首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The mechanisms of the distant stimulation of the bone marrow (BM) after airway allergen exposure remain largely obscure. T cells have been implicated in allergic airway inflammation but their role in allergen-induced BM eosinophilopoiesis is poorly understood. The aim of this study was to determine the role of CD4(+) and CD8(+) T cells in allergen-induced BM eosinophilopoiesis. METHODS: Ovalbumin (OVA)-sensitized wild type (WT), CD4 knockout (CD4-/-) and CD8 knockout (CD8-/-) mice were exposed intranasally to OVA or saline. Bromo-deoxyuridine (BrdU) was used to label newly produced cells. Bone marrow, blood and bronchoalveolar lavage (BAL) were sampled 24 h after the final exposure. Immunostaining for newly produced eosinophils (i.e. BrdU(+)/MBP(+)) and BM eosinophil progenitor [CD34(+)/CD45(+)/interleukin-5 (IL-5)Ralpha(+)] cells was performed. RESULTS: The number of newly produced BM eosinophils (BrdU(+)/MBP(+) cells) was significantly reduced in allergen exposed CD4-/- or CD8-/- mice compared with allergen exposed WT mice, which was followed by a subsequent decrease in newly produced blood and airway eosinophils. Furthermore, BM eosinophil progenitors were significantly reduced in allergen exposed CD4-/- and CD8-/- mice compared with WT mice. Finally, serum IL-5 and Bronchoalveolar lavage fluid eotaxin-2 levels were abolished in allergen exposed CD4-/- mice to levels seen in saline exposed WT mice. CONCLUSIONS: These data suggests that both CD4(+) and CD8(+) T cells have a regulatory role in allergen-induced BM eosinophilopoiesis, whereas CD4(+) T cells are obligatory for allergen-induced airway eosinophilia. The subsequent traffic of eosinophils to the airways is likely to be at least partly regulated by a CD4(+) T-cell-dependent local airway eotaxin-2 production.  相似文献   

2.
BACKGROUND: Airway allergen exposure causes local eosinophilic cell infiltration. This cellular inflammatory response is likely to involve the release of eosinophils from peripheral storage pools, and possibly also regeneration of eosinophils in the bone marrow. IL-12 is an inhibitory cytokine in allergic inflammation, shown to reduce eosinophilic cell infiltration. The aim of the present study was to determine whether airway allergen exposure increases bone marrow eosinophil production, and, if so, whether IL-12 modulates this effect. METHODS: Ovalbumin-sensitized C57BL/6 mice and IL-12 knockout (KO) mice were exposed to allergen via the airway route, and the inflammatory cell response was evaluated in bronchoalveolar lavage fluid, blood, and bone marrow. RESULTS: Allergen instillation intranasally produced a dose-dependent inflammatory response in the lower airways of sensitized mice. This inflammatory response was dominated by eosinophils, but there were also increases of both lymphocytes and neutrophils. Sensitization and airway allergen exposure also increased the IL-5-dependent growth of bone marrow cells in vitro. The enhanced bone marrow responsiveness in vitro was paralleled by an increased number of bone marrow eosinophils in vivo. After sensitization and repeated allergen exposure, IL-12 KO mice showed higher eosinophil levels in both BAL and bone marrow than parallel wild-type control mice. Furthermore, BAL-eotaxin levels were increased in IL-12 KO mice as opposed to parallel wild-type controls after allergen exposure. CONCLUSIONS: Airway allergen exposure induced systemic immunologic responses, including increased eosinophil numbers in both airways and bone marrow, and also enhanced IL-5 responsiveness in bone marrow cells. IL-12 may regulate airway eosinophilia at both the level of eosinophilopoiesis and the level of local recruitment of eosinophils into the airways.  相似文献   

3.
The aim of this study was to evaluate the effect of a neutralizing anti-interleukin (IL)-5 monoclonal antibody (TRFK-5) on bone marrow and airway CD34(+) and immature eosinophils. A focus was to determine the effect of the timing of treatment. Balb/c mice were ovalbumin-sensitized and subsequently exposed to ovalbumin for 5-10 d via airway route. Animals were treated intraperitoneally with TRFK-5 or its isotype control (50 microg) once at different time points. Newly produced eosinophils were labeled using 5-bromo-2'-deoxyuridine (BrdU). BrdU(+) and CD34(+) eosinophil numbers were examined by immunocytochemistry. TRFK-5 reduced bone marrow immature eosinophils within 3 d. This effect was closely related to a reduction of BrdU(+) and CD34(+) bone marrow eosinophils, and reduced numbers of blood eosinophils. However, bronchoalveolar lavage (BAL) eosinophilia was not attenuated to the same degree. The effect of TRFK-5 was most prominent in the extended allergen-exposure protocol, where the treatment was given in the middle of the exposure, with strongly reduced bone marrow CD34(+) and immature bone marrow eosinophils, blood eosinophils as well as BAL BrdU(+) eosinophils, and BAL CD34(+) eosinophils. These data argue that anti-IL-5 downregulates eosinophilopoiesis within 3 d by action in the bone marrow, by inhibition of the early stages of eosinophil maturation from CD34(+) cells.  相似文献   

4.
BACKGROUND: Intrapulmonary administration of IL-12 has been shown to inhibit the number of eosinophils in lung murine models of asthma, but the precise mechanism of this inhibition has not been reported. The purpose of this study was to examine whether IL-12 treatment inhibits bone marrow eosinophilopoiesis, and to elucidate the role of IFN-gamma in this process. OBJECTIVE: To elucidate the in vivo and in vitro effects of IL-12 on eosinophil differentiation from murine bone marrow (BM) stem cells, and to examine the mechanistic role of IFN-gamma in this process. METHODS: Allergen-sensitized BALB/c mice were administered low doses of intranasal IL-12 at the time of allergen challenge, and the number of eosinophils in BM was determined 3 days later. The direct actions of IL-12 on eosinophil differentiation from BM cells were determined in vitro. The mechanistic role of IFN-gamma was assessed by measuring IFN-gamma induction by IL-12 in BM cell cultures, and through the use of IFN-gamma KO mice. RESULTS: Treatment of allergic mice with intrapulmonary IL-12 (1 ng or 10 ng) reduced eosinophils in BM by 43%. Culture of BM cells from allergen-sensitized mice with IL-3 + IL-5 induced eosinophil differentiation in vitro. Addition of IL-12 to these cultures inhibited eosinophil differentiation, with maximal inhibition (45%) occurring at 10 ng/mL IL-12 concentration. IL-12 induced IFN-gamma production from BM cultures, and failed to inhibit eosinophil differentiation in IFN-gamma-knockout mice, indicating a critical mechanistic role for IFN-gamma. CONCLUSION: This study demonstrates that IL-12 selectively inhibits BM eosinophilopoiesis, and that this effect is mediated by IFN-gamma. Intrapulmonary IL-12 has suppressive effects on BM eosinophilopoiesis that may represent a novel mechanism contributing to the anti-eosinophilic effects of IL-12 in allergic airway disease.  相似文献   

5.
We evaluated whether bone marrow (BM) inflammatory cells have capacity to traffic into the airways following allergen exposure in a mouse model of allergen-induced airway inflammation. We also evaluated the effect of IL-5 overexpression on (i) the production of eosinophils in BM, (ii) the accumulation of eosinophils, neutrophils and lymphocytes in blood and airways and (iii) the changes in CD34+ cell numbers in BM, blood and airways. Bromodeoxyuridine (BrdU) was used to label cells produced during the exposure period. Furthermore, CD3 splenocytes were adoptively transferred to investigate the BM inflammatory response. Allergen exposure induced traffic of BM eosinophils, neutrophils and lymphocytes to the airways and increased the number of BrdU+ eosinophils, neutrophils, lymphocytes and CD34+ cells in BALf. IL-5 overexpression enhanced the eosinophilopoiesis and increased the presence of BrdU+ eosinophils and CD34+ cells in airways and enhanced the number of CD34+ cells in BM and blood after allergen exposure. Adoptive transfer of CD3 lymphocytes overexpressing IL-5 caused increased BM eosinophilia. In conclusion, allergen exposure induces traffic of not only newly produced eosinophils but also newly produced neutrophils and lymphocytes into the airways.  相似文献   

6.
The specific mechanisms that alter bone marrow (BM) eosinophilopoiesis in allergen-induced inflammation are poorly understood. The aims of this study were to evaluate (a) whether the number of BM CD34(+) cells is altered due to allergen sensitization and exposure in vivo and (b) whether BM CD34(+) cells produce and release interleukin (IL)-5, IL-3 and granulocyte macrophage-colony stimulating factor (GM-CSF) after stimulation in vitro. A mouse model of ovalbumin (OVA)-induced airway inflammation was used. Bone marrow CD34(+) cells were cultured in vitro and the cytokine release was measured by enzyme-linked immunosorbent assay. The IL-5-production from CD34(+) cells was confirmed by immunocytochemistry. Airway allergen exposure increased the number of BM CD34(+) cells (P = 0.01). Bone marrow CD34(+) cells produced IL-5 when stimulated with the allergen OVA in vitro, but not IL-3 or GM-CSF. Nonspecific stimulus with calcium ionophore and phorbol-myristate-acetate of BM CD34(+) cells caused release of IL-5, IL-3 and GM-CSF. The induced release of IL-5 was increased in alum-injected vs naive mice (P = 0.02), but was not affected by allergen sensitization and exposure. The release of IL-3 and GM-CSF was increased after allergen sensitization and exposure (P < 0.02). In conclusion, allergen can stimulate BM CD34(+) cells to produce IL-5 protein. It is likely that the CD34(+) cells have autocrine functions and thereby regulate the early stages of BM eosinophilopoiesis induced by airway allergen exposure. Alum, a commonly used adjuvant, enhances the release of IL-5 and may thereby enhance eosinophilopoiesis.  相似文献   

7.
We investigated the in vivo role of interleukin 5 (IL-5) and its receptor (IL-5R) in eosinophil growth and differentiation. When mice were administered IL-5 i.p., an increase in the number of eosinophils was observed within 5 days in peripheral blood and the peritoneal cavity. Hypereosinophilia was observed in IL-5 transgenic mice who displayed constitutive production of IL-5. A binding assay with 35S-labeled IL-5 revealed the presence of two classes of IL-5 binding sites (low and high affinity) on the surface of eosinophils. IL-5Rs on eosinophils were recognized using mAbs against murine IL-5R. When the IL-5 transgenic mice were passively administered with anti-murine IL-5R mAbs, the number of recognizable eosinophils in peripheral blood dropped within 5 days to normal levels. The antibody treatment also prevented the increase in the number of eosinophils in IL-5-injected mice. The inhibition of the above experimental eosinophilia was also observed by the passive administration of anti-IL-5 mAb. The results of the in vivo experiments clearly demonstrate that IL-5 plays an essential role in in vivo eosinophilopoiesis and may be acting on eosinophils or their precursors directly through IL-5Rs, resulting in preferential growth of this lineage of hematopoietic cells. It can also be stressed that IL-5 regulates a specific lineage of hematopoietic cells (eosinophils).  相似文献   

8.
Interleukin (IL)-17 is produced by activated memory CD4(+) cells and induces cytokines and chemokines that stimulate neutrophil generation and recruitment. Here, we investigated the involvement of IL-17 in the bronchial influx of neutrophils in experimental allergic asthma. Inhalation of nebulized ovalbumin (OVA) by sensitized mice with bronchial eosinophilic inflammation resulting from chronic OVA exposure induced early IL-17 mRNA expression in inflamed lung tissue, concomitant with a prominent bronchial neutrophilic influx. Anti-IL-17 monoclonal antibodies (mAb) injected before allergen inhalation strongly reduced bronchial neutrophilic influx, in a manner equally as potent as the anti-inflammatory dexamethasone. Remarkably, anti-IL-17 mAb significantly enhanced IL-5 levels in both BAL fluid and serum, and aggravated allergen-induced bronchial eosinophilia. In another series of experiments, anti-IL-17 mAb were given repeatedly during the inhalatory challenge phase with OVA of sensitized mice. This treatment regimen abated bronchial neutrophilia in parallel with reduction of bone marrow and blood neutrophilia. In addition, anti-IL-17 mAb treatment elevated eosinophil counts in the bone marrow and bronchial IL-5 production, without alteration of allergen-induced bronchial hyperresponsiveness. In summary, our results demonstrate that IL-17 expression in airways is upregulated upon allergen inhalation, and constitutes the link between allergen-induced T cell activation and neutrophilic influx. Because neutrophils may be important in airway remodeling in chronic severe asthma, targeting IL-17 may hold therapeutic potential in human asthma.  相似文献   

9.
Increases in bone-marrow (BM) inflammatory cell progenitors are associated with allergen-induced airway hyperresponsiveness and inflammation in asthmatics and dogs. Here, for the first time, we compare the time course of airway hyperresponsiveness, inflammation, and marrow progenitor responses in a mouse model of airway allergen challenge. Sensitized BALB/c mice were studied at 2, 12, 24, 48, and 72 h after intranasal ovalbumin or saline challenges. Outcome measurements included airway responsiveness, airway inflammation as assessed via bronchoalveolar lavage (BAL) and lung tissue sections, and BM eosinophil colony-forming units (Eo-CFU) as enumerated using a semisolid culture assay with optimal concentrations of interleukin-5. We observed significant increases in BAL fluid eosinophils, neutrophils, lymphocytes, and macrophages by 2 h after the second of two intranasal allergen challenges (P < 0.05). Significant increases in airway responsiveness or BM Eo-CFU were observed at 24 h and persisted until 48 h after the second challenge (P < 0.05). Airway inflammation, including eosinophils, persisted until at least 72 h (P < 0.05). We observed that allergen-induced airway eosinophilia is accompanied by increases in BM eosinophil progenitors, indicating that in this model, increased eosinophil production involves an expansion of the relevant stem-cell population. These findings support the use of this model to explore the mechanisms of increased eosinopoiesis observed in human asthma.  相似文献   

10.
Mac-1 (CD11b/CD18) is an important adhesion molecule involved in the migration of leukocytes, cell signaling, and subsequent secretory responses. Its precise role in eosinophil recruitment and activation in vivo is not entirely clear. We wished to directly examine the role of Mac-1 in eosinophil migration in a murine model of allergic pulmonary inflammation. Briefly, wild-type (C57Bl/6) and Mac-1-deficient/knockout (Mac-1 KO) mice were intraperitoneally sensitized with ovalbumin (OVA) and alum (AlOH) on Days 0 and 14, and intranasally challenged with OVA either once on Day 14 or five times on Days 14 and 25 through 28. Control animals were challenged with saline. Bronchial hyperresponsiveness was measured, bronchoalveolar lavage (BAL) fluid was collected, and lungs were harvested for histology 24 h after the last challenge. The data demonstrate that wild-type (WT) mice do not respond to one OVA challenge but do develop bronchial hyperreactivity and airway and tissue eosinophilia after five OVA challenges. Conversely, Mac-1 KO mice develop significant airway eosinophilia after one OVA challenge, and the degree of airway inflammation is comparable to that observed in allergic WT mice after five challenges. In Mac-1 KO mice, after five challenges, bronchial hyperreactivity and airway inflammation was significantly enhanced compared with their wild-type counterparts. Administration of an anti-Mac-1 antibody to WT mice, before each of five intranasal OVA challenges, significantly reduces the airway eosinophilia but has no effect on tissue eosinophilia or bronchial hyperresponsiveness. Intravenous injection of interleukin-5 induced a significant blood eosinophilia in both WT and Mac-1 KO mice. Intranasal eotaxin administration induced similar levels of eosinophil migration into the lung tissues and airways of both WT and Mac-1 KO mice. In conclusion, Mac-1-deficient mice develop enhanced eosinophilic inflammation in the lung in response to allergic antigen challenge.  相似文献   

11.
12.
Asthma and helminth infections induce similar immune responses characterized by the presence of peripheral blood eosinophilia and elevated serum IgE levels. Epidemiological surveys have reported either increases or decreases in the development of atopic diseases and asthma based on the prevalence of helminth infections in the population. The aim of this study was to determine if a pre-existing helminth infection would increase or decrease subsequent allergic responses to an unrelated allergen in the lungs. BALB/cByJ mice were infected with the nematode parasite Strongyloides stercoralis prior to ovalbumin (OVA) immunization and intratracheal challenge. Bronchoalveolar lavage (BAL) and fluid (BALF) were collected 3 days post-challenge and cellular and humoral immune responses were measured. Intracellular cytokine staining revealed increased IL-4 and IL-5 producing cells in BAL from mice infected with S. stercoralis before OVA sensitization. Increased IL-5 protein levels and decreased IFN-gamma protein levels were also observed in the BALF. There was, however, no increase in airway eosinophil accumulation in mice infectd with parasites before sensitization with OVA as compared to mice exposed to OVA alone. Furthermore, eotaxin levels in the lungs induced by OVA was suppressed in mice infected with the parasite before OVA sensitization. The development of OVA specific IgE responses in BALF was also impaired in mice infected with the parasite before sensitization with OVA. These results suggest that a pre-existing helminth infection may potentiate a systemic Type 2-type response yet simultaneously suppress in the lungs allergen-specific IgE responses and eotaxin levels in response to subsequent exposure to allergens.  相似文献   

13.
To test whether eosinophil recruitment after pulmonary allergen challenge is associated with interleukin (IL)-5 in patients with asthma, we performed segmental bronchoprovocation (SBP) with saline, and with low and high dosages of ragweed extract in six patients with allergic asthma. Bronchoalveolar lavage (BAL) of the challenged segments was performed 5 min after challenge (immediate BAL fluid) and repeated 24 h later (late BAL fluid). Allergen challenge resulted in recruitment of eosinophils, and increased levels of eosinophil-active cytokines. A bioassay showed the predominant eosinophil-active cytokine in the late BAL fluids to be IL-5. Analysis of the late BAL fluids revealed that IL-5 levels correlated with the numbers of eosinophils and lymphocytes. This study provides evidence that IL-5 is a critical cytokine associated with eosinophil and lymphocyte recruitment into the airways of patients with asthma following exposure to allergen.  相似文献   

14.
Repeated treatment of sensitized guinea-pigs with cyclosporin-A (CS-A) before aerosol allergen challenge is known to inhibit the subsequent bronchial eosinophilia. It is not known, however, if the drug is also effective on established/on-going bronchial eosinophilia. We have, therefore, studied the effect of CS-A on allergen-induced eosinophil recruitment into the bronchoalveolar lavage (BAL) fluid of guinea-pigs when given before or after induction.Ovalbumin-immunized guinea-pigs were treated with CS-A (20 mg/kg subcutaneously) or vehicle daily for varying periods before a single aerosol allergen challenge. In animals in which bronchial eosinophilia was maintained with repeated aerosol allergen challenge, CS-A or vehicle was given daily for varying periods after the first allergen challenge. BAL and cell count were performed 24 h after the last challenge.In vehicle-treated animals, a single allergen challenge caused a 4-5 fold increase in the number of eosinophils in the BAL fluid after 24 h, declining to baseline by 7 days. In repeatedly-challenged animals, this response was sustained throughout. Eosinophil infiltration was significantly inhibited when CS-A was given daily for 7-14 days, but not for 1 or 3 days, before allergen challenge. When given during an established/on-going eosinophil infiltration, a significant inhibition was seen after administration for 5 or 7 days, but not for 1 or 3 days.These results show that repeated CS-A administration inhibits not only the induction of allergic bronchial eosinophilia but also the maintenance of an established one. This may be relevant in the treatment of allergic diseases, such as asthma, in which drug administration often begins when eosinophilia is already established.  相似文献   

15.
The effect of multiple divided doses compared with single-dose injections of antibodies to murine interleukin (IL)-4 and IL-5 in their respective downregulation of IgE and eosinophilia developing in a model of allergic aspergillosis is investigated. BALB/c mice were exposed to Aspergillus fumigatus antigens (Af) before and along with anticytokine antibodies. The kinetics of blood eosinophils, eosinophil peroxidase (EPO) in bone-marrow cells, scrum levels of IgE and Af-specific antibodies, Af-induced cytokine production and mRNA, and lung histology were studied. The results indicate that only multiple anti-IL-5 antibodies were effective in maintaining baseline levels of blood eosinophils. Multiple anti-IL-4 antibodies also downregulated eosinophils in the bone marrow, lung, and peripheral blood, although to a lesser extent than in anti-IL-5 antibody-injected mice. Significant correlation between the EPO activity and the eosinophil numbers in anticytokine antibody-treated mice was observed. The different anti-IL-4 antibody treatments downregulated IgE to the same extent. We conclude that multiple divided doses of anti-IL-5 antibodies arc required to sustain normal eosinophil levels in murine allergic aspergillosis. This information may be significant in the therapy of pulmonary allergic diseases.  相似文献   

16.
The effect of modifying early neutrophil-mediated inflammation on the development of airway hyperresponsiveness (AHR) was investigated using an interleukin (IL)-1 receptor antagonist (IL-1Ra), an anti-IL-18 antibody (anti-IL-18) or a p38 mitogen-activated protein kinase (MAPK) inhibitor (M39). Balb/c mice were sensitized to ovalbumin (OVA) and challenged with a single intranasal dose of OVA. Treatment with the IL-1Ra or anti-IL-18 was initiated 20 min before challenge, whereas M39 was administered 4 h before the challenge. Eight hours after challenge, sensitized mice showed significantly higher numbers of neutrophils in bronchoalveolar lavage (BAL) fluid; treatment with IL-1Ra, anti-IL-18, or M39 significantly decreased the influx of neutrophils. At 48 h, none of the treatments affected eosinophil inflammation in BAL fluid and lung tissue, goblet cell hyperplasia, or cytokine levels (IL-4, IL-5, IL-12, IL-13, interferon-gamma) in BAL fluid. Anti-IL-18 or IL-1Ra had no effect on the development of AHR, whereas M39-treated mice showed a decrease in methacholine responsiveness. These results demonstrate that early neutrophil influx following allergen challenge is mediated by IL-1, IL-18, and p38 MAPK. However, neutralization of IL-1 and IL-18 did not affect the later development of AHR and eosinophilic airway inflammation. The effects of inhibiting p38 MAPK in decreasing AHR indicate activities independent of its prevention of neutrophil accumulation.  相似文献   

17.
Severe respiratory syncytial virus (RSV)-induced disease is associated with childhood asthma and atopy. We combined models of allergen sensitization and RSV infection to begin exploring the immunologic interactions between allergic and virus-induced airway inflammation and its impact on airway hypersensitivity. Airway resistance was measured after methacholine challenge in tracheally intubated mice by whole body plethysmography. Lung inflammation was assessed by bronchoalveolar lavage (BAL) and histopathology. RSV infection alone did not cause significant airway hyperresponsiveness (AHR) to methacholine. Ovalbumin (OVA)-induced AHR lasted only a few days past the discontinuance of OVA aerosol in mice that were ovalbumin sensitized and mock infected. In contrast, OVA-sensitized mice infected with RSV during the OVA aerosol treatments (OVA/RSV) had AHR for more than 2 weeks after infection. However, 2 weeks after either RSV or mock infection, OVA/RSV mice had significantly more lymphocytes found during BAL than OVA mice, whereas the OVA and OVA/RSV groups had the same number of eosinophils. Histopathologic analysis confirmed an increased inflammation in the lungs of OVA/RSV mice compared with OVA mice. In addition, OVA/RSV mice had a more widespread distribution of mucus in their airways with increased amounts of intraluminal mucus pools compared with the other groups. Thus, prolonged AHR in RSV-infected mice during ovalbumin-sensitization correlates with increased numbers of lymphocytes in BAL fluid, increased lung inflammation, and mucus deposition in the airways, but not with airway eosinophilia. A further understanding of the immunologic consequences of combined allergic and virus-induced airway inflammation will impact the management of diseases associated with airway hyperreactivity. J. Med. Virol. 57:186–192, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

18.
We and others have established an important role for phosphoinositide-3 kinase gamma (PI3Kgamma) in the chemotactic responses of macrophages and neutrophils. The involvement of this lipid kinase in allergic inflammatory responses is, however, yet to be fully determined. Here we compare wild-type (WT) and PI3Kgamma(-/-) (KO) mice within a model of ovalbumin (OVA) -specific pulmonary inflammation. Upon OVA aerosol challenge, cell influx into the bronchoalveolar lavage (BAL) fluid consisted of neutrophils, macrophages and, more significantly, eosinophils - which are key effector cells in allergic inflammation. Each population was reduced by up to 80% in KO mice, demonstrating a role for PI3Kgamma in cell infiltration into the airways. The mechanism of reduced eosinophilia was analysed within both development and effector stages of the immune response. Comparable levels of OVA-specific T-cell proliferation and immunoglobulin production were established in both strains. Furthermore, no significant differences between WT and KO chemokine production were observed. Having identified the critical point of PI3Kgamma involvement, KO eosinophil chemotactic dysfunction was confirmed in vitro. These data are the first to demonstrate the vital role of PI3Kgamma in acute allergic inflammation. The profound dependency of eosinophils on PI3Kgamma for pulmonary influx identifies this lipid kinase as an attractive target for the pharmacological intervention of asthma.  相似文献   

19.
OBJECTIVE: The mechanisms involved in bone marrow eosinophil emigration and recruitment to inflammatory sites are not fully understood. The involvement of CD11b/CD18 in marrow eosinophil release induced by lipopolysaccharide (LPS) or allergen was investigated in mice. METHODS: Eosinophil and neutrophil counts in the pleural cavity, blood and bone marrow were performed at different time intervals after the intrathoracic injection of LPS (250 ng/cavity) or ovalbumin (OVA, 12 microg/cavity; into actively sensitized mice) and compared to anti-CD11b/CD 18 (5C6, 1 mg/mouse) or anti-IL-5 (TRFK-5, 500 microg/kg) treated mice. RESULTS: LPS induced local eosinophil influx, that peaked within 24 h and that was preceded by a decrease in marrow eosinophils at 4 h. Antigenic challenge induced a decrease in marrow eosinophils within 4 h, followed by a long lasting pleural eosinophil accumulation and a persistent increase in marrow eosinophil numbers. Pretreatment with anti-CD11b/CD18 abolished LPS-induced neutrophil and eosinophil accumulation in the pleural cavity at 4 and 24 h, respectively. This pretreatment failed to modify neutrophil emigration from bone marrow, but significantly inhibited marrow eosinophil release at 4 h post-LPS or OVA challenge. Anti-IL-5 pretreatment failed to inhibit LPS-induced pleural eosinophil accumulation and mobilization from bone marrow, but it abolished allergen-induced effects, indicating a role for IL-5 in marrow eosinophil mobilization induced by antigen, but not by LPS challenge. CONCLUSIONS: Our results suggest that eosinophil migration induced by antigen or LPS into the pleural cavity is preceded by bone marrow eosinophil release through a mechanism that depends on CD11b/CD18.  相似文献   

20.
In previous studies we found that guinea pigs demonstrate an increase in airway reactivity and eosinophil numbers 4 days after a respiratory infection with parainfluenza-3 (PI3) virus. Clinical data support the possible involvement of eosinophils in virus-induced airway hyperresponsiveness. Eotaxin, a newly discovered chemokine, could be involved in eosinophil migration to the airways. In this study, eosinophil numbers were counted in blood and bronchoalveolar lavage (BAL) fluid and related with eotaxin concentrations in BAL fluid 1, 2, 3, and 4 days after intratracheal PI3 virus administration. On day 1, blood eosinophils increased by more than 200% ( P  < 0.01). The number of eosinophils were only slightly enhanced from day 2 to day 4 (40%–70%). BAL fluid eosinophils were not increased on day 1 but were significantly elevated on day 2 (180%) and remained high on days 3–4 (>300%, P  < 0.05). This increase in lung eosinophils correlated well with eotaxin levels measured in BAL fluid. There was no significant increase in eotaxin on day 1 following PI3 infection; however, on days 2–4 eotaxin levels in BAL fluid were significantly elevated (four–sixfold increase) when compared with medium inoculated controls. Eotaxin appears to play an important role in eosinophil accumulation in guinea pig lung following PI3 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号