首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Psoriasis is often treated with agents that activate nuclear hormone receptors for glucocorticoids, retinoids, and vitamin D. The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a related nuclear hormone receptor that can be activated by its ligands, including the thiazolidinediones. OBJECTIVE: To assess whether treatment with troglitazone, a currently available thiazolidinedione used to treat diabetes mellitus, has an effect on psoriasis in normoglycemic patients and whether ligands for PPARgamma have an effect on models of psoriasis. DESIGN: Open-label administration of troglitazone in patients with psoriasis and evaluation of drug actions in cellular, organ, and transplant models of psoriasis. SETTING: University and community hospital outpatient departments and university laboratories. PATIENTS: Patients with chronic, stable plaque psoriasis and control subjects. Five patients with psoriasis received troglitazone (none withdrew); 10 different untreated patients and 10 controls provided tissue samples. INTERVENTIONS: Oral troglitazone therapy at various dosages in patients with psoriasis; also, use of troglitazone, ciglitazone, and 15-deoxy-delta-12,14-prostaglandinJ2 in psoriasis models. MAIN OUTCOME MEASURES: Investigator-determined clinical results in patients and cell counts and histological evidence in models. RESULTS: All patients' psoriasis improved substantially during troglitazone therapy. Peroxisome proliferator-activated receptor-gamma was expressed in human keratinocytes; ligands for PPARgamma inhibited the proliferation of normal and psoriatic human keratinocytes in culture. Troglitazone treatment normalized the histological features of psoriatic skin in organ culture and reduced the epidermal hyperplasia of psoriasis in the severe combined immunodeficient mouse and human skin transplant model of psoriasis (P<.05 compared with untreated controls). CONCLUSIONS: Peroxisome proliferator-activated receptor-gamma might be a useful intracellular target for the treatment of psoriasis; further study is needed to assess the clinical value of ligands for PPARgamma, including troglitazone.  相似文献   

2.
This study was undertaken to evaluate the effects of thiazolidinediones (TZD) on keratinocyte proliferation, motility, and matrix metalloproteinase (MMP) production. Rosiglitazone (a potent TZD) inhibited both proliferation and motility as well as elaboration of MMP-1 and MMP-9. Inhibition was obtained with keratinocytes in monolayer culture and human skin in organ culture. There were significant concentration-response differences in sensitivity of the three keratinocyte responses to treatment with rosiglitazone. In contrast to keratinocytes, dermal fibroblasts were resistant to the effects of rosiglitazone. Treatment of keratinocytes with rosiglitazone did not suppress epidermal growth factor receptor autophosphorylation, but inhibited signaling through the extracellular regulated kinase mitogen-activated protein kinase pathway without a concomitant effect on pathways that lead to c-jun activation. Pioglitazone, another TZD, also suppressed keratinocyte proliferation, although it was less effective than rosiglitazone. An experimental TZD (BP-1107) inhibited keratinocyte proliferation at a much lower concentration than either rosiglitazone or pioglitazone. Because enhanced keratinocyte motility and increased MMP production as well as increased keratinocyte proliferation are thought to contribute to the phenotype of psoriatic lesional skin, we propose that interference with these keratinocyte responses contributes to the previously reported antipsoriatic activity of TZD.  相似文献   

3.
Abstract It has recently become clear that cyclin-dependent kinase (cdk) complex regulates the cell cycle by phosphorylating Rb protein, a tumor suppressor protein. It is likely that this complex is a target of various growth factors and anti-growth factors (UV TGF-β etc.) in keratinocyte (KC). It has also been suggested that abnormalities in the cell cycle regulating mechanism such as increased activity of cyclin-cdk due to mutation of p53, a tumor suppressor gene, and overexpression of cyclin D may be concerned with carcinogenesis of KC. Thus, recent studies indicate that the cyclin-cdk complex is a common target of proliferation and carcinogenesis in KC.  相似文献   

4.
In a previous study, we showed that overexpression of cyclin D, a G1 cyclin, is frequently associated with keratinocyte carcinogenesis as an early event. Another G1 cyclin, cyclin E, was recently suggested to be a prognostic marker for breast cancer. In order to evaluate the role of cyclin E in human keratinocyte carcinogenesis, we analysed the expression of cyclin E by immunohistochemistry in normal skin, seborrheic kaeratosis (SK), keratoacanthoma (KA), actinic keratosis (AK), Bowen's disease (BD), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Positive cells were seen rarely in normal epidermis, in 9 of 20 cases of SK, in 5 of 6 cases of KA, in 9 of 13 cases of AK and in all 27 cases of BD. Some of the cases of AK and BD had positive cells in the superficial epidermis, where atypicality is less obvious. In contrast, positive cells were seen in 4 of 25 cases of SCC and none of 15 cases of BCC. These results suggest that expression of cyclin E plays a role in the formation of benign and premalignant keratinocytic tumors, whereas down-regulation of cyclin E expression may be involved in carcinogenesis in human keratinocytes.  相似文献   

5.
In this study, we show that the G0-G1/S phase of HaCaT keratinocyte cell cycle is characterized by D1-type cyclin expression, whereas during the repeated rapid turnover of highly proliferating cells, the expression of cyclins D2 and D3 dominates. Knocking down cyclin D1 mRNA resulted in no change of cell proliferation and morphology, indicating that D2 and D3 cyclins could substitute for D1 in driving the cell cycle. Increased numbers of cyclin D1-expressing keratinocytes were found in the basal layers of the lesional psoriatic epidermis compared to both normal and non-lesional epidermis without increased expression of cyclin D1 mRNA, suggesting a possible dysfunction in the degradation of cyclin D1 protein. We also detected a significant increase in cyclin D2 and D3 mRNA expressions in psoriatic epidermis compared to normal epidermis with no difference in protein expressions. Blocking alpha5-integrin function by a neutralizing antibody in HaCaT keratinocytes downregulated the expression of cyclin D1 mRNA without affecting the expressions of cyclin D2 and D3 indicating a regulatory role for alpha5-integrin in the expression of cyclin D1. Our data suggest a possible role for D-type cyclins in the excessive basal-cell proliferation and perturbed keratinocyte differentiation in the psoriatic epidermis.  相似文献   

6.
In a murine model of epidermal hyperplasia reproducing some of the abnormalities of several common skin disorders, we previously demonstrated the antiproliferative and pro-differentiating effects of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and liver X receptor activators. Unlike other subgroups of PPAR activators, thiazolidinediones (TZDs), a family of PPARgamma ligands, did not inhibit keratinocyte proliferation in normal murine skin. Here, we studied the effects of two TZDs, namely ciglitazone (10 mM) and troglitazone (1 mM), in the same murine model where epidermal hyperproliferation was reproduced by repeated barrier abrogation with tape stripping. Topical treatment with ciglitazone and troglitazone resulted in a marked and significant decrease in epidermal thickness. Furthermore, in all TZD-treated groups, we observed a significant decrease in keratinocyte proliferation using proliferating cell nuclear antigen, 5-bromo-2'-deoxyuridine, and tritiated thymidine incorporation. However, using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found no difference in apoptosis between different treatments, emphasizing that it is the antiproliferative role of these activators that accounts for the decrease of epidermal thickness. Finally, using immunohistochemical methods, we determined the effects of ciglitazone on keratinocyte differentiation in this hyperproliferative model. We observed an increased expression of involucrin and filaggrin following ciglitazone treatment, suggesting a pro-differentiating action of TZDs in this model. In summary, topical TZDs significantly reduce epidermal keratinocyte proliferation while promoting differentiation in a murine model of hyperproliferative epidermis. Together, these results suggest that in addition to their metabolic effects currently in use in the treatment of type 2 diabetes, topical TZDs could be considered as potential alternative therapeutic agents in hyperproliferative skin diseases such as psoriasis.  相似文献   

7.
There is substantial interest in identifying agents that differentially activate keratinocyte differentiation versus apoptosis. Okadaic acid (OA) is a tumor promoter in mouse skin that also stimulates apoptosis of murine keratinocytes. OA also enhances human keratinocyte differentiation; however, the impact of OA treatment on apoptosis in these cells has not been examined. We show that OA promotes normal human keratinocyte apoptosis as evidenced by increased accumulation of cells having sub-G1/S DNA content, decreased mitochondrial integrity, increased annexin V binding, increased cytoplasmic cytochrome c level, and increased procaspase 3 and PARP cleavage. Cyclin A, cyclin D1, cdk2, cdk4, p53 and p21 levels are reduced. These changes are associated with release of the PKCδ catalytic domain and increased phosphorylation of PKCδ-T505-responses consistent with PKCδ activation. In contrast, phosphorylation of PKCδ-Y311 is not increased. The apoptotic response is enhanced in OA treated cells in the presence of p38δ, a PKCδ target. OA treatment selectively activated p38δ, and OA-dependent apoptosis is not inhibited by treatment with the p38α/β inhibitor, SB203580. These findings are consistent with the idea that the response is mediated by p38δ. Our data indicate that OA is an agent that regulates both keratinocyte differentiation and apoptosis, and that this regulation is mediated via activation of a PKCδ/p38δ signaling cascade.  相似文献   

8.
9.
Chloride intracellular channel (CLIC)4 is a p53- and tumor necrosis factor alpha (TNFalpha)-regulated chloride channel protein that is localized to the mitochondria and cytoplasm of mouse and human keratinocytes. CLIC4 protein increases in differentiating keratinocytes and in keratinocytes exposed to DNA-damaging agents and metabolic inhibitors. Increasing CLIC4 levels by transduction of recombinant CLIC4 causes apoptosis. CLIC4 translocates to the nucleus under a variety of conditions of cell stress, and nuclear CLIC4 is associated with cell cycle arrest and accelerated apoptosis. Reduction of CLIC4 and several other CLIC family members by expressing a doxycycline-regulated CLIC4 antisense also causes apoptosis in squamous cancer cell lines. Expressing antisense CLIC4 in tumors derived from transplanting these cells into nude mice inhibits tumor growth, increases tumor apoptosis, and reduces tumor cell proliferation. Co-administration of TNFalpha intraperitoneally enhances the tumor-inhibitory influence of CLIC4 antisense expression. Together, these results suggest that CLIC4 is important for keratinocyte viability and may be a novel target for anti-cancer therapy.  相似文献   

10.
microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris   总被引:1,自引:0,他引:1  
Background Psoriasis is a chronic inflammatory skin disease characterized by intense proliferation and abnormal differentiation of keratinocytes, although the pathogenesis is still not completely clarified. Objectives We investigated the mechanism of keratinocyte proliferation seen in psoriasis, focusing on microRNA (miRNA). Materials and methods miRNAs were extracted from tissues and sera of psoriasis, atopic dermatitis and healthy control. To determine pathogenic miRNAs, we performed miRNA polymerase chain reaction (PCR) array analysis. The results were confirmed with quantitative real‐time PCR, in situ hybridization, immunohistochemistry, transient transfection of siRNA and inhibitor in cultured keratinocytes and Western blotting. Results PCR array analysis using tissue miRNA demonstrated miR‐424 level was markedly decreased in psoriasis skin in vivo. Protein expression of mitogen‐activated protein kinase kinase 1 (MEK1) or cyclin E1, predicted target genes of miR‐424, was increased in psoriatic skin, although their mRNA levels were not. The transfection of specific inhibitor of miR‐424 in normal human keratinocytes led to upregulation of MEK1 or cyclin E1 protein, and resulted in increased cell proliferation. On the other hand, cell number was significantly decreased when cells were transfected with siRNA for MEK1 or cyclin E1. Furthermore, we first investigated serum miRNA levels in psoriasis. Although not significant, serum miR‐424 concentration tended to be decreased in patients with psoriasis compared with healthy controls. Conclusions Decreased miR‐424 expression and subsequently increased MEK1 or cyclin E1 may play a key role in the pathogenesis of psoriasis. Investigation of the regulatory mechanisms of keratinocyte proliferation by miRNA may lead to new treatments and a disease activity marker.  相似文献   

11.
Understanding keratinocyte stem cell regulation is important in understanding the pathogenesis of wound healing and nonmelanoma skin cancer. We previously used a sensitive and quantitative assay for in vitro keratinocyte colony formation and mapped the keratinocyte stem cell locus (Ksc1) on mouse chromosome 9. Examination of the candidate genes in this locus disclosed a sequence variant in the gene for bone morphogenetic protein 5 (Bmp5). In this report, we used a naturally occurring mouse with a null mutation in this gene to probe stem cell properties in mouse epidermis. We found that the mutant keratinocytes had a significant reduction in the size and number of clonogenic keratinocytes. The mutant mice had a 50% reduction in the number of label-retaining cells when compared with their littermates. Addition of exogenous Bmp5 protein increased the number and size of keratinocyte colonies in the mutant as well as their wild-type littermates. Surprisingly, the mutant mice showed at least a 2-fold increase in skin tumor susceptibility over their littermates. We conclude that a naturally occurring mutation in Bmp5 affects keratinocyte stem cell proliferation, and skin tumor susceptibility, and is a candidate stem cell regulatory gene in the Ksc1 locus.  相似文献   

12.
CD40 ligation alters the cell cycle of differentiating keratinocytes   总被引:4,自引:0,他引:4  
CD40 is expressed in normal human keratinocytes, especially in the basal cell layer. We have recently reported that CD40 ligation strongly inhibits keratinocyte proliferation and induces their differentiation. In this study, the CD40 pathway that prevents keratinocyte growth was investigated. We first reported that interferon-gamma treatment potentiated the CD40-mediated inhibition of keratinocyte proliferation. CD40-CD40 ligand interactions, in the presence or absence of interferon-gamma, neither enhanced spontaneous keratinocyte apoptosis, nor did it enhance apoptosis induced by various agents. More importantly, we showed that CD40 signaling altered the keratinocyte cell cycle, as demonstrated by a decreasing number of cells in the G1 and S phases and an accumulation in G2/M phase of the cell cycle. Furthermore, western blot analysis of cell cycle regulatory proteins, showed a decrease in cyclin A and E expression in CD40-activated keratinocytes. Collectively, these results indicate that CD40 ligation inhibits keratinocyte renewal by a mechanism independent of cell apoptosis and that modulation of the keratinocyte cell cycle is an additional outcome of CD40 signaling.  相似文献   

13.
Ultraviolet radiation of mouse skin leads to epidermal hyperplasia, inflammation, and subsequent tumor development. In this study we determined to what extent the cell cycle machinery is altered during epidermal proliferation after ultraviolet B radiation. A minimal erythema dose, 90 mJ per cm2, increased the protein expression of the G1 phase cyclins, cyclin D1 and E, by 12 h. The majority of epidermal cells entered S phase between 18 and 24 h as determined by 5'-bromo-2'-deoxyuridine incorporation, proliferating cell nuclear antigen, and cyclin A immunohistochemistry. An increase in cyclin-dependent kinase 2 (cdk-2) protein expression occurred after 12 h, but no changes in cdk-4 or cdk-6 protein levels were observed. The increase in cyclin D1, E, and A protein expression was associated with an increase in cyclin D1-cdk-4, cyclin E-cdk-2, and cyclin A-cdk-2 complex formation. p53 protein expression was elevated through 48 h, and the cdk inhibitor protein p21(Cip1/WAF1) was elevated 6-fold to 7.5-fold between 12 and 24 h. The elevated p21(Cip1/WAF1) protein contributed to an enhanced association with cdk-2 and cdk-4 at 3-24 h and 6-24 h post-ultraviolet B irradiation, respectively. These data indicate that 90 mJ per cm2 of ultraviolet B irradiation induces a DNA damage response, by increasing p53 and p21(Cip1/WAF1) protein expression, but also induces a rapid and sustained increase in S phase by 18 h.  相似文献   

14.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate lipid, glucose, and amino acid metabolism. More recently, PPARs and corresponding ligands have been shown in skin and other organs to regulate important cellular functions, including cell proliferation and differentiation, as well as inflammatory responses. These new functions identify PPARs and corresponding ligands as potential targets for the treatment of various skin diseases and other disorders. It has been shown that in inflammatory skin disorders, including hyperproliferative psoriatic epidermis and the skin of patients with atopic dermatitis, the expression of both PPARalpha and PPARgamma is decreased. This observation suggests the possibility that PPARalpha and PPARgamma activators, or compounds that positively regulate PPAR gene expression, may represent novel NSAIDs for the topical or systemic treatment of common inflammatory skin diseases such as atopic dermatitis, psoriasis, and allergic contact dermatitis. Moreover, recent findings indicate that PPAR-signaling pathways may act as a promising therapeutic target for the treatment of hyperproliferative skin diseases including skin malignancies. Studies in non-diabetic patients suggest that oral thiazolidinediones, which are synthetic ligands of PPARgamma, not only exert an antidiabetic effect but also may be beneficial for moderate chronic plaque psoriasis by suppressing proliferation and inducing differentiation of keratinocytes; furthermore, they may even induce cell growth arrest, apoptosis, and terminal differentiation in various human malignant tumors. It has been reported that PPARalpha immunoreactivity is reduced in human keratinocytes of squamous cell carcinoma (SCC) and actinic keratosis (AK), while PPARdelta appears to be upregulated. Additionally, the microvessel density is significantly higher in AK and SCC that express high levels of PPARdelta. PPARdelta has been demonstrated to have an anti-apoptotic role and to maintain survival and differentiation of epithelial cells, whereas PPARalpha and PPARgamma activators induce differentiation and inhibit proliferation and regulate apoptosis. In melanoma, the growth inhibitory effect of PPARgamma activation is independent of apoptosis and seems to occur primarily through induction of cell cycle arrest in the G1 phase of the cell cycle or induction of re-differentiation. PPARalpha activation causes inhibition of migration of melanoma cells and anchorage-independent growth, whereas primary tumor growth remains unaltered. In clinical trials of gemfibrozil, a PPARalpha ligand, significantly fewer patients treated with this lipid-lowering drug were diagnosed with melanoma as compared to those in the control group. In conclusion, an increasing body of evidence indicates that PPAR signaling pathways may represent interesting therapeutic targets for a broad variety of skin disorders, including inflammatory skin diseases such as psoriasis and atopic dermatitis, and skin malignancies.  相似文献   

15.
Aquaporin-3 (AQP3) is a water/glycerol transporting protein expressed strongly at the plasma membrane of keratinocytes. There is evidence for involvement of AQP3-facilitated water and glycerol transport in keratinocyte migration and proliferation, respectively. Here, we investigated the involvement of AQP3 in keratinocyte differentiation. Studies were done using AQP3 knockout mice, primary cultures of mouse keratinocytes (AQP3 knockout), neonatal human keratinocytes (AQP3 knockdown), and human skin. Cells were cultured with high Ca2+ or 1α,25-dihydroxyvitamin D3 (VD3) to induce differentiation. The expression of differentiation marker proteins and differentiating responses were comparable in control and AQP3-knockout or knockdown keratinocytes. Topical application of all-trans retinoic acid (RA), a known regulator of keratinocyte differentiation and proliferation, induced comparable expression of differentiation marker proteins in wildtype and AQP3 null epidermis, though with impaired RA-induced proliferation in AQP3 null mice. Immunostaining of human and mouse epidermis showed greater AQP3 expression in cells undergoing proliferation than differentiation. Our results showed little influence of AQP3 on keratinocyte differentiation, and provide further support for the proposed involvement of AQP3-facilitated cell proliferation.  相似文献   

16.
Abstract:  In this study we showed that Rottlerin (also called Kamala or Mallotoxin), a natural product purified from Mallotus phillippinensis , is a potent suppressor of human keratinocytes (HaCaT cell line) proliferation. Following Rottlerin treatment, Thymidine incorporation into DNA and re-epithelialisation in a scratch wound model was decreased. At the molecular level, Rottlerin hampered the NFkB activation process, causing loss of cyclin D1 and promoting, in a PKCδ-dependent pathway, ERK activation, which, in turn induced the cell cycle inhibitor p21 Cip1/Kip1. The NFkB-dependent drop in cyclin D1, along with the PKCδ/ERK-dependent induction of p21 Cip1/Kip1, is responsible for growth arrest. These results open the way to further investigation on the Rottlerin therapeutic potential against keratinocyte hyper-proliferative disorders.  相似文献   

17.
The polycomb group (PcG) genes are epigenetic suppressors of gene expression that play an important role in development. In this study, we examine the role of Bmi-1 (B-cell-specific Moloney murine leukemia virus integration site 1) as a regulator of human epidermal keratinocyte survival. We identify Bmi-1 mRNA and protein expression in epidermis and in cultured human keratinocytes. Bmi-1 is located in the nucleus in cultured keratinocytes, and in epidermis it is expressed in the basal and suprabasal layers. Adenovirus-delivered Bmi-1 promotes keratinocyte survival and protects keratinocytes from stress agent-mediated cell death. This is associated with increased levels of cyclin D1 and selected cyclin-dependent kinases, and reduced caspase activity and poly(ADP-ribose) polymerase (PARP) cleavage. Bmi-1 may be involved in the maintenance of disease state, as Bmi-1 levels are elevated in transformed keratinocytes, skin tumors, and psoriasis. The presence of Bmi-1 in suprabasal non-proliferative cells of the epidermis and within a high percentage of cells within skin tumors suggests a non-stem cell pro-survival role for Bmi-1 in this tissue. Based on the suprabasal distribution of Bmi-1 in epidermis, we propose that Bmi-1 may promote maintenance of suprabasal keratinocyte survival to prevent premature death during differentiation. Such a function would help assure proper formation of the stratified epidermis.  相似文献   

18.
Peroxisome proliferator‐activated receptors (PPARs) are potentially useful for the treatment of skin diseases, because they stimulate keratinocyte differentiation, exert anti‐inflammatory effects and improve barrier function. We examined five PPAR‐γ agonists, including four thiazolidinediones (ciglitazone, troglitazone, rosiglitazone and pioglitazone) and an angiotensin‐II receptor blocker (telmisartan), for their ability to upregulate filaggrin and loricrin expression at both mRNA and protein levels in cultured normal human keratinocytes (NHKs). Troglitazone, rosiglitazone, pioglitazone and telmisartan significantly increased filaggrin expression at both mRNA and protein levels in calcium‐induced differentiated NHKs. Rosiglitazone and pioglitazone, but not troglitazone nor telmisartan, also significantly increased loricrin expression at both mRNA and protein levels in differentiated NHKs. These effects were not found in undifferentiated NHKs nor differentiated NHKs treated with ciglitazone. This study revealed differential effects of various PPAR‐γ agonists on epidermal differentiation, and the most potent of those are rosiglitazone and pioglitazone.  相似文献   

19.
Estrogen is reported to prevent age-associated epidermal thinning in the skin. We examined if 17beta-estradiol (E2) may enhance the growth of human keratinocytes, focusing on its effects on the expression of cell cycle-regulatory proteins. E2 enhanced proliferation, bromodeoxyuridine incorporation of keratinocytes, and increased the proportion of cells in the S phase. The E2-induced stimulation of proliferation and bromodeoxyuridine incorporation was suppressed by antisense oligonucleotide against cyclin D2, which induces G1 to S phase progression. E2 increased protein and mRNA levels of cyclin D2, and resultantly enhanced assembly and kinase activities of cyclin D2-cyclin-dependent kinases 4 or 6 complexes. E2 enhanced cyclin D2 promoter activity, and the element homologous to cAMP response element (CRE) on the promoter was responsible for the effect. Cyclin D2 expression was enhanced by antiestrogens, ICI 182,780 and 4-hydroxytamoxifen, and membrane-impermeable bovine serum albumin-conjugated E2, indicating the effects via membrane E2-binding sites. E2 increased the enhancer activity of CRE-like element and the amount of phosphorylated cAMP response element binding protein (CREB) binding this element, and the increases were suppressed by H-89, an inhibitor of cAMP-dependent protein kinase A. H-89 also suppressed E2-induced cyclin D2 expression, proliferation, and bromodeoxyuridine incorporation in keratinocytes. Antisense oligonucleotide against G-protein-coupled receptor GPR30 suppressed the E2-induced increases of phosphorylated CREB, cyclin D2 level, proliferation, and bromodeoxyuridine incorporation in keratinocytes. These results suggest that E2 may stimulate the growth of keratinocytes by inducing cyclin D2 expression via CREB phosphorylation by protein kinase A, dependent on cAMP. These effects of E2 may be mediated via cell surface GPR30.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号