首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Severe respiratory syncytial virus (RSV)-induced disease is associated with childhood asthma and atopy. We combined models of allergen sensitization and RSV infection to begin exploring the immunologic interactions between allergic and virus-induced airway inflammation and its impact on airway hypersensitivity. Airway resistance was measured after methacholine challenge in tracheally intubated mice by whole body plethysmography. Lung inflammation was assessed by bronchoalveolar lavage (BAL) and histopathology. RSV infection alone did not cause significant airway hyperresponsiveness (AHR) to methacholine. Ovalbumin (OVA)-induced AHR lasted only a few days past the discontinuance of OVA aerosol in mice that were ovalbumin sensitized and mock infected. In contrast, OVA-sensitized mice infected with RSV during the OVA aerosol treatments (OVA/RSV) had AHR for more than 2 weeks after infection. However, 2 weeks after either RSV or mock infection, OVA/RSV mice had significantly more lymphocytes found during BAL than OVA mice, whereas the OVA and OVA/RSV groups had the same number of eosinophils. Histopathologic analysis confirmed an increased inflammation in the lungs of OVA/RSV mice compared with OVA mice. In addition, OVA/RSV mice had a more widespread distribution of mucus in their airways with increased amounts of intraluminal mucus pools compared with the other groups. Thus, prolonged AHR in RSV-infected mice during ovalbumin-sensitization correlates with increased numbers of lymphocytes in BAL fluid, increased lung inflammation, and mucus deposition in the airways, but not with airway eosinophilia. A further understanding of the immunologic consequences of combined allergic and virus-induced airway inflammation will impact the management of diseases associated with airway hyperreactivity. J. Med. Virol. 57:186–192, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic Th2 immune response, characterised by production of interleukin (IL)-4, IL-5, and IL-13, and eosinophilic inflammation. This enhancement of the Th2 response occurs simultaneously with a strong RSV-induced Th1 cytokine response (IL-12 and IFN-gamma). The present study investigated whether IFN-gamma and IL-12 are critically involved in this RSV-enhanced OVA allergy. Therefore, IFN-gammaR- and IL-12-deficient mice (both on a 129/Sv/Ev background) were sensitised and challenged with ovalbumin (OVA) and infected with RSV during the OVA challenge period. Neither gene deletion affected the development of ovalbumin-induced allergic inflammation in mice. However, when OVA-allergic IFN-gammaR deficient mice were infected with RSV, an increased pulmonary eosinophilic infiltrate and increased IL-4 and IL-13 mRNA expression in lung tissue were observed compared with identically treated wild-type mice. In contrast, deficiency of IL-12 did not aggravate the Th2 immune and inflammatory response in OVA/RSV-treated mice, compared with wild-type. In conclusion, the virus-induced IFN-gamma response diminishes the Th2 inflammatory response during OVA allergy but fails to prevent totally the enhancement of the OVA allergy by RSV. In contrast, IL-12 is not involved in inhibiting nor increasing the RSV-enhanced allergy in 129/Sv/Ev mice.  相似文献   

3.
BACKGROUND: Recurrent and subclinical viral respiratory tract infections could immunologically exacerbate allergic airway inflammation. However, the most appropriate treatment for virus-induced asthma exacerbation is yet to be established. The effects of glucocorticoids in virus-induced acute asthma are controversial. OBJECTIVE: To determine the effects of representative anti-inflammatory therapies for asthma--glucocorticoids and leukotriene receptor antagonists (LTRAs)--in mite allergen-sensitized and repeatedly low-grade respiratory syncytial virus (RSV)--infected mice. METHODS: Dermatophagoides farinae-sensitized mice were inoculated twice with low-grade RSV and subcutaneously injected with either a glucocorticoid or an LTRA for 4 consecutive days. Lung inflammation, cytokine profiles, LT production, and viral RNA in lung tissues were compared in 5 groups of 8 mice each: controls, D farinae allergen sensitized, D farinae sensitized and RSV infected, D farinae sensitized and RSV infected with dexamethasone, and D farinae sensitized and RSV infected with pranlukast, an LTRA. RESULTS: Allergic airway inflammation in D farinae mice was significantly enhanced by recurrent and low-grade RSV infections (RLRIs). The glucocorticoid attenuated allergic airway inflammation, which was associated with interleukin 5 (IL-5) and interferon-gamma (IFN-gamma) suppression in lung-draining lymph nodes without affecting viral quantity. The LTRA also attenuated allergic airway inflammation in D farinae-RSV mice with concomitant inhibition of IL-5 but not IFN-gamma. Dermatophagoides farinae allergen sensitization significantly increased LTs in the airway, whereas RLRIs did not further enhance LT production. CONCLUSIONS: Glucocorticoids and LTRAs significantly inhibit RLRI-induced exacerbation of allergic airway inflammation by distinct pathways. Dexamethasone suppressed nonspecific cytokines, whereas viral RNA did not increase via suppression of immunity. In contrast, pranlukast specifically inhibited IL-5 but not IFN-gamma.  相似文献   

4.
BACKGROUND: TNF is thought to contribute to airway hyperreactivity (AHR) and airway inflammation in asthma. However, studies with TNF-deficient or TNF receptor-deficient mice have not produced a clear picture of the role of TNF in the AHR associated with allergic inflammation in the mouse. OBJECTIVE: We used a genetic approach to investigate the contributions of TNF to antigen-induced AHR and airway inflammation in mice on the C57BL/6 background. METHODS: We analyzed features of airway allergic inflammation, including antigen-induced AHR, in C57BL/6 wild-type and TNF(-/-) mice, using 2 different methods for sensitizing the mice to ovalbumin (OVA). RESULTS: In mice sensitized to OVA administered with the adjuvant aluminum hydroxide (alum), which develop IgE-independent and mast cell-independent allergic inflammation and AHR, we found no significant differences in OVA-induced AHR in C57BL/6-TNF(-/-) versus wild-type mice. By contrast, in mice sensitized to OVA without alum, which develop allergic inflammation that is significantly mast cell-dependent, C57BL/6-TNF(-/-) mice exhibited significant reductions versus wild-type mice in OVA-induced AHR to methacholine; numbers of lymphocytes, neutrophils, and eosinophils in bronchoalveolar lavage fluid; levels of myeloperoxidase, eosinophil peroxidase, and the cytokines IL-4, IL-5, and IL-17 in lung tissue; and histologic evidence of pulmonary inflammation. CONCLUSION: In pulmonary allergic inflammation induced in mice immunized with OVA without alum, TNF significantly contributes to several features of the response, including antigen-induced inflammation and AHR. CLINICAL IMPLICATIONS: Our findings in mice support the hypothesis that TNF can promote the allergic inflammation and AHR associated with asthma.  相似文献   

5.
BACKGROUND: Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response, characterized by the production of IL-4, IL-5, and IL-13, and inflammatory infiltrates. However, it is unclear whether the RSV-enhanced respiratory allergic response is a result of non-specific virus-induced damage of the lung, or virus-specific immune responses. OBJECTIVE: In the present study we investigated whether RSV, pneumonia virus of mice (PVM) and influenza A virus similarly affect the allergic response. METHODS: BALB/c mice were sensitized and challenged with ovalbumin (OVA), and inoculated with virus during the challenge period. Pulmonary inflammation, lung cytokine mRNA responses, and IgE production in serum were assessed after the last OVA-challenge. RESULTS: Like RSV, PVM enhanced the OVA-induced pulmonary IL-4, IL-5, and IL-13 mRNA expression, which was associated with enhanced perivascular inflammation. In addition, PVM increased the influx of eosinophils in lung tissue. In contrast, influenza virus decreased the Th2 cytokine mRNA expression in the lungs. However, like PVM, influenza virus enhanced the pulmonary eosinophilic infiltration in OVA-allergic mice. CONCLUSION: The Paramyxoviruses RSV and PVM both are able to enhance the allergic Th2 cytokine response and perivascular inflammation in BALB/c mice, while the Orthomyxovirus influenza A is not.  相似文献   

6.
BACKGROUND: In naive rodents, repeated exposure to aerosolized antigen induces suppression of the Th2 response to the antigen. We hypothesized that more prolonged exposure of established asthma model to antigen aerosols may downregulate asthmatic phenotype. METHODS: After establishing an ovalbumin (OVA)-induced asthma model, mice were further exposed to OVA (prolonged exposure group) or phosphate-buffered saline (positive controls) 3 days per week for 6 weeks. During week 7, the mice of both groups were finally challenged with OVA. RESULTS: Prolonged OVA exposure resulted in marked suppression of serum OVA-specific immunoglobulin E (IgE) antibody levels, eosinophilia of the airway, and airway hyperresponsiveness (AHR). However, airway remodeling characterized by goblet cell hyperplasia and airway fibrosis was observed to the same degree in both groups. These effects were accompanied by diminished production of Th2 cytokines such as interleukin-4 (IL-4), IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and cultured supernatant of splenocytes. Furthermore, prolonged exposure markedly increased IL-12 levels in BALF. CONCLUSIONS: Prolonged antigen exposure has inhibitory effects on eosinophilic inflammation, AHR and IgE response to antigen, but not on airway remodeling, presumably via inhibition of Th2 cytokines and increased IL-12 production in the lungs.  相似文献   

7.
BACKGROUND: The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. OBJECTIVE: To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. METHODS: Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. RESULTS: AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. CONCLUSIONS: Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice (elevated IL-4 and IL-13). Thus, the airway response to inflammation is lessened in ageing animals, and may represent age-associated events leading to different phenotypes in response to antigen provocation.  相似文献   

8.
BACKGROUND: IL-13 is a central mediator of allergen-induced airway hyperresponsiveness (AHR), but its role in respiratory syncytial virus (RSV)-induced AHR is not defined. The combination of allergen exposure and RSV infection is known to increase AHR and lung inflammation, but whether IL-13 regulates this increase is similarly not known. OBJECTIVE: Our objective was to determine the role of RSV infection and IL-13 on airway responsiveness and lung inflammation on sensitized and challenged mice. METHODS: Using a murine model of RSV infection and allergen exposure, we examined the role of IL-13 in the development of AHR and lung inflammation in IL-13 knockout mice, as well as using a potent IL-13 inhibitor (IL-13i). Mice were sensitized and challenged to allergen, and 6 days after the last challenge, they were infected with RSV. IL-13 was inhibited using an IL-13 receptor alpha(2)-human IgG fusion protein. AHR to inhaled methacholine was measured 6 days after infection, as was bronchoalveolar lavage fluid and lung inflammatory and cytokine responses. RESULTS: RSV-induced AHR was unaffected by the IL-13i, despite prevention of goblet cell hyperplasia. Similar results were seen in IL-13-deficient mice. In sensitized and challenged mice, RSV infection significantly increased AHR, and after IL-13i treatment, AHR was significantly reduced, but to the levels seen in RSV-infected mice alone. CONCLUSIONS: These results indicate that despite some similarities, the mechanisms leading to AHR induced by RSV are different from those that follow allergen sensitization and challenge. Because IL-13 inhibition is effective in preventing the increases in AHR and mucus production in sensitized and challenged mice infected with RSV, IL-13i could play an important role in preventing the consequences of viral infection in patients with allergic asthma.  相似文献   

9.
Interleukin (IL)-9 is a T-cell-derived cytokine with pleiotropic activities on T helper 2 cells, B cells, and mast cells. IL-9 may therefore play an important role in the development of allergic pulmonary inflammatory diseases. In this study, an antimouse IL-9 (anti-mIL-9) antibody (Ab) was evaluated against pulmonary eosinophilia, histopathologic changes in lung tissues, serum immunoglobulin (Ig) E levels, and airway hyperresponsiveness (AHR) to methacholine in mice sensitized and challenged with ovalbumin (OVA). Additionally, steady-state levels of IL-4, IL-5, IL-13, and interferon-gamma messenger RNA (mRNA) in the lungs were measured. The anti-mIL-9 Ab (200 microg/mouse, intraperitoneally) was given as either four doses during the sensitization period or as a single dose before OVA challenge. Sensitized mice challenged with OVA displayed marked pulmonary eosinophilia, epithelial damage, and goblet cell hyperplasia. OVA challenge also increased mRNA levels of IL-4, IL-5, and IL-13 in the lungs. AHR was also increased twofold in sensitized, challenged mice. Treatment of sensitized, challenged mice with four doses of anti-mIL-9 Ab significantly reduced pulmonary eosinophilia, serum IgE levels, goblet cell hyperplasia, airway epithelial damage, and AHR, but had no effect on IL-4, IL-5, and IL-13 mRNA levels in the lungs. A single dose of the antibody was ineffective on all measures. These results indicate that an antibody to mIL-9 inhibits the development of allergic pulmonary inflammation and AHR in mice.  相似文献   

10.
BACKGROUND: Th2 lymphocyte responses are associated with inflammation and disease during allergic responses. Exposure to particular environmental factors during the expression of allergy could result in more pronounced Th2-like immune responses and more severe disease. One factor might be a respiratory virus infection. OBJECTIVE: The aim of our study was to investigate the influence of respiratory syncytial virus (RSV) infection on the expression of ovalbumin (OVA)-induced allergy in BALB/c mice. METHODS: We determined OVA-specific IgE in serum, cytokine profiles and histopathological lesions in lungs of OVA-allergic mice after RSV infection. RESULTS: OVA sensitization and challenge induced OVA-specific IgE in serum, Th2 cytokine mRNA expression, and mononuclear and eosinophilic inflammation in the lungs. RSV inoculation during the challenge period enhanced OVA-induced IL-4 and IL-5 mRNA expression in lung tissue. RSV further enhanced the OVA-induced hypertrophy of mucous cells and eosinophilic infiltration in lung tissue. Surprisingly, RSV infection decreased Th2 cytokine secretion and eosinophilic influx in bronchoalveolar lavage of OVA-allergic mice. Because inactivated RSV did not influence these responses, replication of RSV appeared essential for the modification of OVA-induced Th2 cytokine expression. RSV did not change OVA-specific IgE levels in serum. Furthermore, the RSV-induced IL-12 mRNA expression in lung tissue of OVA-allergic mice was diminished, but IFN-gamma mRNA expression was not affected. CONCLUSION: RSV infection enhanced particular OVA-induced Th2 cytokine mRNA responses and pulmonary lesions in allergic mice and thus aggravated allergic respiratory disease.  相似文献   

11.
We investigated the effects of respiratory syncytial virus (RSV) infections on ovalbumin (OVA)-challenged mice via regulation of Th17/Treg cell responses. BALB/c mice were challenged with OVA, followed by RSV infections twice. In OVA-challenged mice, the secretion of Th2/Th17-type cytokines, airway hyperresponsiveness and inflammation were significantly inhibited by initial RSV infection. Moreover, the in vivo findings demonstrated that initial RSV infection reversed the imbalance of Th17/Treg responses. In contrast, RSV re-infection strengthened Th2/Th17-type cytokine secretion, airway hyperresponsiveness, and inflammation, especially for lymphocyte infiltration in OVA-challenged mice. Meanwhile, RSV re-infection enhanced the imbalanced Th17/Treg responses. Upon all results reveal that RSV-induced respiratory infections may lead to dual effects pertaining to allergic airway inflammation by regulation of Th17/Treg responses.  相似文献   

12.
BACKGROUND: T-helper type 2 (Th2)-derived cytokines such as IL-4, IL-5, IL-9 and IL-13 play an important role in the synthesis of IgE and in the promotion of allergic eosinophilic inflammation and airway wall remodelling. OBJECTIVE: We determined the importance of IL-13 alone, and of the four Th2 cytokines together, by studying mice in which either IL-13 alone or the Th2 cytokine cluster was genetically disrupted. METHODS: The knock-out mice and their BALB/c wild-type (wt) counterparts were sensitized and repeatedly exposed to ovalbumin (OVA) aerosol. RESULTS: Bronchial responsiveness measured as the concentration of acetylcholine aerosol needed to increase baseline lung resistance by 100% (PC100) was decreased in IL-13-/-, but increased in IL-4/5/9/13-/- mice. Chronic allergen exposure resulted in airway hyperresponsiveness (AHR) in wt mice but not in both genetically modified mice. After allergen exposure, eosinophil counts in bronchoalveolar lavage fluid and in airways mucosa, and goblet cell numbers were not increased in IL-4/5/9/13-/- mice, and were only attenuated in IL-13-/- mice. Airway smooth muscle (ASM) hyperplasia after allergen exposure was prevented in both IL-13-/- and IL-4/5/9/13-/- mice to an equal extent. Similarly, the rise in total or OVA-specific serum IgE levels was totally inhibited. CONCLUSION: IL-13 is mainly responsible for AHR, ASM hyperplasia and increases in IgE, while IL-4, -5 and -9 may contribute to goblet cell hyperplasia and eosinophilic inflammation induced by chronic allergen exposure in a murine model. Both redundancy or complementariness of Th2 cytokines can occur in vivo, according to specific aspects of the allergic response.  相似文献   

13.
BACKGROUND: Invariant T-cell receptor-positive natural killer (iNKT) cells have been shown to be essential for the development of allergen-induced airway hyperreactivity (AHR). OBJECTIVE: We examined the role of iNKT cells in allergic skin inflammation using a murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). METHODS: Wild-type (WT) and natural killer T-cell-deficient CD1d-/- mice were epicutaneously sensitized with OVA or normal saline and challenged with aerosolized OVA. iNKT cells in skin and bronchoalveolar lavage fluid were analyzed by fluorescence-activated cell sorting, and cytokine mRNA levels were measured by quantitative RT-PCR. AHR to methacholine was measured after OVA inhalation. RESULTS: Skin infiltration by eosinophils and CD4+ cells and expression of mRNA encoding IL-4 and IL-13 in OVA-sensitized skin were similar in WT and CD1d-/- mice. No significant increase in iNKT cells was detectable in epicutaneously sensitized skin. In contrast, iNKT cells were found in the bronchoalveolar lavage fluid from OVA-challenged epicutaneously sensitized WT mice, but not CD1d-/- mice. Epicutaneously sensitized CD1d-/- mice had an impaired expression of IL-4, IL-5, and IL-13 mRNA in the lung and failed to develop AHR in response to airway challenge with OVA. CONCLUSION: These results demonstrate that iNKT cells are not required for allergic skin inflammation in a murine model of AD, in contrast with airway inflammation, in which iNKT cells are essential. CLINICAL IMPLICATIONS: Understanding the potential role of iNKT cells in AD will allow us to have a more specific target for therapeutic use.  相似文献   

14.
Respiratory syncytial virus (RSV) infection has been hypothesized to be a risk factor for the development of allergy and asthma, but epidemiologic studies in humans still remain inconclusive. The association between RSV infection and allergic diseases may be dependent on an atopic background and previous history of RSV infection. It has been reported that RSV infection before sensitization to an allergen decreased the production of Th2‐like cytokines in the lung and the levels of allergen‐specific Th2‐type antibodies in the serum. However, the underlying mechanisms are largely unknown. In the present study, the role of pulmonary γδ T cells in RSV‐affected, allergen‐induced airway inflammation was investigated. BALB/c mice were sensitized to or challenged with ovalbumin (OVA) and infected with RSV either before or after the sensitization period. It became clear that sensitization and challenge of mice with OVA induced a large influx of γδ T cells to the lungs. However, prior RSV infection inhibited the infiltration of γδ T cells as well as activated γδ T cells, characterized by expression of CD40L or CD69 molecular in the cell surface. Moreover, prior RSV infection elevated the type 1 cytokine gene expression but suppressed type 2 cytokine expression in the lung γδ T cells. Adoptive transfer of γδ T cells from OVA‐sensitized and challenged mice increased airway inflammation, suggesting that γδ T cells may play a proinflammatory role in allergic responses. These results described here support the idea of an unknown γδ T cell‐dependent mechanism in the regulation of RSV‐affected, allergen‐induced allergic airway responses. J. Med. Virol. 85:149–156, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Respiratory syncytial virus (RSV) is a respiratory pathogen that causes significant morbidity in infants and young children. The importance of chemokines during RSV infection for respiratory symptoms has not been fully elucidated. The current study examined the effect of RANTES (CCL5) on airway pathophysiology after RSV infection. BALB/c mice produce RANTES (CCL5) after RSV infection that correlates with the changes in pathophysiology. Animals treated with anti-RANTES (CCL5) antibody demonstrated significant decreases in airway hyperreactivity (AHR). Delayed treatment with anti-RANTES (CCL5) at day 5 of infection also significantly reduced development of AHR on day 9 of infection, suggesting that RANTES (CCL5) may be a target in established disease. Determination of Th1/Th2-associated cytokine patterns indicated that anti-RANTES (CCL5) treatment increased IL-12 production, thus altering the lung environment. The assessment of RANTES (CCL5) production in vitro and in vivo demonstrated that it was regulated by IL-13, a cytokine that is related to RSV-induced AHR in this mouse model. These data show that RANTES (CCL5) is an important mediator of the pathophysiological responses seen in RSV infection.  相似文献   

16.
Background Non-selective cation influx through canonical transient receptor potential channels (TRPCs) is thought to be an important event leading to airway inflammation. TRPC6 is highly expressed in the lung, but its role in allergic processes is still poorly understood.
Objective The purpose of this study was to evaluate the role of TRPC6 in airway hyperresponsiveness (AHR) and allergic inflammation of the lung.
Methods Methacholine-induced AHR was assessed by head-out body plethysmography of wild type (WT) and TRPC6−/− mice. Experimental airway inflammation was induced by intraperitoneal ovalbumin (OVA) sensitization, followed by OVA aerosol challenges. Allergic inflammation and mucus production were analysed 24 h after the last allergen challenge.
Results Methacholine-induced AHR and agonist-induced contractility of tracheal rings were increased in TRPC6−/− mice compared with WT mice, most probably due to compensatory up-regulation of TRPC3 in airway smooth muscle cells. Most interestingly, when compared with WT mice, TRPC6−/− mice exhibited reduced allergic responses after allergen challenge as evidenced by a decrease in airway eosinophilia and blood IgE levels, as well as decreased levels of T-helper type 2 (Th2) cytokines (IL-5, IL-13) in the bronchoalveolar lavage. However, lung mucus production after allergen challenge was not altered by TRPC6 deficiency.
Conclusions TRPC6 deficiency inhibits specific allergic immune responses, pointing to an important immunological function of this cation channel in Th2 cells, eosinophils, mast cells and B cells.  相似文献   

17.
The leukotriene modifiers are a novel generation of therapeutic agents in the treatment of allergic asthma. However, the mechanisms by which the cysteinyl (cys) leukotrienes (LTs) participate in allergen-induced airway eosinophilia and airway hyperresponsiveness (AHR) are still unclear. In the present study, we have investigated the role of cys-LTs in ovalbumin (OVA)-induced airway responses in a murine model of asthma. Montelukast (3 or 10 mg/kg), a selective cys-LT1 receptor antagonist, reduced airway eosinophilia and AHR after OVA challenge. The levels of interleukin (IL)-5 and eotaxin in the bronchoalveolar lavage fluid (BALF) from montelukast-treated (3 mg/kg) mice were unaffected, although a decrease in IL-5 was observed with a dose of 10 mg/kg. LTD4 (50 ng) instilled intranasally to immunized mice augmented macrophages in the BALF, but in conjunction with OVA challenge it caused BALF eosinophilia and neutrophilia when given before challenge and BALF neutrophilia but not eosinophilia when given 2 h after challenge. However, there were no increases of IL-5 or eotaxin in BALF following LTD4 treatment. Repeated instillations of LTD4 to immunized mice, mimicking allergen challenge, did not induce AHR but in conjunction with OVA challenge LTD4 enhanced AHR. These results indicate that allergen-induced eosinophilia and AHR are in part mediated by the cys-LT1 receptor, and that, although LTD4 alone has no effect on airway eosinophilia, in conjunction with antigenic stimulation it potentiates the degree of airway inflammation and AHR.  相似文献   

18.
T cells expressing a type-2 T helper profile of cytokines (Th2 cells) have been demonstrated to play an important role in the initiation and progression of allergic asthma, and it is well known that Fas ligand (FasL) induces apoptosis when bound to its receptor, Fas. In the present study, we examined the possibility of modulating asthma manifestations by dendritic cells (DCs) genetically engineered to express FasL (DC-FasL), which could deliver a death signal to T cells in an antigen-specific manner. The delivery of DC-FasL into ovalbumin (OVA)-immunized allergic mice decreased the airway hyper-responsiveness (AHR). Moreover, we established a mouse model of airway inflammation by using an adoptive transfer of Th2 cells derived from ovalbumin T cell receptor transgenic mice to study the effect of DC-FasL on airway reactivity. The administration of DC-FasL in Th2-cell-induced allergic mice had significantly decreased AHR, airway inflammation, and IL-4, IL-5 and IL-13 production. Furthermore, the numbers of OVA-specific T cells were decreased in the lung of mice receiving DC-FasL. These results demonstrate that FasL-expressing dendritic cells might be applied for the modulation of allergic responses.  相似文献   

19.
BACKGROUND: Respiratory syncytial virus (RSV) infection is known to develop and exacerbate asthma in young children. In adult, RSV causes recurrent but asymptomatic infections. However, the impact of asymptomatic RSV infection on adult asthma is yet to be determined. The present study is designed to determine the effects of primary and secondary low-grade RSV infections on allergic airway inflammation in a murine model of allergic asthma. METHODS: A low-grade RSV (2 x 10(3) plaque-forming units/mouse) was inoculated, and this caused neither pulmonary inflammation nor symptoms but induced significant IFN-gamma production in thoracic lymph nodes. To investigate interaction between low-grade virus and Dermatophagoides farinae (Df), airway hyper-responsiveness, lung inflammation and cytokine production from thoracic lymph nodes were compared after primary and secondary low-grade RSV infections in four groups of mice; control, Df allergen-sensitized, RSV-infected and Df-sensitized RSV-infected mice. A direct comparison between low- and high-grade RSV infections was also performed in primary infection. To investigate the role of IL-5 during secondary RSV infection, anti-IL-5 monoclonal antibody (anti-IL-5 mAb) was injected in mice and similar parameters were compared in four groups of mice. RESULTS: Primary high-grade RSV infection increased allergen-induced airway inflammation, while primary low-grade RSV infection attenuated allergen-induced airway inflammation concomitant with significant IFN-gamma production in lung-draining lymph nodes. In marked contrast, secondary low-grade RSV infection increased both IFN-gamma and IL-5 production, resulting in exacerbation of allergen-induced airway inflammation. Anti-IL-5 mAb treatment in secondary low-grade RSV infection and Df allergen-sensitized mice attenuated virus and allergen-induced airway inflammation. CONCLUSIONS: Low-grade RSV infection per se does not cause pulmonary inflammation, whereas it induces a significant immunological response in the allergen-sensitized host. These results indicate that subclinical and recurrent RSV infection may play an important role in exacerbation and maintenance of asthma in adults, wherein IL-5 is critically involved.  相似文献   

20.
We previously defined a role for B cells and allergen-specific immunoglobulins in the development of allergic sensitization, airway inflammation, and airway hyperresponsiveness (AHR), using a 10-d protocol in which allergen exposure occurred exclusively via the airways, without adjuvant. In the present protocol, normal and B-cell-deficient (microMt(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and challenged with OVA via the airways in order to examine the requirements for AHR with this protocol. T-cell activation (antigen-specific proliferative responses and Th2-type cytokine production) and eosinophil infiltration in the peribronchial regions of the airways, with signs of eosinophil activation and degranulation, occurred in both experimental groups. In contrast to the 10-d protocol, increased in vivo airway responsiveness to methacholine and in vitro tracheal smooth-muscle responses to electrical field stimulation were observed in both normal and B-cell-deficient mice, and these responses were inhibited by anti-interleukin (IL)-5 administration before airway challenge. These data show that IL-5, but not B cells or allergen-specific IgE, are required for eosinophil airway infiltration and the development of AHR following allergen/alum sensitization and repeated airway challenge with allergen. These results emphasize that the use of different sensitization and challenge protocols can influence the requirements for development of AHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号