐controlled, cross‐over, within‐subject design. Fourteen healthy young subjects were enrolled and midazolam (0.03 mg/kg of the participant's body mass, to a maximum of 2.5 mg) or saline were administrated with an interval of one week. Resting‐state fMRI was conducted before and after administration for each subject. We focus on two types of networks: sensory related lower‐level functional networks and higher‐order functions related ones. Independent component analysis (ICA) was used to identify these resting‐state functional networks. We hypothesize that the sensory (visual, auditory, and sensorimotor) related networks will be intact under midazolam‐induced light sedation while the higher‐order (default mode, executive control, salience networks, etc.) networks will be functionally disconnected. It was found that the functional integrity of the lower‐level networks was maintained, while that of the higher‐level networks was significantly disrupted by light sedation. The within‐network connectivity of the two types of networks was differently affected in terms of direction and extent. These findings provide direct evidence that higher‐order cognitive functions including memory, attention, executive function, and language were impaired prior to lower‐level sensory responses during sedation. Our result also lends support to the information integration model of consciousness. Hum Brain Mapp 36:4247–4261, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc .  相似文献   

8.
We sought to determine whether functional connectivity streams that link sensory, attentional, and higher‐order cognitive circuits are atypical in attention‐deficit/hyperactivity disorder (ADHD). We applied a graph‐theory method to the resting‐state functional magnetic resonance imaging data of 120 children with ADHD and 120 age‐matched typically developing children (TDC). Starting in unimodal primary cortex—visual, auditory, and somatosensory—we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link‐step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher‐order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention‐regulatory areas is reduced. Third, at subsequent link‐step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication‐naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. Hum Brain Mapp 36:2544–2557, 2015. © 2015 Wiley Periodicals, Inc .  相似文献   

9.
Trait self-control (TSC), defined as the capacity to alter predominant response to promote desirable long-term goals, has been found to facilitate emotional well-being (EWB). However, the neural correlates underlying this association remain unclear. The present study estimated resting-state brain activity and connectivity with amplitude of low‐frequency fluctuations (ALFFs) and resting-state functional connectivity (rsFC) among late adolescents. Whole‐brain correlation analysis showed that higher TSC was associated with increased ALFFs in regions within the executive control network (inferior frontal gyrus, IFG) and the salience network (anterior insula, AI) and decreased ALFF in regions (e.g. medial frontal gyrus, MFG; posterior cingulate, PC) within the default-mode network (DMN). TSC was also linked with the integration (e.g. increased IFG-PC connectivity) and segregation (e.g. decreased AI-MFG connectivity) among brain networks. Mediation analysis indicated that TSC totally mediated the links from the IFG and the precuneus, FC of the AI and regions of the DMN (e.g. bilateral PC and MFG), to EWB. Additionally, ALFF in the IFG and the MFG could predict negative affect in the pandemic through TSC. These findings suggest that TSC is involved in several regions and functional organizations within and between brain networks and mediated the association between neural correlates and emotional wellness in adolescence.  相似文献   

10.
Multivariate analyses of hemodynamic signals serve to identify the storage of specific stimulus contents in working memory (WM). Representations of visual stimuli have been demonstrated both in sensory regions and in higher cortical areas. While previous research has typically focused on the WM maintenance of a single content feature, it remains unclear whether two separate features of a single object can be decoded concurrently. Also, much less evidence exists for representations of auditory compared with visual stimulus features. To address these issues, human participants had to memorize both pitch and perceived location of one of two sample sounds. After a delay phase, they were asked to reproduce either pitch or location. At recall, both features showed comparable levels of discriminability. Region of interest (ROI)-based decoding of functional magnetic resonance imaging (fMRI) data during the delay phase revealed feature-selective activity for both pitch and location of a memorized sound in auditory cortex and superior parietal lobule. The latter region showed higher decoding accuracy for location than pitch. In addition, location could be decoded from angular and supramarginal gyrus and both superior and inferior frontal gyrus. The latter region also showed a trend for decoding of pitch. We found no region exclusively coding pitch memory information. In summary, the present study yielded evidence for concurrent representations of pitch and location of a single object both in sensory cortex and in hierarchically higher regions, pointing toward representation formats that enable feature integration within the same anatomic brain regions.SIGNIFICANCE STATEMENT Decoding of hemodynamic signals serves to identify brain regions involved in the storage of stimulus-specific information in working memory (WM). While to-be-remembered information typically consists of several features, most previous investigations have focused on the maintenance of one memorized feature belonging to one visual object. The present study assessed the concurrent storage of two features of the same object in auditory WM. We found that both pitch and location of memorized sounds were decodable both in early sensory areas, in higher-level superior parietal cortex and, to a lesser extent, in inferior frontal cortex. While auditory cortex is known to process different features in parallel, their concurrent representation in parietal regions may support the integration of object features in WM.  相似文献   

11.
Traumatic brain injury (TBI) results in disruption of information processing via damage to primary, secondary, and tertiary cortical regions, as well as, subcortical pathways supporting information flow within and between cortical structures. TBI predominantly affects the anterior frontal poles, anterior temporal poles, white matter tracts and medial temporal structures. Fundamental information processing skills such as attention, perceptual processing, categorization and cognitive distance are concentrated within these same regions and are frequently disrupted following injury. Information processing skills improve in accordance with the extent to which residual frontal and temporal neurons can be encouraged to recruit and bias neuronal networks or the degree to which the functional connectivity of neural networks can be re-established and result in re-emergence or regeneration of specific cognitive skills. Higher-order cognitive processes, i.e., memory, reasoning, problem solving and other executive functions, are dependent upon the integrity of attention, perceptual processing, categorization, and cognitive distance. A therapeutic construct for treatment of attention, perceptual processing, categorization and cognitive distance deficits is presented along with an interventional model for encouragement of re-emergence or regeneration of these fundamental information processing skills.  相似文献   

12.
Cortico‐basal ganglia connections are involved in a range of behaviors within motor, cognitive, and emotional domains; however, the whole‐brain functional connections of individual nuclei are poorly understood in humans. The first aim of this study was to characterize and compare the connectivity of the subthalamic nucleus (STN) and globus pallidus pars interna (GPi) using meta‐analytic connectivity modeling. Structure‐based activation likelihood estimation meta‐analyses were performed for STN and GPi seeds using archived functional imaging coordinates from the BrainMap database. Both regions coactivated with caudate, putamen, thalamus, STN, GPi, and GPe, SMA, IFG, and insula. Contrast analyses also revealed coactivation differences within SMA, IFG, insula, and premotor cortex. The second aim of this study was to examine the degree of overlap between the connectivity maps derived for STN and GPi and a functional activation map representing the speech network. To do this, we examined the intersection of coactivation maps and their respective contrasts (STN > GPi and GPi > STN) with a coordinate‐based meta‐analysis of speech function. In conjunction with the speech map, both STN and GPi coactivation maps revealed overlap in the anterior insula with GPi map additionally showing overlap in the supplementary motor area (SMA). Among cortical regions activated by speech tasks, STN was found to have stronger connectivity than GPi with regions involved in cognitive linguistic processes (pre‐SMA, dorsal anterior insula, and inferior frontal gyrus), while GPi demonstrated stronger connectivity to regions involved in motor speech processes (middle insula, SMA, and premotor cortex). Hum Brain Mapp 35:3499–3516, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

13.
Neuroimaging studies indicate that children with attention‐deficit/hyperactivity disorder (ADHD) present alterations in several functional networks of the sensation‐to‐cognition spectrum. These alterations include functional overconnectivity within sensory regions and underconnectivity between sensory regions and neural hubs supporting higher order cognitive functions. Today, it is unknown whether this same pattern of alterations persists in adult patients with ADHD who had never been medicated for their condition. The aim of the present study was to assess whether medication‐naïve adults with ADHD presented alterations in functional networks of the sensation‐to‐cognition spectrum. Thirty‐one medication‐naïve adults with ADHD and twenty‐two healthy adults underwent resting‐state functional magnetic resonance imaging (rs‐fMRI). Stepwise functional connectivity (SFC) was used to characterize the pattern of functional connectivity between sensory seed regions and the rest of the brain at direct, short, intermediate, and long functional connectivity distances, thus covering the continuum from the sensory input to the neural hubs supporting higher order cognitive functions. As compared to controls, adults with ADHD presented increased SFC degree within primary sensory regions and decreased SFC degree between sensory seeds and higher order integration nodes. In addition, they exhibited decreased connectivity degree between sensory seeds and regions of the default‐mode network. Consistently, the higher the score in clinical severity scales the lower connectivity degree between seed regions and the default mode network.  相似文献   

14.
In this study, we aimed to understand how whole‐brain neural networks compute sensory information integration based on the olfactory and visual system. Task‐related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub‐like network nodes analyzed with network‐based statistics using region‐of‐interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory‐related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto‐occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed—not significant, but very consistent—that MIP‐specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing.  相似文献   

15.
To determine brain plasticity changes due to resective epilepsy surgery in children, we performed a longitudinal connectome analysis on the pattern of axonal connectivity in the contralateral hemisphere. Pre‐ and postoperative diffusion tensor imaging (DTI) data were acquired from 35 children with intractable focal epilepsy. A total of 54 brain regions of interest (ROIs) were generated in the hemisphere contralateral to the resection. Within a 54 × 54 connectivity matrix, a pairwise connectivity score was calculated for each connection between two ROIs, based on the DTI fiber streamline number in each connection. A permuted Spearman's ρ‐rank analysis was used to identify specific inter‐regional connections showing a significant association between the postoperative change of connectivity score and clinical variables. Nineteen connections in the contralateral hemisphere showed postoperative increases in the strength of connectivity. Postoperative increase in connectivity between insular–inferior frontal operculum regions as well as that between superior frontal orbital and mid frontal orbital regions were both significantly associated with a larger surgical resection volume (ρ > +0.40) and a younger patient age (ρ > ?0.34). These increases were more robust in patients with frontal resection and in those achieving seizure freedom. Neuropsychological evaluation on subsets of patients revealed that such increases in connectivity were associated with preserved or improved cognitive functions such as visual memory and planning. Resective epilepsy surgery may lead to increased contralateral axonal connectivity in children with focal epilepsy. Our data lead to a hypothesis that such increased connectivity may be an imaging marker of postoperative brain plasticity to compensate for cognitive function. Hum Brain Mapp 37:3946–3956, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
In language processing, the relative contribution of early sensory and higher cognitive brain areas is still an open issue. A recent controversial hypothesis proposes that sensory cortices show sensitivity to syntactic processes, whereas other studies suggest a wider neural network outside sensory regions. The goal of the current event-related fMRI study is to clarify the contribution of sensory cortices in auditory syntactic processing in a 2 × 2 design. Two-word utterances were presented auditorily and varied both in perceptual markedness (presence or absence of an overt word category marking "-t"), and in grammaticality (syntactically correct or incorrect). A multivariate pattern classification approach was applied to the data, flanked by conventional cognitive subtraction analyses. The combination of methods and the 2 × 2 design revealed a clear picture: The cognitive subtraction analysis found initial syntactic processing signatures in a neural network including the left IFG, the left aSTG, the left superior temporal sulcus (STS), as well as the right STS/STG. Classification of local multivariate patterns indicated the left-hemispheric regions in IFG, aSTG, and STS to be more syntax-specific than the right-hemispheric regions. Importantly, auditory sensory cortices were only sensitive to the overt perceptual marking, but not to the grammaticality, speaking against syntax-inflicted sensory cortex modulations. Instead, our data provide clear evidence for a distinction between regions involved in pure perceptual processes and regions involved in initial syntactic processes.  相似文献   

17.
The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social‐emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito‐frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210–2222, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
The hippocampus is believed to have close relationship with many cerebral cortexes and constitute memory network to modulate and facilitate communication, which makes it especially interesting and meaningful in the study of functional connectivity in mild cognitive impairment (MCI). However, functional connectivity between the hippocampus and other brain regions remains unclear in MCI. Furthermore, the longitudinal changes of the hippocampal connectivity have not been reported. In the study, resting state functional MRI (fMRI) was used to examine changes in hippocampal connectivity comparing 14 patients and 14 healthy age-matched controls. We found that functional connectivity between the hippocampus and a set of regions was disrupted in MCI, these regions are: the right frontal lobe, the bilateral temporal lobe and the right insular. While, the left posterior cingulate cortex, precuneus, hippocampus, caudate and right occipital gyrus showed increased connectivity to the hippocampus in MCI. Additionally, we traced the seven MCI patients and compared the hippocampal connectivity in initial stage and 3 years later stage. Several regions presented decreased connectivity to the hippocampus after 3 years. Finally, the hippocampal connectivity with some regions showed significant correlation with the cognitive performance of patients. Based on these findings, the decreased hippocampal connectivity might indicate reduced integrity of hippocampal cortical memory network in MCI. In addition, the increased hippocampal connectivity suggested compensation for the loss of memory function. With the development of the disease, the hippocampal connectivity may lose some compensation and add some more disruption due to the pathological changes.  相似文献   

19.
Structural and functional neuroimaging studies show language and reading processes are left-lateralized, and associated with a dispersed group of left brain regions. However, it is unclear when and how asymmetry of these regions emerges. We characterized the development of structural and functional asymmetry of the language network in 386 datasets from 117 healthy children (58 male) across early childhood (2–7.5 years). Structural asymmetry was investigated using diffusion tensor imaging (DTI) and manual delineation of the arcuate fasciculus. Functional connectivity asymmetry was calculated from seed regions in the inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). We show that macrostructural asymmetry of the arcuate fasciculus is present by age 2 years, while leftward asymmetry of microstructure and functional connectivity with the IFG increases across the age range. This emerging microstructural and functional asymmetry likely underlie the development of language and reading skills during this time.  相似文献   

20.
Autism spectrum disorders (ASD) and schizophrenia are both neurodevelopmental disorders that have extensively been associated with impairments in functional brain connectivity. Using a cross-sensory P50 suppression paradigm, this study investigated low-level audiovisual interactions on cortical EEG activation, which provides crucial information about functional integrity of connections between brain areas involved in cross-sensory processing in both disorders. Thirteen high functioning adult males with ASD, 13 high functioning adult males with schizophrenia, and 16 healthy adult males participated in the study. No differences in neither auditory nor cross-sensory P50 suppression were found between healthy controls and individuals with ASD. In schizophrenia, attenuated P50 responses to the first auditory stimulus indicated early auditory processing deficits. These results are in accordance with the notion that filtering deficits may be secondary to earlier sensory dysfunction. Also, atypical cross-sensory suppression was found, which implies that the cognitive impairments seen in schizophrenia may be due to deficits in the integrity of connections between brain areas involved in low-level cross-sensory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号