首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Although a number of antiviral agents are licensed for treatment of some human herpesvirus (HHV) infections, effective antiviral therapy is not available for all HHVs. Additional complications are associated with approved drugs, such as toxicity and side effects, and rise in drug-resistant strains is a driving force for new drug development. Success in HHV vaccine development is limited with only vaccines against varicella-zoster virus currently in use in the clinic. In vitro, in vivo and in silico high-throughput (HTP) approaches and innovative microfluidic systems will provide novel technologies to efficiently identify and evaluate new targets and antiherpetic compounds. Coupled with HTP strategies for manipulation of herpesvirus viral genomes, these strategies will greatly accelerate the development of future antivirals as well as candidate vaccine intervention strategies.

Areas covered: The authors provide a brief overview of the herpesvirus family and associated diseases. Further, the authors discuss the approved and investigational antiherpetic drugs in the context of current HTP technologies.

Expert opinion: HTP technology such as microfluidic systems is crucial for the identification and validation of novel drug targets and next-generation antivirals. Current drug development is limited by the unavailability of HTP preclinical model systems. Specific advancement in the development of HTP animal-specific technology, applied in parallel, allows a more rapid evaluation of drugs at the preclinical stage. The advancement of HTP combinatorial drug therapy, especially ‘Organ-on-a-Chip’ approaches, will aid in the evaluation of future antiviral compounds and intervention strategies.  相似文献   

2.
Introduction: After the WHO declared Zika virus (ZIKV) as a public health emergency of international concern, intense research for the development of vaccines and drugs has been undertaken, leading to the development of several candidates.

Areas covered: This review discusses the developments achieved so far by computational methods in the discovery of candidate compounds targeting ZIKV proteins, i.e. the envelope and capsid structural proteins, the NS3 helicase/protease, and the NS5 methyltransferase/RNA-dependent RNA polymerase.

Expert opinion: Research for effective drugs against ZIKV is still in a very early discovery phase. Notwithstanding the intense efforts for the development of new drugs and the identification of several promising candidates by using different approaches, including computational methods, so far only a few candidates have been experimentally tested. An important caveat of anti-flavivirus drug development is represented by the difficult of reproducing the in vivo microenvironment of the replication complex, which may lead to discrepancies between in vitro results and experimental evaluation in vivo. Moreover, anti-ZIKV drugs have the additional requirement of an excellent safety profile in pregnancy and ability to diffuse to different tissues, including the central nervous system, the testis, and the placenta.  相似文献   


3.
Introduction: Influenza antiviral high-throughput screens have been extensive, and yet no approved influenza antivirals have been identified through high-throughput screening. This underscores the idea that development of successful screens should focus on the exploitation of the underrepresented viral targets and novel, therapeutic host targets.

Areas covered: The authors review conventional screening applications and emerging technologies with the potential to enhance influenza antiviral discovery. Real-world examples from the authors' work in biocontained environments are also provided. Future innovations are discussed, including the use of targeted libraries, multiplexed assays, proximity-based endpoint methods, non-laboratory-adapted virus strains, and primary cells, for immediate physiological relevance and translational applications.

Expert opinion: The lack of successful anti-influenza drug discovery using high-throughput screening should not deter future efforts. Increased understanding of the functions of viral targets and host–pathogen interactions has broadened the target reservoir. Future screening efforts should focus on identifying new drugs against unexploited viral and host targets using currently developed assays, and on the development of novel, innovative assays to discover new drugs with novel mechanisms. Innovative screens must be designed to identify compounds that specifically inhibit protein–protein or protein–RNA interactions or other virus/host factor interactions that are crucial for viral replication. Finally, the use of recent viral isolates, increased biocontainment (for highly-pathogenic strains), primary cell lines, and targeted compound libraries must converge in efficient high-throughput primary screens to generate high-content, physiologically-relevant data on compounds with robust antiviral activity.  相似文献   

4.
Importance of the field: Following FDA approval of vorinostat in 2006, several novel HDAC inhibitors (HDACis) have entered clinical trials, and there are numerous published patent applications claiming novel HDACis which were optimized as potential drug candidates, designed for regional or systemic release, and created as dual or multifunctional inhibitors. Given the breadth and depth of recent reporting of novel HDACis, there has emerged a need to review the field from a chemist's perspective in one compact article.

Areas covered in this review: This review provides a summary of published patent applications claiming novel HDACis from 2007 until mid-2009, covering mainly classes I, II and IV anticancer HDACis including those that have recently advanced to the clinic.

What the reader will gain: Readers will rapidly gain an overview of the majority of HDACi scaffolds with representative structure–activity relationships; they will learn how these new compounds were created, how their drug like properties were improved and which companies are the main players in the field.

Take home message: Although competition in this field is intense, the future application of HDACis to treat human disease either as single agents or in combination with existing drugs holds real promise.  相似文献   

5.
Introduction: The members of the family Flaviviridae, including West Nile virus, yellow fever virus and dengue virus, are important human pathogens that are expanding their impact around the globe. The four serotypes of dengue infect 50 – 100 million people each year, yet the only clinical treatment is supportive care to reduce symptoms. Drugs that employ novel inhibition mechanisms and targets are urgently needed to combat the growing incidence of dengue worldwide.

Areas covered: The authors discuss recently discovered flavivirus inhibitors with a focus on antivirals targeting non-enzymatic proteins of the dengue virus lifecycle. Specifically, the authors discuss the flaviviruses, the need for novel inhibitors and the criteria for successful antiviral drug development. Current literature describing new advances in antiviral therapy at each stage of the flavivirus lifecycle (entry, endosomal escape, viral RNA processing and replication, assembly and immune evasion) are evaluated and summarized.

Expert opinion: Overall, the prognosis of flavivirus antiviral drug development is positive: new effective compounds have been discovered and studied. However, repurposing existing compounds and a greater translation to the clinical setting are recommended in order to combat the growing threat of flaviviruses.  相似文献   

6.
Importance of the field: Screening compounds with a cell-based phenotypic approach complements target-based discovery programs because of the opportunity to investigate targets in the context of the cellular milieu and to discover novel targets.

Areas covered in this review: Utilizing a cell-based apoptotic phenotype screen for discovery and optimization of apoptosis inducers and affirming activity as potential anticancer agents in vivo with xenograft models. Subsequently, chemical genetic tools are utilized to identify and validate previously unrecognized cancer targets. Case studies showing the various multidisciplinary approaches utilized for several years are reviewed.

What the reader will gain: The interactive nature of the drug and target discovery processes, and insights that come from integration of cellular biology, medicinal chemistry and animal research.

Take home message: Phenotype proapoptotic screen followed by chemical genetics is useful for anticancer drug research, for the discovery of potential drugs and identification of druggable targets.  相似文献   

7.
Introduction: Invasive fungal infections (IFI) have increased significantly over the past decades. The mortality rate of IFI is alarming, and early and accurate diagnosis is difficult. Most used antifungal drugs are not completely effective due to the development of increasing resistance and undesirable side effects which limit their use. In this scenario, new effective broad spectrum and safer antifungal drugs are urgently needed.

Areas covered: This review summarizes the latest advances in the discovery of new antifungal compounds through the patents granted from 2011 to August 2013. In the 26 patents reviewed here, either derivatives of existing antifungal drugs or novel structures are included. New imidazoles, fluconazole analogs and adducts of azoles with 2,6-di-tert-butyl-4-methylphenol are described. The review also includes chitinases, β-1,3-D-glucan and chitin synthases inhibitors and novel structures.

Expert opinion: In the patents reviewed here, progress has been made to accomplish at least one of the necessary requirements for the development of novel antifungal agents, such as broad spectrum of activity, more favorable pharmacokinetic profile, good bioavailability and low adverse effects. However, in vivo activity, mechanisms of action, drug–drug interactions and other aspects that make a compound a good antifungal agent need further development.  相似文献   

8.
Importance of the field: Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity.

Areas covered in this review: This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000.

What the reader will gain: It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century.

Take home message: The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.  相似文献   

9.
Introduction: Monoamine oxidase (MAO) inhibitors, despite the initial pharmacological interest, are used in clinic for their antidepressant effect and in the management of Parkinson symptoms, due to the established neuroprotective action. Efficacy and tolerability emerged from large-scale and randomized clinical trials.

Areas covered: Thirty-six patents range from April 2012 to September 2014. The number of chemotypes with inhibitory effects on MAO is truly high (40 synthetic compounds, 22 natural products and 6 plant extracts reported and licensed), and the present review is comprehensive of all compounds, which have been patented for their relevance to clinical medicine in this period range (27 patents). Moreover, some of the collected patents deal with new formulations of compounds endowed with MAO inhibitory properties (two patents) and new therapeutic options/drug associations for already known MAO inhibitors (seven patents).

Expert opinion: The patents reported in this review showed that the interest in this field is constant and mainly devoted to the study of selective MAO-B inhibitors, used as drugs for the treatment of neurological disorders. The development of novel human MAO inhibitors took advantage of the discovery of new therapeutic targets (cancer, hair loss, muscle dystrophies, cocaine addiction and inflammation), the recognized role of MAOs as molecular biomarkers and their activity in other tissues.  相似文献   

10.
Introduction: Anemia occurs in various chronic diseases and its treatment is dramatically improved after the appearance of erythropoiesis-stimulating agents (ESA). However, there are several problems regarding the use of ESA including: i) invasiveness, ii) high cost and iii) ESA resistance. Therefore, there is a need to develop small molecule drugs which can improve these problems. Hypoxia-inducible factor (HIF) plays a key role in regulating erythropoietin production. HIF stabilizers, particularly, prolyl hydroxylase domain-containing protein (PHD) inhibitors, have emerged as small molecule-based anti-anemia medicine.

Areas covered: This article discusses the current status of PHD inhibitors and the pros and cons of currently tested methods. Specifically, the article reviews the advantages of structure-based drug design in the development of PHD inhibitors and looks at future perspectives within the field.

Expert opinion: Despite the fact that structure-based drug design has dramatically improved drug discovery, testing on humans is still one of the most time-consuming parts of drug discovery and one that is not accelerated by structural approaches. Exploratory clinical trials, first-in-man studies have emerged as a new strategy for preclinical and clinical development of drugs. Exploratory clinical trials will not only reduce the time and cost in preclinical trials but also provide important information on candidate drug's pharmacological effects in humans. Exploratory clinical trials may be a potential alternative strategy for the drug discovery in the future.  相似文献   

11.
Introduction: The emergence of the highly pathogenic avian influenza (HPAI) H5N1 virus and the recent global circulation of H1N1 swine-origin influenza virus in 2009 have highlighted the need for new anti-influenza therapies. This has been made all the more important with the emergence of antiviral-resistant strains. Recent progress in achieving three-dimensional (3D) crystal structures of influenza viral proteins and efficient tools available for pharmacophore-based virtual screening are aiding us in the discovery and design of new antiviral compounds.

Areas covered: This review discusses pharmacophore modeling as a potential cost-effective and time-saving technology for new drug discovery as an alternative to high-throughput screening. Based on this technical platform, the authors discuss current progress and future prospects for developing novel influenza antivirals against pre-existing or emerging novel targets.

Expert opinion: Although it might be at an infant stage of development, the availability of the 3D crystal structures of influenza viral proteins is expected to accelerate the application of structure-based drug design (SBDD) and pharmacophore modeling. Furthermore, the neuraminidase inhibitor, one of the most successful examples of a SBDD, still receives great attention because of its superb antiviral activities and the resistance of influenza strains to oseltamivir. However, despite much success, pharmacophore-based virtual screening exhibits limited predictive power in hit identification. Further improvements in pharmacophore detection algorithms, proper combinations of in silico methods as well as judicious choosing of compounds are expected to improve the hit rate. With the help of these technologies, the discovery of anti-influenza agents will be accelerated.  相似文献   

12.
Introduction: The outbreak of an influenza pandemic as well as the continued circulation of seasonal influenza highlights the need for effective antiviral therapies. The emergence of drug-resistant strains further necessitates the development of novel antivirals that target the host factors crucial for viral replication.

Area covered: This review summarizes the current understanding of the structural and functional properties of type II transmembrane serine proteases (TTSPs) as a proteolytic activator of influenza virus infection and discusses their potential as antiviral targets. It also explores the experimental evidence accumulated for inhibitors of TTSPs as novel, broad-spectrum antivirals against various influenza virus subtypes. The review also provides an overview of the properties of small molecules, proteins, and peptides that efficiently inhibit the proteolytic activation of the influenza virus.

Expert opinion: TTSPs activate a wide range of influenza virus subtypes including avian influenza viruses, both in vitro and in vivo, via proteolytic cleavage of influenza hemagglutinin (HA) into infection-competent fusogenic conformation. Other viruses such as SARS-, MERS-coronaviruses and human metapneumoviruses may use the same host cell proteases for activation, implying that TTSP inhibition might be a novel strategy for developing broad-spectrum antiviral agents for respiratory viral infections.  相似文献   

13.
ABSTRACT

Introduction: Amyotrophic lateral sclerosis (ALS) is a rapid adult-onset neurodegenerative disorder characterised by the progressive loss of upper and lower motor neurons. Current treatment options are limited for ALS, with very modest effects on survival. Therefore, there is a unmet need for novel therapeutics to treat ALS.

Areas covered: This review highlights the many diverse high-throughput screening platforms that have been implemented in ALS drug discovery. The authors discuss cell free assays including in silico and protein interaction models. The review also covers classical in vitro cell studies and new cell technologies, such as patient derived cell lines. Finally, the review looks at novel in vivo models and their use in high-throughput ALS drug discovery

Expert opinion: Greater use of patient-derived in vitro cell models and development of better animal models of ALS will improve translation of lead compounds into clinic. Furthermore, AI technology is being developed to digest and interpret obtained data and to make ‘hidden knowledge’ usable to researchers. As a result, AI will improve target selection for high-throughput drug screening (HTDS) and aid lead compound optimisation. Furthermore, with greater genetic characterisation of ALS patients recruited to clinical trials, AI may help identify responsive genetic subtypes of patients from clinical trials.  相似文献   

14.
Introduction: The traditional antimicrobial chemotherapy drugs play their effects mostly via bacterial interference with in vivo amino acids, nucleotides, amino sugars and other small molecule synthesis, or interfering the biochemical processes of these small molecules to synthesize nucleic acids, peptidoglycan and other biological macromolecules. In recent years, enzymes with single function in bacterial fatty acid synthetase system have become the genome-driven novel antibacterial drug targets. Among inhibitors of these targets, FabH inhibitors are distinguished, for their target is different from that of existing antibiotics. Therefore, discovery of FabH inhibitors might be a potential orientation to overcome bacterial resistance.

Areas covered: This review summarized new patents and articles published on FabH inhibitors from 2000 to 2012.

Expert opinion: The review gives a brief understanding about the background and development in the area of FabH inhibitors that aims to solve the bacterial resistance problem. This review puts emphasis on some typical small molecules, which participate in the process of FabH inhibition. Overall, the research scopes of antibacterial agents are getting broad. Fatty acid synthase (FAS) pathway has been proved to be a promising target for the therapy. However, claim of novel antibacterial agents with more active and higher specificity is still continued.  相似文献   

15.
Introduction: c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials.

Areas covered: This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups.

Expert opinion: Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectivity required for each particular indication and the development of isoform-selective JNK inhibitors still represents a challenge in JNK drug discovery. Moreover, isoform-selective tool compounds are a prerequisite to a comprehensive understanding of the biology of each JNK isoform. Potential approaches towards such compounds include the design of type-II and type-I1/2 binders, which are absent in the current JNK inhibitor portfolios, as well as the design of novel allosteric inhibitors. Furthermore, covalent inhibition, which already led to the first high-quality probe for JNKs, might be further exploited for gaining selectivity and in vivo efficacy. With regard to a potential therapeutic application, the recently proposed concept of covalent reversible inhibitors is expected to be attractive.  相似文献   

16.
Introduction: Benign prostatic hyperplasia (BPH) is a common medical problem in nearly 80% of geriatric male population severely affecting the quality of life. Several strategies has been suggested in the past for the management of BPH, but only α-blockers and 5α-reductase inhibitors are in clinical use. This review aims to give deep insight into advances in the design and discovery of newer chemical entities as ‘druggable' molecule for the management of BPH.

Areas covered: In this review, the authors cover various classes of drugs that have shown their potential for management of BPH. These drugs include α-adrenergic antagonists, 5α-reductase inhibitors, phytochemical agents, phosphodiesterase inhibitor, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. Literature searches were carried out using Google Scholar, SciFinder and PubMed.

Expert opinion: The exact etiology of BPH is unknown; however, several mechanisms may be involved in the progression of the disease. Beside surgery and watchful waiting, medical therapies to treat BPH include α-adrenergic antagonist and 5α-reductase inhibitors. Phytotherapeutic agents are also used in some countries. Various other chemical classes of drugs are proposed for the treatment of the disease, but none of them have reached the clinic. Many classes of drugs are currently undergoing clinical trials such as phosphodiesterase inhibitors, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. The current need is to develop a potent, efficacious and highly selective drug for the treatment of BPH.  相似文献   

17.
Introduction: The mammalian target of rapamycin (mTOR) is a protein kinase and a key component of the PI3K/Akt/mTOR signaling pathway, and is deregulated in half of all human cancers. Rapamycin and its analogs (rapalogs) are allosteric inhibitors of one functional mTOR complex, mTORC1, and are clinically proven therapeutic agents for the treatment of certain cancers. However, rapalogs mainly partially inhibit mTORC1, while ATP competitive inhibitors suppress both mTORC1 and mTORC2, and therefore may offer advantages in the clinic. Recently, small-molecule inhibitors have entered clinical trials that are mTOR-selective or dual mTOR/PI3K inhibitors.

Areas covered: This review focuses on ATP-competitive mTOR inhibitors that have appeared in the patent literature in 2010. Many inhibitors with new structural motifs have been discovered as well as inhibitors that are related to previously disclosed structures. This review endeavors to put into perspective the diverse structural elements that make up these compounds. Patent applications are covered that include either selective mTOR inhibitors or dual mTOR/PI3K inhibitors.

Expert opinion: The PI3K/mTOR signaling pathway is an exciting target for the development of pharmaceuticals to treat cancer and other diseases, due to the unique combination of a clinically and commercially validated pathway approach (i.e., rapalogs), combined with a biological rationale for further increased efficacy (i.e., ATP-competitive inhibitors). With the number of candidate drugs currently in development or at earlier stages of the drug discovery pipeline, we are bound to see small-molecule inhibitors reach pivotal trials, and hopefully the market, in the near future.  相似文献   

18.
Introduction: Heat shock protein 90 (HSP90) serves as a critical facilitator for oncogene addiction. There has been augmenting enthusiasm in pursuing HSP90 as an anticancer strategy. In fact, since the initial serendipitous discovery that geldanamycin (GM) inhibits HSP90, the field has rapidly moved from proof-of-concept clinical studies with GM derivatives to novel second-generation inhibitors.

Areas covered: The authors highlight the current status of the second-generation HSP90 inhibitors in clinical development. Herein, the authors note the lessons learned from the completed clinical trials of first- and second-generation inhibitors and describe various assays attempting to serve for a more rational implementation of these agents to cancer treatment. Finally, the authors discuss the future perspectives for this promising class of agents.

Expert opinion: The knowledge gained thus far provides perhaps only a glimpse at the potential of HSP90 for which there is still much work to be done. Lessons from the clinical trials suggest that HSP90 therapy would advance at a faster pace if patient selection and tumor pharmacokinetics of these drugs were better understood and applied to their clinical development. It is also evident that combining HSP90 inhibitors with other potent anticancer therapies holds great promise not only due to synergistic antitumor activity but also due to the potential of prolonging or preventing the development of drug resistance.  相似文献   

19.
Introduction: The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds.

Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules.

Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.  相似文献   

20.
Introduction: Tyrosinase inhibitors could have a huge importance in medicine, cosmetics and agriculture. Although many tyrosinase inhibitors are available, they have demonstrated only mild efficacy and safety concerns. This has led to the discovery of novel tyrosinase inhibitors that are more safe, potent and efficacious.

Areas covered: The authors provide an overview of the recent scientific accounts describing the design of new molecules. These compounds belong to different chemical families. The review emphasizes the rationale behind the discovery, the study of structure–activity relationships, the study of the mechanism and kinetic of inhibition and the cellular effect of the inhibitors. The article is based on the literature published from 2007 onward related with the development of synthetic tyrosinase inhibitors.

Expert opinion: Although a great number of tyrosinase inhibitors have been published in the literature, none, as of yet, have reached the potency and safety requirements needed to enter clinical trials. The emergence of new in vitro and in vivo tests will finally allow the arrival of new compounds that are more potent and safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号