首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association of PTP1C deficiency with the multiplicity of lymphoid cell abnormalities manifested by motheaten (me) and viable motheaten (me(v)) mice suggests a pivotal role for this tyrosine phosphatase in the regulation of lymphocyte differentiation and function. To delineate the relevance of PTP1C to T cell physiology, we have examined me and me(v) T cells with regards to their capacity to transduce activating signals through the T cell antigen receptor (TCR). Although thymocyte maturation appeared normal in the mutant mice, both thymocytes and peripheral T cells from these animals exhibited proliferative response to TCR stimulation that were markedly increased relative to those elicited in normal cells. Compared to normal thymocytes, PTP1C- deficient thymocytes also showed increased constitutive tyrosine phosphorylation of the TCR complex and enhanced and prolonged TCR- induced tyrosine phosphorylation of the TCR-zeta and CD3-epsilon, as well as a number of cytosolic proteins, most notably a 38-kD phosphoprotein found to associate with the Grb2 adaptor SH2 domain in activated thymocytes. These latter phosphoproteins also associated with the Vav guanine nucleotide exchange factor upon TCR ligation, and were dephosphorylated by recombinant PTP1C in vitro. In conjunction with the finding of PTP1C-TCR association in unstimulated normal thymocytes, these results reveal the capacity of PTP1C to interact with and likely dephosphorylate resting and activated TCR complex components, as well as more distal signaling effectors that are normally recruited to the Vav and Grb2 SH2 domains after TCR stimulation. These data therefore strongly implicate PTP1C in the downregulation of TCR signaling capacity and, taken together with the aberrant prolongation of TCR- induced, mitogen-associated kinase (MAPK) activation observed in PTP1C- deficient thymocytes, these findings suggest that the inhibitory influence of PTP1C on TCR signal relay is realized through its effects on both the TCR complex and downstream signaling elements that couple the activated antigen receptor to the Ras/MAPK response pathway.  相似文献   

2.
Mutations in the gene encoding the phosphotyrosine phosphatase PTP1C, a cytoplasmic protein containing a COOH-terminal catalytic and two NH2- terminal Src homology 2 (SH2) domains, have been identified in motheaten (me) and viable motheaten (mev) mice and are associated with severe hemopoietic dysregulation. The me mutation is predicted to result in termination of the PTP1C polypeptide within the first SH2 domain, whereas the mev mutation creates an insertion or deletion in the phosphatase domain. No PTP1C RNA or protein could be detected in the hemopoietic tissues of me mice, nor could PTP1C phosphotyrosine phosphatase activity be isolated from cells homozygous for the me mutation. In contrast, mice homozygous for the less severe mev mutation expressed levels of full-length PTP1C protein comparable to those detected in wild type mice and the SH2 domains of mev PTP1C bound normally to phosphotyrosine-containing ligands in vitro. Nevertheless, the mev mutation induced a marked reduction in PTP1C activity. These observations provide strong evidence that the motheaten phenotypic results from loss-of-function mutations in the PTP1C gene and imply a critical role for PTP1C in the regulation of hemopoietic differentiation and immune function.  相似文献   

3.
Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1; previously named HCP, PTP1C, SH-PTP1, and SHP) is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. Recent data have demonstrated that the gene encoding SHP-1 is mutated in motheaten (mc) and viable motheaten (mc') mice resulting in autoimmune disease. More recently, SHP-1 has been shown to negatively regulate B cell antigen receptor (BCR)-initiated signaling. To elucidate potential mechanisms of SHP-1 action in BCR signal transduction, we studied proteins that interact with SHP-1 in B cells. Both anti-SHP-1 antibody and the two SH2 domains of SHP-1 expressed as glutathione S-transferase fusion proteins precipitated at least three phosphoproteins of approximately 75, 110, and 150 kD upon anti-immunoglobulin M stimulation of the WEHI- 231 immature B cell line. Binding of SHP-1 to the 75- and 110-kD proteins appeared to be mediated mainly by the NH2-terminal SH2 domain of SHP-1, whereas both the NH2- and COOH-terminal SH2 domains are required for maximal binding to the 150-kD protein. Immunoprecipitation and Western blot analysis revealed that the SHP-1-associated 75-kD protein is the hematopoietic cell-specific, SH2-containing protein SLP- 76. Further, this protein-protein association was constitutively observed and stable during the early phase of BCR signaling. However, significant tyrosine phosphorylation of SLP-76 as well as of SHP-1 was observed after BCR ligation. Constitutive association of SHP-1 with SLP- 76 could also be detected in normal splenic B cells. Collectively, these results suggest possible mechanisms by which SHP-1 may modulate signals delivered by BCR engagement.  相似文献   

4.
The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)alpha and Ig beta, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Ig beta, we produced mice that carry a deletion of the cytoplasmic domain of Ig beta (Ig beta Delta C mice) and compared them to mice that carry a similar mutation in Ig alpha (MB1 Delta C, herein referred to as Ig alpha Delta C mice). Ig beta Delta C mice differ from Ig alpha Delta C mice in that they show little impairment in early B cell development and they produce immature B cells that respond normally to BCR cross-linking as determined by Ca(2+) flux. However, Ig beta Delta C B cells are arrested at the immature stage of B cell development in the bone marrow and die by apoptosis. We conclude that the cytoplasmic domain Ig beta is required for B cell development beyond the immature B cell stage and that Ig alpha and Ig beta have distinct biologic activities in vivo.  相似文献   

5.
Immunoglobulin (Ig)alpha and Igbeta initiate B cell receptor (BCR) signaling through immune receptor tyrosine activation motifs (ITAMs) that are targets of SH2 domain-containing kinases. To examine the function of Igbeta ITAM tyrosine resides in mature B cells in vivo, we exchanged these residues for alanine by gene targeting (Igbeta(AA)). Mutant mice showed normal development of all B cell subtypes with the exception of B1 cells that were reduced by fivefold. However, primary B cells purified from Igbeta(AA) mice showed significantly decreased steady-state and ligand-mediated BCR internalization and higher levels of cell surface IgM and IgD. BCR cross-linking resulted in decreased Src and Syk activation but paradoxically enhanced and prolonged BCR signaling, as measured by cellular tyrosine phosphorylation, Ca(++) flux, AKT, and ERK activation. In addition, B cells with the ITAM mutant receptor showed an enhanced response to a T-independent antigen. Thus, Igbeta ITAM tyrosines help set BCR signaling threshold by regulating receptor internalization.  相似文献   

6.
B and T cells are not required for the viable motheaten phenotype   总被引:1,自引:0,他引:1       下载免费PDF全文
Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commonly thought that immune system involvement causes this disease. If so, the motheaten disease ought to be alleviated when the recombination activation gene-1 (RAG-1) is disrupted because there will be no V(D)J rearrangement and thus impaired development of B and T cells. We bred homozygous, double- mutant me(v)/me(v) x RAG 1 -/- mice and found that, in fact, inflamed paws, and splenomegaly with elevated myelopoiesis. Thus, except for autoantibodies, the motheaten phenotype does not depend on the presence of B and T cells. This observation cautions the use of motheaten mice as a model of autoimmune disease.  相似文献   

7.
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-α/Ig-β heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by exposure of B cells either to antigen or to the tyrosine phosphatase inhibitor pervanadate/H2O2. One of the earliest substrates in B cells is a 65-kD protein, which we identify here as a B cell adaptor protein. This protein, named SLP-65, is part of a signaling complex involving Grb-2 and Vav and shows homology to SLP-76, a signaling element of the T cell receptor. In pervanadate/H2O2-stimulated cells, SLP-65 becomes phosphorylated only upon expression of the BCR. These data suggest that SLP-65 is part of a BCR transducer complex.  相似文献   

8.
Cross-linking B cell antigen receptor (BCR) elicits early signal transduction events, including activation of protein tyrosine kinases, phosphorylation of receptor components, activation of phospholipase C- gamma (PLC-gamma), and increases in intracellular free Ca2+. In this article, we report that cross-linking the BCR led to a rapid translocation of cytosolic protein tyrosine phosphatase (PTP) 1C to the particulate fraction, where it became associated with a 140-150-kD tyrosyl-phosphorylated protein. Western blotting analysis identified this 140-150-kD protein to be CD22. The association of PTP-1C with CD22 was mediated by the NH2-terminal Src homology 2 (SH2) domain of PTP-1C. Complexes of either CD22/PTP-1C/Syk/PLC-gamma(1) could be isolated from B cells stimulated by BCR engagement or a mixture of hydrogen peroxidase and sodium orthovanadate, respectively. The binding of PLC- gamma(1) and Syk to tyrosyl-phosphorylated CD22 was mediated by the NH2- terminal SH2 domain of PLC-gamma(1) and the COOH-terminal SH2 domain of Syk, respectively. These observations suggest that tyrosyl- phosphorylated CD22 may downmodulate the activity of this complex by dephosphorylation of CD22, Syk, and/or PLC-gamma(1). Transient expression of CD22 and a null mutant of PTP-1C (PTP-1CM) in COS cells resulted in an increase in tyrosyl phosphorylation of CD22 and its interaction with PTP-1CM. By contrast, CD22 was not tyrosyl phosphorylated or associated with PTP-1CM in the presence of wild-type PTP-1C. These results suggest that tyrosyl-phosphorylated CD22 may be a substrate for PTP-1C regulates tyrosyl phosphorylation of CD22.  相似文献   

9.
Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b-deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igalpha, Syk, and phospholipase C (PLC)-gamma2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b-deficient B cells in contrast to the BCRs in Cbl-b-expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.  相似文献   

10.
The cytosolic SHP-1 and transmembrane CD45 protein tyrosine phosphatases (PTP) play critical roles in regulating signal transduction via the B cell antigen receptor (BCR). These PTPs differ, however, in their effects on BCR function. For example, BCR-mediated mitogenesis is essentially ablated in mice lacking CD45 (CD45), but is enhanced in SHP-1–deficient motheaten (me) and viable motheaten (mev) mice. To determine whether these PTPs act independently or coordinately in modulating the physiologic outcome of BCR engagement, we assessed B cell development and signaling in CD45-deficient mev (CD45/SHP-1) mice. Here we report that the CD45/SHP-1 cells undergo appropriate induction of protein kinase activity, mitogen-activated protein kinase activation, and proliferative responses after BCR aggregation. However, BCR-elicited increases in the tyrosine phosphorylation of several SHP-1–associated phosphoproteins, including CD19, were substantially enhanced in CD45/SHP-1, compared to wild-type and CD45 cells. In addition, we observed that the patterns of cell surface expression of μ, δ, and CD5, which distinguish the PTP-deficient from normal mice, are largely restored to normal levels in the double mutant animals. These findings indicate a critical role for the balance of SHP-1 and CD45 activities in determining the outcome of BCR stimulation and suggest that these PTPs act in a coordinate fashion to couple antigen receptor engagement to B cell activation and maturation.  相似文献   

11.
This study identifies defects in the early stages of lymphopoiesis that may contribute to the abnormalities in the development and/or function of peripheral T and B lymphocytes in mice homozygous for the motheaten (me/me) and viable motheaten (mev/mev) mutations. The results indicate that in me/me and mev/mev mice prothymocytes in bone marrow are present in essentially normal numbers, as determined by intrathymic injection, but apparently lack the ability to home effectively to the thymus, as determined by intravenous transfer; early B lineage cells in bone marrow, identified by the B220 antigen, are markedly depleted, including immature B cells (sIg+), pre-B cells (cIg+, sIg-), and pro-B cells (B220+, cIg-, sIg-); TdT+ bone marrow cells, especially a subset that expresses the B220 B lineage antigen, are markedly depleted by two weeks of age; normal numbers of TdT+ thymocytes are present during the first 3 wk of postnatal life, but rapidly decrease thereafter. The results further indicate that neither the defective thymus homing capacity of prothymocytes nor the deficiency of TdT+ bone marrow cells is due to autoantibodies. The possible relationship of the defective development of lymphoid precursor cells to the premature onset of thymic involution and to the abnormalities of peripheral T and B lymphocytes in me/me and mev/mev mice is discussed; as are the results of in vitro studies (presented in a companion paper), which suggest that a primary defect in the stromal microenvironment of the bone marrow is responsible for the abnormal development of the lymphoid precursor cells.  相似文献   

12.
13.
Signal transduction through the B cell antigen receptor (BCR) is altered in B cells that express a receptor that recognizes self-antigen. To understand the molecular basis for the change in signaling in autoreactive B cells, a transgenic model was used to isolate a homogeneous population of tolerant B lymphocytes. These cells were compared with a similar population of naive B lymphocytes. We show that the BCR from naive B cells enters a detergent-insoluble domain of the cell within 6 s after antigen binding, before a detectable increase in BCR phosphorylation. This fraction appears to be important for signaling because it is enriched for lyn kinase but lacks CD45 tyrosine phosphatase and because the BCR that moves into this domain becomes more highly phosphorylated. Partitioning of the BCR into this fraction is unaffected by src family kinase inhibition. Tolerant B cells do not efficiently partition the BCR into the detergent-insoluble domain, providing an explanation for their reduced tyrosine kinase activation and calcium flux in response to antigen. These results identify an early, regulated step in antigen receptor signaling and self-tolerance.  相似文献   

14.
Th2 cells are generated from naive CD4 T cells upon T cell receptor (TCR) recognition of antigen and IL-4 stimulation and play crucial roles in humoral immunity against infectious microorganisms and the pathogenesis of allergic and autoimmune diseases. A tyrosine phosphatase, SHP-1, that contains src homology 2 (SH2) domains is recognized as a negative regulator for various intracellular signaling molecules, including those downstream of the TCR and the IL-4 receptor. Here we assessed the role of SHP-1 in Th1/Th2 cell differentiation and in the development of Th2-dependent allergic airway inflammation by using a natural SHP-1 mutant, the motheaten mouse. CD4 T cells appear to develop normally in the heterozygous motheaten (me/+) thymus even though they express decreased amounts of SHP-1 (about one-third the level of wild-type thymus). The me/+ naive splenic CD4 T cells showed enhanced activation by IL-4 receptor-mediated signaling but only marginal enhancement of TCR-mediated signaling. Interestingly, the generation of Th2 cells was increased and specific cytokine production of mast cells was enhanced in me/+ mice. In an OVA-induced allergic airway inflammation model, eosinophilic inflammation, mucus hyperproduction, and airway hyperresponsiveness were enhanced in me/+ mice. Thus, SHP-1 may have a role as a negative regulator in the development of allergic responses, such as allergic asthma.  相似文献   

15.
Immunological memory is characterized by heightened immunoglobulin (Ig) G antibody production caused in part by enhanced plasma cell formation conferred by conserved transmembrane and cytoplasmic segments in isotype-switched IgG B cell receptors. We tested the hypothesis that the IgG tail enhances intracellular B cell antigen receptor (BCR) signaling responses to antigen by analyzing B cells from Ig transgenic mice with IgM receptors or chimeric IgMG receptors containing the IgG tail segment. The IgG tail segment enhanced intracellular calcium responses but not tyrosine or extracellular signal-related kinase (ERK) phosphorylation. Biochemical analysis and crosses to CD22-deficient mice established that IgG tail enhancement of calcium and antibody responses, as well as marginal zone B cell formation, was not due to diminished CD22 phosphorylation or inhibitory function. Microarray profiling showed no evidence for enhanced signaling by the IgG tail for calcium/calcineurin, ERK, or nuclear factor kappaB response genes and little evidence for any enhanced gene induction. Instead, almost half of the antigen-induced gene response in IgM B cells was diminished 50-90% by the IgG tail segment. These findings suggest a novel "less-is-more" hypothesis to explain how switching to IgG enhances B cell memory responses, whereby decreased BCR signaling to genes that oppose marginal zone and plasma cell differentiation enhances the formation of these key cell types.  相似文献   

16.
The B cell antigen receptor (BCR) serves both to initiate signal transduction cascades and to target antigen for processing and presentation by MHC class II molecules. How these two BCR functions are coordinated is not known. Recently, sphingolipid- and cholesterol-rich plasma membrane lipid microdomains, termed lipid rafts, have been identified and proposed to function as platforms for both receptor signaling and membrane trafficking. Here we show that upon cross-linking, the BCR rapidly translocates into ganglioside G(M1)-enriched lipid rafts that contain the Src family kinase Lyn and exclude the phosphatase CD45R. Both Igalpha and Lyn in the lipid rafts become phosphorylated, and subsequently the BCR and a portion of G(M1) are targeted to the class II peptide loading compartment. Entry into lipid rafts, however, is not sufficient for targeting to the antigen processing compartments, as a mutant surface Ig containing a deletion of the cytoplasmic domain is constitutively present in rafts but when cross-linked does not internalize to the antigen processing compartment. Taken together, these results provide evidence for a role for lipid rafts in the initial steps of BCR signaling and antigen targeting.  相似文献   

17.
18.
In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.  相似文献   

19.
The 75-kD HS1 protein is highly tyrosine-phosphorylated during B cell antigen receptor (BCR)-mediated signaling. Owing to low expression of HS1, WEHI-231-derived M1 cells, unlike the parental cells, are insensitive to BCR-mediated apoptosis. Here, we show that BCR-associated tyrosine kinases Lyn and Syk synergistically phosphorylate HS1, and that Tyr378 and Tyr-397 of HS1 are the critical residues for its BCR-induced phosphorylation. In addition, unlike wild-type HS1, a mutant HS1 carrying the mutations Phe-378 and Phe-397 was unable to render M1 cells sensitive to apoptosis. Wild-type HS1, but not the mutant, localized to the nucleus under the synergy of Lyn and Syk. Thus, tyrosine phosphorylation of HS1 is required for BCR-induced apoptosis and nuclear translocation of HS1 may be a prerequisite for B cell apoptosis.Stimulation of the antigen receptor on B lymphocytes (BCR) induces intracellular biochemical events that include rapid tyrosine phosphorylation of cellular proteins. Accumulating data reveal that cytoplasmic kinases such as the Syk kinase and Src-like kinases are associated with the BCR (1, 2) and play important roles in the signal transduction cascade through the BCR (35). We previously demonstrated that tyrosine phosphorylation of various cellular proteins was greatly enhanced in COS7 fibroblasts transfected with both Lyn and Syk expression plasmids as compared with those transfected with either the Lyn or Syk plasmid alone (6). Thus, these kinases may cooperate in phosphorylating substrates crucial for BCR-mediated B cell activation.The 75-kD HS1 protein is highly tyrosine phosphorylated upon BCR cross-linking (7). Studies with HS1 −/− mice (8) and with a mutant WEHI-231 cell line that expresses very low level of HS1 (9) suggest that HS1 plays roles in not only B cell proliferation but also apoptosis upon BCR cross-linking. In this study, we addressed molecular mechanisms of HS1 phosphorylation and significance of HS1 phosphorylation in BCR-mediated apoptosis.  相似文献   

20.
CIN85, an adaptor protein which binds the C-terminal domain of tyrosine phosphorylated Cbl and Cbl-b, has been thought to be involved in the internalization and subsequent degradation of receptors. However, its physiological function remains unclear. To determine its role in B cells, we used Mb1-cre to generate mice with a B cell-specific deletion of CIN85. These mice had impaired T cell-independent type II antibody responses in vivo and diminished IKK-β activation and cellular responses to B cell receptor (BCR) cross-linking in vitro. Introduction of a constitutively active IKK-β construct corrected the defective antibody responses as well as cellular responses in the mutant mice. Together, our results suggest that CIN85 links the BCR to IKK-β activation, thereby contributing to T cell-independent immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号