首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

Introduction

Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2).

Methods

To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework.

Results

Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049).

Conclusions

The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.  相似文献   

2.

Background:

Although many low-penetrant genetic risk factors for breast cancer have been discovered, knowledge about the effect of multiple risk alleles is limited, especially in women <50 years. We therefore investigated the association between multiple risk alleles and breast cancer risk as well as individual effects according to age-approximated pre- and post-menopausal status.

Methods:

Ten previously described breast cancer-associated single-nucleotide polymorphisms (SNPs) were analysed in a joint European biobank-based study comprising 3584 breast cancer cases and 5063 cancer-free controls. Genotyping was performed using MALDI-TOF mass spectrometry, and odds ratios were estimated using logistic regression.

Results:

Significant associations with breast cancer were confirmed for 7 of the 10 SNPs. Analysis of the joint effect of the original 10 as well as the statistically significant 7 SNPs (rs2981582, rs3803662, rs889312, rs13387042, rs13281615, rs3817198 and rs981782) found a highly significant trend for increasing breast cancer risk with increasing number of risk alleles (P-trend 5.6 × 10−20 and 1.5 × 10−25, respectively). Odds ratio for breast cancer of 1.84 (95% confidence interval (CI): 1.59–2.14; 10 SNPs) and 2.12 (95% CI: 1.80–2.50; 7 SNPs) was seen for the maximum vs the minimum number of risk alleles. Additionally, one of the examined SNPs (rs981782 in HCN1) had a protective effect that was significantly stronger in premenopausal women (P-value: 7.9 × 10−4).

Conclusion:

The strongly increasing risk seen when combining many low-penetrant risk alleles supports the polygenic inheritance model of breast cancer.  相似文献   

3.

Introduction

The female sex steroids estrogen and progesterone are important in breast cancer etiology. It therefore seems plausible that variation in genes involved in metabolism of these hormones may affect breast cancer risk, and that these associations may vary depending on menopausal status and use of hormone therapy.

Methods

We conducted a nested case-control study of breast cancer in the California Teachers Study cohort. We analyzed 317 tagging single nucleotide polymorphisms (SNPs) in 24 hormone pathway genes in 2746 non-Hispanic white women: 1351 cases and 1395 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by fitting conditional logistic regression models using all women or subgroups of women defined by menopausal status and hormone therapy use. P values were adjusted for multiple correlated tests (PACT).

Results

The strongest associations were observed for SNPs in SLCO1B1, a solute carrier organic anion transporter gene, which transports estradiol-17β-glucuronide and estrone-3-sulfate from the blood into hepatocytes. Ten of 38 tagging SNPs of SLCO1B1 showed significant associations with postmenopausal breast cancer risk; 5 SNPs (rs11045777, rs11045773, rs16923519, rs4149057, rs11045884) remained statistically significant after adjusting for multiple testing within this gene (PACT = 0.019-0.046). In postmenopausal women who were using combined estrogen-progestin therapy (EPT) at cohort enrollment, the OR of breast cancer was 2.31 (95% CI = 1.47-3.62) per minor allele of rs4149013 in SLCO1B1 (P = 0.0003; within-gene PACT = 0.002; overall PACT = 0.023). SNPs in other hormone pathway genes evaluated in this study were not associated with breast cancer risk in premenopausal or postmenopausal women.

Conclusions

We found evidence that genetic variation in SLCO1B1 is associated with breast cancer risk in postmenopausal women, particularly among those using EPT.  相似文献   

4.

Background

The fibroblast growth factor (FGF) receptor pathway is activated in many tumors. FGFR2 has been identified as a breast cancer susceptibility gene. Common variation in other FGF receptors might also affect breast cancer risk. We carried out a case-control study to investigate associations of variants in FGFR3 and FGFR4 with breast cancer in women from Heilongjiang Province.

Methods

SNP rs2234909 and rs3135848 in FGFR3 and rs1966265 and rs351855 in FGFR4 were successfully genotyped in 747 breast cancer patients and 716 healthy controls using the SNaPshot method. The associations between SNPs and breast cancer were examined by logistic regression. The associations between SNPs and disease characteristics were examined by chi-square tests or one-way ANOVA as needed.

Results

The minor alleles of rs1966265 and rs351855 in FGFR4 were strongly associated with breast cancer in the population, with odds ratios of 1.335 (95%CI = 1.154-1.545) and 1.364 (95%CI = 1.177-1.580), respectively. However, no significant associations were detected between other SNPs and breast cancer. Analyses of the disease characteristics showed that SNP rs351855 was associated with lymph-node-positive breast cancer with a dose-dependent effect of the minor allele (P = 0.008).

Conclusions

SNPs rs1966265 and rs351855 in FGFR4 were associated with breast cancer in a northern Chinese population.  相似文献   

5.
《British journal of cancer》2009,101(12):2048-2054

Background:

In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.

Methods:

We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach.

Results:

We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers.

Conclusion:

This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.  相似文献   

6.

Purpose

Genetic variation in fibroblast growth factor receptor 2 (FGFR2) is a newly described risk factor for breast cancer. This study aimed to evaluate the association of four single nucleotide polymorphisms (SNPs) in FGFR2 with breast cancer in Han Chinese women.

Methods

Two hundred three women with breast cancer and 200 breast cancer-free age-matched controls were selected. Four SNPs (rs2981579, rs1219648, rs2420946, and rs2981582) and their haplotypes were analyzed to test for their association with breast cancer susceptibility. The presence of the four FGFR2 SNPs was determined by polymerase chain reaction-restriction fragment length polymorphism analysis.

Results

A statistically significant difference was observed in the frequency of rs2981582 in the FGFR2 gene (p<0.05) between case and control groups. In subjects stratified by menopausal status, rs2981582 TT, rs2420946 AA, and rs1219648 CC were significantly associated with the risk of breast cancer in postmenopausal subjects, but no significant associations between these four SNPs and the risk of breast cancer were identified in premenopausal subjects. Further, there was no significant association between hormone receptor status (estrogen receptor and progesterone receptor) and breast cancer risk. Six common (> 3%) haplotypes were identified. Three of these haplotypes, CGTC (odds ratio [OR], 0.613; 95% confidence interval [CI], 0.457-0.82; p=0.001), TGTC (OR, 6.561; 95% CI, 2.064-20.854; p<0.001), and CATC (OR, 12.645; 95% CI, 1.742-91.799; p=0.001) were significantly associated with breast cancer risk.

Conclusion

Our findings indicated that the SNP rs2981582 and haplotypes CGTC, TGTC, and CATC in FGFR2 may be associated with an increased risk of breast cancer in Han Chinese women.  相似文献   

7.

Background.

Several single-nucleotide polymorphisms (SNPs) associated with breast cancer risk have been identified through genome-wide association studies (GWAS). We investigated whether eight risk SNPs identified in GWAS were associated with breast cancer disease-free survival (DFS) and overall survival (OS) rates.

Patients and Methods.

A cohort of 739 white women with early-stage breast cancer was genotyped for eight GWAS-identified SNPs (rs2981582, rs1219648 [FGFR2], rs3803662, rs12443621, rs8051542 [TOX3], rs999737 [RAD51L1], rs6504950 [17q23], and rs4973768 [3p24]). Relationships between SNPs and breast cancer outcomes were evaluated using Cox proportional hazard regression models. The cumulative effects of SNPs on breast cancer outcomes were assessed by computing the number of at-risk genotypes.

Results.

At a median follow-up of 121 months (range: 188–231 months) for survivors, 237 deaths (32%) and 186 breast cancer events (25%) were identified among the 739 patients. After adjusting for age, clinical stage, and treatment, rs12443621 (16q12; p = .03) and rs6504950 (17q23; p = .008) were prognostic for OS but not DFS. A higher risk for death was also found in the multivariable analysis of patients harboring three or four at-risk genotypes of the GWAS SNPs compared to patients carrying two or less at-risk genotypes (hazard ratio: 1.60, 95% confidence interval: 1.23–2.24; p = .0008).

Conclusion.

The study results suggest that previously identified breast cancer risk susceptibility loci, rs12443621 (16q12) and rs6504950 (17q23), may influence breast cancer prognosis or comorbid conditions associated with overall survival. The precise molecular mechanisms through which these risk SNPs, as well as others that were not included in the analysis, influence clinical outcomes remain to be determined.  相似文献   

8.

Introduction

We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years.

Methods

We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.

Results

We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (Ptrend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (Ptrend = 0.005) but not cases (Ptrend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (Phet = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; Ptrend = 0.002) but not for those who had their menarche age ≤11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; Ptrend = 0.29).

Conclusions

To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.  相似文献   

9.
《British journal of cancer》2014,110(4):1088-1100

Background:

Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.

Methods:

Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.

Results:

Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02–1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.

Conclusion:

Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2.  相似文献   

10.

Background:

The influence of human prolactin (hPRL) on the development of breast and other types of cancer is well established. Little information, however, exists on the effects of hPRL on squamous cell carcinomas of the head and neck (SCCHNs).

Methods:

In this study, we evaluated prolactin receptor (PRLR) expression in SCCHN cell lines and assessed by immunohistochemistry the expression in 89 patients with SCCHNs. The PRLR expression was correlated with clinicopathological characteristics as well as clinical outcome. The effect of hPRL treatment on tumour cell growth was evaluated in vitro.

Results:

Immunoreactivity for PRLR was observed in 85 out of 89 (95%) tumours. Multivariate COX regression analysis confirmed high levels of PRLR expression (>25% of tumour cells) to be an independent prognostic factor with respect to overall survival (HR=3.70, 95% CI: 1.14–12.01; P=0.029) and disease-free survival (P=0.017). Growth of PRLR-positive cancer cells increased in response to hPRL treatment.

Conclusion:

Our data indicate that hPRL is an important growth factor for SCCHN. Because of PRLR expression in a vast majority of tumour specimens and its negative impact on overall survival, the receptor represents a novel prognosticator and a promising drug target for patients with SCCHNs.  相似文献   

11.

Background:

Previous prospective studies have found an association between prolactin (PRL) levels and increased risk of breast cancer. Using data from a population-based breast cancer case–control study conducted in two cities in Poland (2000–2003), we examined the association of PRL levels with breast cancer risk factors among controls and with tumour characteristics among the cases.

Methods:

We analysed PRL serum levels among 773 controls without breast cancer matched on age and residence to 776 invasive breast cancer cases with available pretreatment serum. Tumours were centrally reviewed and prepared as tissue microarrays for immunohistochemical analysis. Breast cancer risk factors, assessed by interview, were related to serum PRL levels among controls using analysis of variance. Mean serum PRL levels by tumour characteristics are reported. These associations also were evaluated using polytomous logistic regression.

Results:

Prolactin levels were associated with nulliparity in premenopausal (P=0.05) but not in postmenopausal women. Associations in postmenopausal women included an inverse association with increasing body mass index (P=0.0008) and direct association with use of recent/current hormone therapy (P=0.0006). In case-only analyses, higher PRL levels were more strongly associated with lobular compared with ductal carcinoma among postmenopausal women (P=0.02). Levels were not different by tumour size, grade, node involvement or oestrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2 status.

Conclusions:

Our analysis demonstrates that PRL levels are higher among premenopausal nulliparous as compared with parous women. Among postmenopausal women, levels were higher among hormone users and lower among obese women. These results may have value in understanding the mechanisms underlying several breast cancer risk factor associations.  相似文献   

12.
Genome-wide association studies (GWAS) have identified various genetic susceptibility loci for breast cancer based mainly on European-ancestry populations. Differing linkage disequilibrium patterns exist between European and Asian populations, and thus GWAS-identified single nucleotide polymorphisms (SNPs) in one population may not be of significance in another population. In order to explore the role of breast cancer susceptibility variants in a Chinese population of Southern Chinese descent, we analyzed 22 SNPs for 1,191 breast cancer cases and 1,534 female controls. Associations between the SNPs and clinicopathological features were also investigated. In addition, we evaluated the combined effects of associated SNPs by constructing risk models. Eight SNPs were associated with an elevated breast cancer risk. Rs2046210/6q25.1 increased breast cancer risk via an additive model [per-allele odds ratio (OR)?=?1.43, 95?% confidence interval (CI)?=?1.26?C1.62], and was associated with estrogen receptor (ER)-positive (per-allele OR?=?1.39, 95?% CI?=?1.20?C1.61) and ER-negative (per-allele OR?=?1.55, 95?% CI?=?1.28?C1.89) disease. Rs2046210 was also associated with stage 1, stage 2, and stage 3 disease, with per-allele ORs of 1.38 (1.14?C1.68), 1.48 (1.25?C1.74), and 1.58 (1.28?C1.94), respectively. Four SNPs mapped to 10q26.13/FGFR2 were associated with increased breast cancer risk via an additive model with per-allelic risks (95?% CI) of 1.26 (1.12?C1.43) at rs1219648, 1.22 (1.07?C1.38) at rs2981582, 1.21 (1.07?C1.36) at rs2981579, and 1.18 (1.04?C1.35) at rs11200014. Variants of rs7696175/TLR1, TLR6, rs13281615/8q24, and rs16886165/MAP3K1 were also associated with increased breast cancer risk, with per-allele ORs (95?% CI) of 1.16 (1.00?C1.34), 1.15 (1.02?C1.29), and 1.15 (1.01?C1.29), respectively. Five SNPs associated with breast cancer risk predominantly among ER-positive tumors (rs2981582/FGFR2, rs4415084/MRPS30, rs1219648/FGFR2, rs2981579/FGFR2, and rs11200014/FGFR2). Among our Chinese population, the risk of developing breast cancer increased by 90?% for those with a combination of 6 or more risk alleles, compared to patients with ??3 risk alleles.  相似文献   

13.

Introduction

Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.

Methods

We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort approach.

Results

The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17 to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status.

Conclusions

The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.  相似文献   

14.

Introduction

The relationship between circulating prolactin and invasive breast cancer has been investigated previously, but the association between prolactin levels and in situ breast cancer risk has received less attention.

Methods

We analysed the relationship between pre-diagnostic prolactin levels and the risk of in situ breast cancer overall, and by menopausal status and use of postmenopausal hormone therapy (HT) at blood donation. Conditional logistic regression was used to assess this association in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, including 307 in situ breast cancer cases and their matched control subjects.

Results

We found a significant positive association between higher circulating prolactin levels and risk of in situ breast cancer among all women [pre-and postmenopausal combined, ORlog2 = 1.35 (95% CI 1.04-1.76), Ptrend = 0.03]. No statistically significant heterogeneity was found between prolactin levels and in situ cancer risk by menopausal status (Phet = 0.98) or baseline HT use (Phet = 0.20), although the observed association was more pronounced among postmenopausal women using HT compared to non-users (Ptrend = 0.06 vs Ptrend = 0.35). In subgroup analyses, the observed positive association was strongest in women diagnosed with in situ breast tumors <4 years compared to ≥4 years after blood donation (Ptrend = 0.01 vs Ptrend = 0.63; Phet = 0.04) and among nulliparous women compared to parous women (Ptrend = 0.03 vs Ptrend = 0.15; Phet = 0.07).

Conclusions

Our data extends prior research linking prolactin and invasive breast cancer to the outcome of in situ breast tumours and shows that higher circulating prolactin is associated with increased risk of in situ breast cancer.  相似文献   

15.

Introduction

Oestrogen exposure is a central factor in the development of breast cancer. Oestrogen receptor alpha (ESR1) is the main mediator of oestrogen effect in breast epithelia and has also been shown to be activated by epidermal growth factor (EGF). We sought to determine if common genetic variation in the ESR1 and EGF genes affects breast cancer risk, tumour characteristics or breast cancer survival.

Methods

We genotyped 157 single nucleotide polymorphisms (SNPs) in ESR1 and 54 SNPs in EGF in 92 Swedish controls and selected haplotype tagging SNPs (tagSNPs) that could predict both single SNP and haplotype variation in the genes with an R2 of at least 0.8. The tagSNPs were genotyped in 1,590 breast cancer cases and 1,518 controls, and their association with breast cancer risk, tumour characteristics and survival were assessed using unconditional logistic regression models, Cox proportional hazard models and haplotype analysis.

Results

The single tagSNP analysis did not reveal association evidence for breast cancer risk, tumour characteristics, or survival. A multi-locus analysis of five adjacent tagSNPs suggested a region in ESR1 (between rs3003925 and rs2144025) for association with breast cancer risk (p = 0.001), but the result did not withstand adjustment for multiple comparisons (p = 0.086). A similar region was also implicated by haplotype analyses, but its significance needs to be verified by follow-up analysis.

Conclusion

Our results do not support a strong association between common variants in the ESR1 and EGF genes and breast cancer risk, tumour characteristics or survival.  相似文献   

16.
《British journal of cancer》2009,101(8):1456-1460

Background:

The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance.

Methods:

To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework.

Results:

No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association.

Conclusion:

There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers.  相似文献   

17.

Introduction

Some studies have suggested that night work may be associated with an increased risk of breast cancer in nurses. We aimed to explore the role of circadian gene polymorphisms in the susceptibility to night work-related breast cancer risk.

Methods

We conducted a nested case-control study of Norwegian nurses comprising 563 breast cancer cases and 619 controls within a cohort of 49,402 Norwegian nurses ages 35 to 74 years. We studied 60 single-nucleotide polymorphisms (SNPs) in 17 genes involved in the regulation of the circadian rhythm in cases and controls. The data were analyzed in relation to the two exposure variables "maximum number of consecutive night shifts ever worked" and "maximum number of consecutive night shifts worked for at least 5 years." The odds of breast cancer associated with each SNP was calculated in the main effects analysis and in relation to night shift work. The statistically significant odds ratios were tested for noteworthiness using two Bayesian tests: false positive report probability (FPRP) and Bayesian false discovery probability (BFDP).

Results

In the main effects analysis, CC carriers of rs4238989 and GG carriers of rs3760138 in the AANAT gene had increased risk of breast cancer, whereas TT carriers of BMAL1 rs2278749 and TT carriers of CLOCK rs3749474 had reduced risk. The associations were found to be noteworthy using both the FPRP and BFDP tests. With regard to the effect of polymorphisms and night work, several significant associations were observed. After applying FPRP and BFDP in women with at least four night shifts, an increased risk of breast cancer was associated with variant alleles of SNPs in the genes AANAT (rs3760138, rs4238989), BMAL1 (rs2290035, rs2278749, rs969485) and ROR-b (rs3750420). In women with three consecutive night shifts, a reduced risk of breast cancer was associated with carriage of variant alleles of SNPs in CLOCK (rs3749474), BMAL1 (rs2278749), BMAL2 (rs2306074), CSNK1E (rs5757037), NPAS2 (rs17024926), ROR-b (rs3903529, rs3750420), MTNR1A (rs131113549) and PER3 (rs1012477).

Conclusions

Significant and noteworthy associations between several polymorphisms in circadian genes, night work and breast cancer risk were found among nurses who had worked at least three consecutive night shifts.  相似文献   

18.

Introduction

Previous studies showed that higher testosterone levels are associated with greater risk of breast cancer in premenopausal women, but the literature is scant and inconsistent.

Methods

In a prospective nested case-control study of 104 premenopausal women with incident breast cancer and 225 matched controls, all characterized by regular menstrual cycles throughout their lifetime, we measured the concentration of estradiol, total and free testosterone (FT), progesterone, sex hormone-binding globulin (SHBG), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in blood samples collected on days 20 through 24 of their cycles.

Results

In logistic regression models, the multivariate odds ratios (ORs) of invasive breast cancer for women in the highest tertile of circulating FT compared with the lowest was 2.43 (95% confidence interval (95% CI), 1.15 to 5.10; Ptrend = 0.03), whereas for total testosterone, the association had the same direction but was not statistically significant (OR, 1.27; 95% CI, 0.62 to 2.61; Ptrend = 0.51). Endogenous progesterone was not statistically associated with breast cancer (OR, 1.16; 95% CI, 0.60 to 2.27; Ptrend = 0.75), nor were the other considered hormones.

Conclusions

Consistent with previous prospective studies in premenopausal women and our own earlier investigation, we observed that higher levels of FT are positively associated with breast cancer risk in women with regular menstrual cycles throughout their lifetimes. No evidence of risk was found associated with the other endogenous sex steroids.  相似文献   

19.

Introduction

Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene approach, based on knowledge of gene functions, or the development of large genome-wide association studies. In this study, we evaluated 24 SNPs tagged to 14 candidate genes derived through a novel approach that analysed gene expression differences to prioritise candidate modifier genes for association studies.

Methods

We successfully genotyped 24 SNPs in a cohort of up to 4,724 BRCA1 and 2,693 BRCA2 female mutation carriers from 15 study groups and assessed whether these variants were associated with risk of breast cancer in BRCA1 and BRCA2 mutation carriers.

Results

SNPs in five of the 14 candidate genes showed evidence of association with breast cancer risk for BRCA1 or BRCA2 carriers (P < 0.05). Notably, the minor alleles of two SNPs (rs7166081 and rs3825977) in high linkage disequilibrium (r2 = 0.77), located at the SMAD3 locus (15q22), were each associated with increased breast cancer risk for BRCA2 mutation carriers (relative risk = 1.25, 95% confidence interval = 1.07 to 1.45, Ptrend = 0.004; and relative risk = 1.20, 95% confidence interval = 1.03 to 1.40, Ptrend = 0.018).

Conclusions

This study provides evidence that the SMAD3 gene, which encodes a key regulatory protein in the transforming growth factor beta signalling pathway and is known to interact directly with BRCA2, may contribute to increased risk of breast cancer in BRCA2 mutation carriers. This finding suggests that genes with expression associated with BRCA1 and BRCA2 mutation status are enriched for the presence of common genetic modifiers of breast cancer risk in these populations.  相似文献   

20.

Introduction

Levels of insulin-like growth factor (IGF)-I and its main binding protein (IGFBP-3) have been associated with breast cancer risk among premenopausal women. However, associations of IGFBP-3 levels with breast cancer risk have been inconsistent, possibly due to the different predominant forms of circulating IGFBP-3 (intact versus fragmented) that were measured in these studies. Here, we examine the association of breast cancer risk factors with intact and total IGFBP-3 levels.

Methods

This cross-sectional study includes 737 premenopausal women recruited at screening mammography. Plasma intact and total IGFBP-3 and IGF-I levels were measured by enzyme-linked immunosorbent assay methods. Percent and absolute breast density were estimated using a computer-assisted method. The associations were evaluated using generalized linear models and Pearson (r) or Spearman (rs) partial correlation coefficients.

Results

Means ± standard deviations of intact and total IGFBP-3 levels (ng/mL) were 1,044 ± 234 and 4,806 ± 910, respectively. Intact and total IGFBP-3 levels were correlated with age and smoking. Levels of intact IGFBP-3 were negatively correlated with waist-to-hip ratio (WHR) (r = -0.128; P = 0.0005), parity (rs = -0.078; P = 0.04), and alcohol intake (r = -0.137; P = 0.0002) and positively correlated with energy intake (r = 0.075; P = 0.04). In contrast, total IGFBP-3 levels were positively correlated with WHR (r = 0.115; P = 0.002), parity (rs = 0.089; P = 0.02), body mass index (BMI) (r = 0.115; P = 0.002), physical activity (r = 0.118; P = 0.002), and IGF-I levels (r = 0.588; P < 0.0001) and negatively correlated with percent or absolute breast density (r = -0.095; P = 0.01 and r = -0.075; P = 0.04, respectively).

Conclusion

Our data show that associations of some breast cancer risk factors with intact levels of IGFBP-3 are different from those with total (intact and fragmented) IGFBP-3 levels. These findings suggest that different molecular forms of IGFBP-3 may bear different relations to premenopausal breast cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号