首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We used primary peripheral blood T cells, a population that exists in G(0) and can be stimulated to enter the cell cycle synchronously, to define more precisely the effects of nicotine on pathways that control cell cycle entry and progression. Our data show that nicotine decreased the ability of T cells to transit through the G(0)/G(1) boundary (acquire competence) and respond to progression signals. These effects were due to nuclear factor of activated T cells c2 (NFATc2)-dependent repression of cyclin-dependent kinase 4 (CDK4) expression. Growth arrest at the G(0)/G(1) boundary was further enforced by inhibition of cyclin D2 expression and by increased expression and stabilization of p27Kip1. Intriguingly, T cells from habitual users of tobacco products and from NFATc2-deficient mice constitutively expressed CDK4 and were resistant to the antiproliferative effects of nicotine. These results indicate that nicotine impairs T cell cycle entry through NFATc2-dependent mechanisms and suggest that, in the face of chronic nicotine exposure, selection may favor cells that can evade these effects. We postulate that cross talk between nicotinic acetylcholine receptors and growth factor receptor-activated pathways offers a novel mechanism by which nicotine may directly impinge on cell cycle progression. This offers insight into possible reasons that underlie the unique effects of nicotine on distinct cell types and identifies new targets that may be useful control tobacco-related diseases.  相似文献   

2.
We are interested to know whether expression of a lineage-specific growth factor receptor is deterministic to lineage commitment during hematopoiesis. For this purpose, we introduced the human c-fms gene into the multipotential stem cell clone LyD9 and two myeloid progenitor clones, L-GM3 and L-G3, cells that differentiate in response to granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte (G)-CSF, respectively. Although LyD9 cells have differentiation potential to become macrophages, c-fms transfectants of LyD9 and L-GM3 cells did not differentiate in response to human macrophage (M)-CSF. However, c-fms transfectants of L-G3 cells differentiated to neutrophils in response to human M-CSF. These results indicate that the M-CSF receptor requires a specific signal transduction pathway to exert its differentiational and proliferative effects. Furthermore, the M-CSF receptor can convey a granulocyte-type differentiation signal possibly by cooperating with the G-CSF receptor signal transduction pathway. The c-fms-transfected LyD9 cells as well as the original LyD9 cells differentiated predominantly into GM-CSF- and G-CSF-responsive cells by coculturing with PA6 and ST2 stromal cells, respectively. The results indicate that differentiation lineage is not affected by premature expression of the M-CSF receptor. Instead, the stromal cell used for coculture apparently controls lineage-selective differentiation of the multi-potential stem cell line.  相似文献   

3.
The relationship between activation-induced growth inhibition and regulation of the cell cycle progression was investigated in T cell hybridomas by studying the function of the cell cycle-regulating genes such as G1 cyclins and their associated kinases. Activation of T cell hybridomas by anti-T cell receptor antibody induces growth arrest at G1 phase of the cell cycle and subsequently results in activation-driven cell death. Rapid reduction of both messenger RNA and protein level of the cyclin D3 is accompanied by growth arrest upon activation. Although the residual cyclin D3 protein forms a complex with cdk4 protein, cyclin D3-dependent kinase activity is severely impaired. Stable transfectants engineered to express cyclin D3 override the growth arrest upon activation. These results imply that the activation signal through T cell receptor induces the down-regulation of cyclin D3 expression and cyclin D3-dependent kinase activity, leading to growth arrest in G1 phase of the cell cycle in T cells.  相似文献   

4.
We have recently demonstrated that tumor necrosis factor alpha (TNF- alpha) potentiates interleukin 3 (IL-3) and granulocyte/macrophage colony-stimulating factor-induced growth of CD34+ hematopoietic progenitor cells (HPC), and favors the generation of dendritic/Langerhans cells. The stimulatory effect of TNF-alpha was detailed in the present study. Thus, CD34+ HPC entering in cycle (S/G2M) after a 48-h pulse with IL-3 expressed the transferrin receptor (TfR), and fluorescence-activated cell sorter-separated TfR+ HPC, but not TfR-HPC, showed a high proliferative response to IL-3. In contrast, TfR-HPC were found to undergo strong proliferation in response to IL-3 + TNF-alpha. Limiting dilution experiments indicated that TNF-alpha increased both the frequency and the average size of clones generated from TfR-HPC as a result of the development of a higher number of large clones. In contrast, TNF-alpha did not enhance the IL-3-dependent proliferation of TfR+ HPC. Preculturing CD34+ HPC for 48 h with TNF- alpha enhanced the subsequent generation of IL-3-dependent colony- forming units. Precultures with TNF-alpha or cultures with suboptimal doses of TNF-alpha allowed the recruitment of cells with both granulocytic and monocytic differentiation potential. Taken together, our results indicate that TNF-alpha recruits a subpopulation of CD34+ HPC hyposensitive to IL-3, with high proliferative capacity and some features of multipotential progenitors, that are likely to be more primitive than those responding to IL-3 alone.  相似文献   

5.
To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor.  相似文献   

6.
Progression through the cell cycle is a tightly controlled process that integrates signals generated at the plasma membrane with the proteins that form the cell cycle machinery. The current study chronicles the induction of cyclins, cyclin-dependent kinases (cdk), and cdk inhibitors in low density primary mouse B lymphocytes after anti- immunoglobulin plus interleukin 4 (IgM + IL-4) stimulation. In this system, > 85% of cells remain in the G0/G1 phase of cell cycle for an initial 24-h period, followed by entry of up to 50% of the cells into S phase, commencing around 30 h and peaking at 48 h. Extensive time course analyses of these anti-IgM + IL-4-stimulated B cells revealed that the G1-associated D-type cyclins D2 and D3 were induced by 3 h after stimulation, and that cyclins E, A, and B were subsequently induced sequentially, beginning at mid-G1, G1/S transition, and S phase, respectively. The G1-associated cyclin D1 was not expressed at any stage of the anti-Ig + IL-4-induced B cell cycle. cdk2, cdk4, and cdk6 were induced during G1, whereas cell division cycle-2 (cdc2) was induced concomitantly with S phase. Irrespective of their expression, the kinases cdk2 and cdc2 were only active from S phase onwards, suggesting that productive cyclin/kinase complex formation did not occur until that time. Cell cycle inhibitors p21 and p19 were induced by anti-Ig + IL-4, peaking in expression at mid-G1 and S phase, respectively. Stimulation of low density B cells with anti-Ig + IL-4 caused rapid down regulation of the p27 inhibitor, however this protein was reexpressed at 54-96 h after stimulation. In contrast, B cells stimulated with anti-CD40, a stimulus which induces long-term B cell proliferation, permanently down regulated p27. These findings are consistent with the concept that p27 reexpression contributes to the G1 arrest that follows antigen receptor crosslinking. Low density B cells cultured in the viability-enhancing cytokine IL-4 alone also showed induction of D2 and D3 cyclin expression. However, the D2 expression was transient, and the D3 expression was substantially lower than that observed in B cells induced to proliferate by anti-Ig + IL-4. This partial induction of D2 and D3 expression may explain IL-4's ability to promote B cell entry into G1 but not S phase of cell cycle, and furthermore, its ability to truncate G1 progression when B cells are subsequently stimulated with anti-Ig.  相似文献   

7.
Human mesenchymal stem cells (MSCs), bone marrow-derived pluripotent adherent cells of mesenchymal origin can differentiate along the osteogenic, chondrogenic, adipogenic, and tendonogenic lineages. In this report we characterize cytokine and growth factor gene expression by MSCs and investigate the modulation of cytokine expression that occurs during osteogenic and stromal differentiation. MSCs constitutively expressed mRNA for interleukin (IL)-6, IL-11, leukemia inhibitory factor (LIF), macrophage colony-stimulating factor (M-CSF), and stem cell factor (SCF). MSCs treated with IL-1alpha upregulated mRNA levels of IL-6, IL-11, and LIF, and began to express detectable levels of granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF). mRNA levels of M-CSF and SCF did not change. MSCs cultured in osteogenic medium differentiated along the osteogenic lineage and downregulated mRNA levels of IL-6, IL-11 and LIF whereas, M-CSF and SCF expression were unchanged and G-CSF and GM-CSF remained undetectable. IL-3 was not detected in MSC culture under any conditions. MSCs precultured in control medium, IL-1alpha, or osteogenic medium maintained similar capacity to support long-term culture initiating cell (LT-CIC). Thus, primary and osteogenic differentiated MSCs produce important hematopoietic cytokines and support hematopoiesis in long-term cultures, suggesting that these cells may provide an excellent ex vivo environment for hematopoiesis during progenitor cell expansion and may be important for in vivo cell therapy.  相似文献   

8.
Transforming growth factor beta 1 (TGF-beta 1) has been shown to be associated with active centers of hematopoiesis and lymphopoiesis in the developing fetus. Therefore, the effects of TGF-beta 1 on mouse hematopoiesis were studied. TGF-beta 1 is a potent inhibitor of IL-3-induced bone marrow proliferation, but it does not inhibit the proliferation induced by granulocyte/macrophage, colony-stimulating factor (CSF), granulocyte CSF, and erythropoietin (Epo). TGF-beta 1 also inhibits IL-3-induced multipotential colony formation of bone marrow cells in soft agar, which includes early erythroid differentiation, while Epo-induced terminal differentiation is unaffected. In addition, IL-3-induced granulocyte/macrophage colonies were inhibited; however, small clusters of differentiated myeloid cells were consistently seen in cultures containing IL-3 and TGF-beta 1. Thus, TGF-beta 1 selectively inhibits early hematopoietic progenitor growth and differentiation but not more mature progenitors. TGF-beta 1 is also a potent inhibitor of IL-3-dependent and -independent myelomonocytic leukemic cell growth, while the more mature erythroid and macrophage leukemias are insensitive. Therefore, TGF-beta 1 functions as a selective regulator of differentiating normal hematopoietic cells, and suppresses myeloid leukemic cell growth.  相似文献   

9.
10.
Dendritic cells form a system of antigen presenting cells that are specialized to stimulate T lymphocytes, including quiescent T cells. The lineage of dendritic cells is not fully characterized, although prior studies have shown that growth and differentiation are controlled by cytokines, particularly granulocyte/macrophage colony-stimulating factor (GM-CSF). To further elucidate the nature and control of the dendritic cell lineage, we have studied the expression of specific cytokine receptors. Sufficient numbers of dendritic cells were purified from spleen and skin to do quantitative binding studies with radiolabeled M-CSF, GM-CSF, and interleukin 1 (IL-1). To verify the nonlymphoid nature of dendritic cells, we made an initial search for rearrangements in T cell receptor and immunoglobulin genes and none were found. M-CSF binding sites, a property of mononuclear phagocytes, also were absent. In contrast, GM-CSF receptors were abundant on mature dendritic cells, with approximately 3,000 binding sites/cell with a single Kd of 500-1,000 pM. Substantial numbers of high affinity (< 100 pM) IL-1 binding sites were identified as well; cultured epidermal dendritic cells (i.e., epidermal Langerhans cells) had 500/cell and spleen dendritic cells approximately 70/cell. Cross-linking approaches showed the 80-kD species that is expected of high-affinity type 1 IL-1 receptor. Anti-type 1 IL-1 receptor (R) mAbs also visualized these receptors by flow cytometry on freshly isolated epidermal dendritic cells. These results provide new evidence that dendritic cells represent a differentiation pathway distinct from lymphocytes and monocytes. Together with recent findings on the effects of IL-1 and GM- CSF on epidermal dendritic cells in situ (see Results and Discussion), the data lead to a proposal whereby IL-1 signals IL-1R to upregulate GM- CSF receptors and thereby, the observed responsiveness of dendritic cells to GM-CSF for growth, viability, and function.  相似文献   

11.
Inhibition of immune functions by antiviral drugs.   总被引:6,自引:0,他引:6       下载免费PDF全文
Immune functions were evaluated in vitro for PBMC isolated from healthy donors and cultured with the antiviral agents, 3'-azido-3'-deoxythymidine (AZT), ribavirin, ganciclovir, 2'3'-dideoxyinosine (ddI), or acyclovir. To identify methods for assessing the effects of antiviral drugs on immune cells, the PBMC response to mitogens, Con A, or phytohemagglutinin was evaluated from measurements of [3H]thymidine and [14C]-leucine incorporation, cell growth, cellular RNA, DNA, and protein levels, and the PBMC proliferative cycle (i.e., progression from G0----G1----S----G2 + M). At clinically relevant concentrations, AZT, ribavirin, or ganciclovir diminished PBMC responsiveness to mitogen. The numbers of proliferating cells in G1, S, and G2 + M phases of the cell cycle, DNA content, and [3H]thymidine uptake were decreased in cultures treated with AZT, ribavirin, or ganciclovir. AZT or ribavirin but not ganciclovir reduced RNA and protein in the cultures and inhibited cell growth. Whereas AZT, ribavirin, or ganciclovir were antiproliferative, ddI or acyclovir had little, if any, effect on PBMC mitogenesis. The inhibitory effects of antivirals on immune cells may contribute to the immune deterioration observed in patients following prolonged use of the drugs.  相似文献   

12.
Flow cytometric analysis of primary ex vivo keratinocyte cultures demonstrated that stem cells, (beta 1 integrin+, keratin 1/keratin 10 [K1/K10-], proliferating cell nuclear antigen [PCNA-] [Bata-Csorgo, Zs., C. Hammerberg, J. J. Voorhees, and K. D. Cooper. 1993. J. Exp. Med. 178:1271-1281]) establish such cultures. This methodology also enabled the quantitation of synchronized recruitment of these cells from G0 into G1 of the cell cycle (PCNA expression), which preceded bright beta 1 integrin expression. (beta 1 integrinbright expression has been shown to be a characteristic feature of keratinocyte stem cells in culture (Jones, P. H., and F. M. Watt. 1993. Cell. 73:713-724). Using the above assay, we determined whether lesional T lymphocytes in psoriasis could be directly responsible for the induction of the stem cell hyperproliferation that is characteristic of this disease. Indeed, CD4+ T lymphocytes, cloned from lesional psoriatic skin and stimulated by immobilized anti-CD3 plus fibronectin, promoted psoriatic uninvolved keratinocyte stem cell proliferation via soluble factors. This induction appeared to be through accelerated recruitment of stem cells from their quiescent state (G0) into cell cycle. By contrast, normal keratinocyte stem cells exhibited no such growth stimulation. Supernatants exhibiting growth induction all contained high levels of GM-CSF and gamma-IFN, low IL-3 and TNF-alpha, and variable IL-4. Only anti-gamma-IFN antibody was able to neutralize growth stimulatory activity of the supernatants on psoriatic uninvolved keratinocyte stem cells. However, because recombinant gamma-IFN alone inhibited growth in this assay, these data suggest that, in psoriasis, gamma-IFN acts cooperatively with other growth factors in the immune induction of cell cycle progression by the normally quiescent stem cell keratinocytes.  相似文献   

13.
Interleukin-HP1 (HP1)/IL-6 is a 25-30-kD protein produced by macrophages, fibroblasts, and certain T cell lines. It was originally identified as a mouse growth factor for B cell hybridomas and plasmacytomas, and was recently shown to stimulate growth and differentiation of normal B cells. Here we demonstrate that, in the presence of lectins or anti-T cell receptor antibodies, HP1/IL-6 has a growth factor activity equivalent to that of IL-2 for mature thymic and peripheral T cells of both the L3T4+ and Lyt-2+ subsets. Contrary to IL-2 and IL-4, HP1/IL-6 was, however, not capable of supporting the growth of established T cell lines. In addition to its effects on T cell proliferation, HP1/IL-6 also enhanced the differentiation of mouse cytolytic T cell precursors in primary allogeneic mixed lymphocyte cultures. Fractionation of responding cell populations indicated that HP1/IL-6 was capable of restoring the response of accessory cell-depleted T cells to Con A. This observation suggests that the production of HP1/IL-6 by macrophages could, at least partly, explain their role in polyclonal T cell activation.  相似文献   

14.
本实验中,我们对AML细胞在rhIL-3存在的条件下进行体外悬浮培养,并作~3H-TdR掺入,细胞周期分布,培养上清溶菌酶含量测定和细胞形态学分析,以便了解IL-3对 AML细胞增殖和分化的影响。结果显示12/14例AML和2例慢性髓性白血病急变期(CML-BC)白血病细胞在IL-3刺激下,~3H-TdR掺入量较对照组高。对5例AML和2例CML-BC进行的细胞周期分布和溶菌酶产量测定结果显示:在IL-3作用下,S期细胞比率较对照组增高,G_0/G_1期细胞比率下降,而G_2/M期细胞比率则无明显变化。溶菌酶产量如果按单位细胞数,则有所下降。另外,IL-3对培养细胞形态学分类各阶段的比率无明显影响。因此,我们认为IL-3在体外是AML细胞增殖的有效刺激因子,而无明显的分化诱导作用。  相似文献   

15.
Background  Paclitaxel has been reported to be a ligand to Toll like receptor 4 (TLR4). Myeloid differentiation factor 88(MyD88) was described as a myeloid differentiation primary response gene. TLR4 signalling owns two pathways: MyD88-dependent and MyD88-independent pathways. XIAP is a key member of the inhibitor of apoptosis protein family. Akt is a major downstream target of growth factor receptor tyrosine kinases, which negatively regulates apoptotic pathways through phosphorylation (pAkt). The aim of the present study is to investigate the role of TLR4 in paclitaxel resistance of ovarian cancer cells.
Materials and methods  We reconstructed the RNA interference expression vector, pGenesil-1-U6 specifically targeting TLR4 mRNA, which was stable transfected into the human ovarian cancer cell line SKOV3 (MyD88-positive expression) and A2780 (MyD88-negative expression). Cell proliferation, cell cycle distribution and cell apoptosis were assessed in the cells transfected with scramble control shRNA (SKOV3/shControl, A2780/shControl) and TLR4 shRNA (SKOV3/shTLR4, A2780/shTLR4) to explore the possible functions of TLR4 in ovarian cancer cells growth. The expression of TLR4, MyD88, XIAP, Akt and pAkt was analysed by Western blot analysis.
Results  A knockdown of TLR4 levels down-regulated the expression of XIAP and pAkt. And it restored the inhibitory effect of paclitaxel on cell proliferation and impeding cell cycle progression in SKOV3 cells.
Conclusions  It suggests that TLR4 negatively regulates paclitaxel chemotherapy and MyD88 is an essential downstream factor to TLR4 signalling for this resistance. Knockdown of TLR4 induces paclitaxel chemosensitivity which might depress the Akt pathway. The TLR4-MyD88 signalling represents an important source to promote tumour growth.  相似文献   

16.
Murine B cell stimulating factor 1 (BSF-1) was purified to homogeneity from supernatants of a stimulated thymoma cell line. A protein of 18.4 kD with a unique N-terminal amino acid sequence was identified. BSF-1 had a sp act of at least 3.28 X 10(8) U/mg. In addition to its B cell-stimulatory activity, BSF-1 also stimulated the proliferation of several IL-2- and IL-3-dependent cell lines. We conclude that BSF-1 is both a growth factor and a differentiation factor. Finally, these results also suggest additional biologic properties of BSF-1 on lineages besides B lymphocytes.  相似文献   

17.
Clonal analysis of functionally distinct human CD4+ T cell subsets   总被引:7,自引:3,他引:7       下载免费PDF全文
A large number of CD4+ T cell clones, obtained from peripheral blood T lymphocytes by direct limiting dilution, allowed us to address the question whether functional heterogeneity exists within the human CD4+ T cell subset. Cytotoxic capacity of cloned T cells was analyzed with the use of anti-CD3 antibodies and target cells bearing FcR for murine IgG. 6 of 12 CD4+ clones obtained were able to lyse Daudi or P815 cells in the presence of anti-CD3 antibodies. The remaining six CD4+ T cell clones tested did not display anti-CD3-mediated cytotoxic activity and did not acquire this cytotoxic capacity during a culture period of 20 wk. In the absence of anti-CD3 mAb, no lytic activity against Daudi, P815, and K562 target cells was observed under normal culture conditions. Phenotypic analysis of these two distinct types of CD4+ T cells did not reveal differences with regard to reactivity with CDw29 (4B4) and CD45R (2H4) mAbs that have been described to recognize antigens associated with helper suppressor/inducer (respectively) CD4+ cells. The CD4+ clones without anti-CD3-mediated cytotoxic activities (Th2) consistently showed a high expression level of CD28 antigens, whereas the cytotoxic clones (Th1) expressed low amounts of CD28. Th1 CD4+ clones did produce IL-2, IFN-gamma, and TNF-alpha/beta, whereas the Th2 T cell clones produced minimal amounts of IL-2 and only low levels of INF-gamma and TNF-alpha/beta in response to anti-CD3 mAbs and PMA. Although not all CD4+ clones did release IL-4, there was no correlation with cytotoxic activity. Moreover, as compared with the Th1 CD4+ clones, Th2 CD4+ T cell clones proliferated moderately in response to immobilized anti-CD3 mAbs. However, proliferation reached the level of the cytotoxic clones when anti-CD28 mABs were present during culture. Both CD4+ subsets provided help for B cell differentiation upon stimulation with anti-CD3 mAbs. Our data suggest that the human CD4+ subset, in analogy to the murine system, comprises two functionally distinct T cell subpopulations, both of which are able to exert helper activity for polyclonal B cell differentiation, but which differ in cytotoxic capacity, lymphokine production, and requirements for proliferation. A function for these two types of T cells in the immune response is discussed.  相似文献   

18.
Proper control of cell cycle progression is critical for the constant self-renewal, differentiation, and homeostasis of the hematopoietic system. Cells of all types share the common cell cycle regulators. The different expression patterns of common regulators, in a broad sense, define cell-type or lineage specificity. However, there remains the possibility of hematopoietic cell cycle regulators tailored to the demands of the hematopoietic system. Here we describe a novel protein, HTm4, which serves as a hematopoietic cell cycle regulator. Our data indicate that HTm4 is expressed in hematopoietic tissues and is tightly regulated during the differentiation of hematopoietic stem cells. It binds to cyclin-dependent kinase-associated (CDK-associated) phosphatase-CDK2 (KAP-CDK2) complexes, and the three proteins demonstrate similar patterns of cellular expression in human lymphoid tissues. HTm4 stimulates the phosphatase activity of KAP, and its C-terminal region is required for binding to KAP-CDK2 complexes and the modulation of KAP activity. Overexpression of HTm4 can cause cell cycle arrest at the G(0)/G(1) phase. Thus, HTm4 is a novel hematopoietic modulator for the G(1)-S cell cycle transition.  相似文献   

19.
The mAb CC11 and CB5 reacted against all 18 IL-3-dependent cell lines tested, but not against cells insensitive to IL-3. Up to 53% nucleated cells from fetal liver (14th day of gestation) and 79% bone marrow cells of young adult mice were positive for both CC11 and CB5 antigens, but cells from thymus, lymph node, heart, and kidney were negative. The molecule recognized by both antibodies has an Mr of 50,000-70,000, a pI of 5.7-6.2, and carries heterogeneous N-linked glycans of high Mr. Both CC11 and CB5 specifically inhibited the growth of clones supported by rIL-3. Neither antibody affected the action of IL-1, IL-2, or B cell maturation factor; the proliferative responses of splenocytes to Con A, PWM, and LPS; nor the maturation of spleen B cells into antibody-secreting cells stimulated by LPS. rIL-3 specifically modulated the expression of the CC11/CB5 glycoprotein on the cell membrane of IL-3-dependent clones. Finally, freshly isolated bone marrow cells that have the CC11/CB5 glycoprotein on the cell membrane proliferated in response to IL-3, whereas cells that lack this molecule did not. We suggest that CC11 and CB5 react against receptors for mouse IL-3.  相似文献   

20.
We have analyzed the effect of human recombinant interleukin 4 (rIL-4) on the growth and differentiation of human intrathymic pre-T cells (CD7+2+1-3-4-8-). We describe that this population of T cell precursors proliferates in response to rIL-4 (in the absence of mitogens or other stimulatory signals) in a dose-dependent way. The IL-4-induced proliferation is independent of the IL-2 pathway, as it cannot be inhibited with an anti-IL-2 receptor alpha chain antibody. In our culture conditions, rIL-4 also promotes the differentiation of pre-T cells into phenotypically mature T cells. Although both CD3/T cell receptor (TCR)-alpha/beta + and CD3-gamma/delta + T cells were obtained, the preferential differentiation into TCR-gamma/delta + cells was a consistent finding. These results suggest that, in addition to IL-2, IL-4 plays a critical role in promoting growth and differentiation of intrathymic T cell precursors at early stages of T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号