首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Brain stimulation》2021,14(2):261-272
Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.  相似文献   

2.
《Clinical neurophysiology》2019,130(11):2169-2181
ObjectiveMental activation has been reported to modify the occurrence of epileptiform activity. We studied its effect on afterdischarges.MethodIn 15 patients with implanted electrodes we presented cognitive tasks when afterdischarges occurred. We developed a wavelet cross-coherence function to analyze the electrocorticography before and after the tasks and compared findings when cognitive tasks did or did not result in afterdischarge termination. Six patients returned for functional MRI (fMRI) testing, using similar tasks.ResultsCognitive tasks often could terminate afterdischarges when direct abortive stimulation could not. Wavelet cross-coherence analysis showed that, when afterdischarges stopped, there was decreased coherence throughout the brain in the 7.13–22.53 Hz frequency ranges (p values 0.008–0.034). This occurred a) regardless of whether an area activated on fMRI and b) regardless of whether there were afterdischarges in the area.ConclusionsIt is known that cognitive tasks can alter localized or network synchronization. Our results show that they can change activity throughout the brain. These changes in turn can terminate localized epileptiform activity.SignificanceCognitive tasks result in diffuse brain changes that can modify focal brain activity. Combined with a seizure detection device, cognitive activation might provide a non-invasive method of terminating or modifying seizures.  相似文献   

3.
《Brain stimulation》2022,15(6):1552-1564
We have previously shown that focused ultrasound (FUS) pulses in low pressure range exerted bidirectional and brain state-dependent neuromodulation in the nonhuman primate somatosensory cortices by fMRI. Here we aim to gain insights about the proposed neuron selective modulation of FUS and probe feedforward versus feedback interactions by simultaneously quantifying the stimulus (FUS pressures: 925, 425, 250 kPa) and response (% BOLD fMRI changes) function at the targeted area 3a/3b and off-target cortical areas at 7T. In resting-state, lowered intensities of FUS resulted in decreased fMRI signal changes at the target area 3a/3b and off-target area 1/2, S2, MCC, insula and auditory cortex, and no signal difference in thalamic VPL and MD nuclei. In activated states, concurrent high-intensity FUS significantly enhanced touch-evoked signals in area 1/2. Medium- and low-intensity FUS significantly suppressed touch-evoked BOLD signals in all areas except in the auditory cortex, VPL and MD thalamic nuclei. Distinct state dependent and dose-response curves led us to hypothesize that FUS's neuromodulatory effects may be mediated through preferential activation of different populations of neurons. Area 3a/3b may have distinct causal feedforward and feedback interactions with Area 1/2, S2, MCC, insula, and VPL. FUS offers a noninvasive neural stimulation tool for dissecting brain circuits and probing causal functional connections.  相似文献   

4.
《Clinical neurophysiology》2020,131(5):1059-1067
ObjectiveSpinal cord injury (SCI) disrupts the communication between brain and body parts innervated from below-injury spinal segments, but rarely results in complete anatomical transection of the spinal cord. The aim of this study was to investigate residual somatosensory conduction in clinically complete SCI, to corroborate the concept of sensory discomplete SCI.MethodsWe used fMRI with a somatosensory protocol in which blinded and randomized tactile and nociceptive stimulation was applied on both legs (below-injury level) and one arm (above-injury level) in eleven participants with chronic complete SCI. The experimental design accounts for possible confounding mechanical (e.g. vibration) and cortico-cortical top-down mechanisms (e.g. attention/expectation).ResultsSomatosensory stimulation on below-level insensate body regions activated the somatotopically corresponding part of the contralateral primary somatosensory cortex in six out of eleven participants.ConclusionsOur results represent afferent-driven cortical activation through preserved somatosensory connections to the brain in a subgroup of participants with clinically complete SCI, i.e. sensory discomplete SCI.SignificanceIdentifying patients with residual somatosensory connections might open the door for new rehabilitative and restorative strategies as well as inform research on SCI-related conditions such as neuropathic pain and spasticity.  相似文献   

5.
《Brain stimulation》2022,15(4):946-956
BackgroundNorepinephrine (NE) driven noninvasive vagus nerve stimulation (nVNS), which improves attention and reduces reaction time, augments learning. Equally important, endogenous NE mediated arousal is highly dependent on the valence (positive or negative) of the exogenous stimulus. But to date, no study has measured valence specific effects of nVNS on both functional magnetic resonance imaging (fMRI) anticipation task response and reaction time in healthy individuals. Therefore, the aim of this pilot study was to assess whether nVNS vs sham modulates valence cortical anticipation task response and reaction time in a normative sample.MethodsParticipants received right sided transcutaneous cervical nVNS (N = 12) or sham (N = 12) stimulation during a 3T fMRI scan. Subjects first performed a continuous performance task (CPT) and then a cued anticipation task to images of positively and negatively valenced events during fMRI. Reaction times to cues and Blood oxygen level dependent (BOLD) response were examined over phase to identify effects of nVNS/sham over time.ResultsnVNS reduced reaction time for all valenced image anticipation trials. With the fMRI anticipation task, we observed a valence-specific effect; nVNS increased responsivity to images with negative valence and decreased responsivity to images with positive valence, whereas sham showed an inverse valence response.ConclusionsnVNS was linked to reduced reaction time during the anticipation task. In tandem, nVNS consistently enhanced responsivity to negatively valenced images and diminished responsivity to positively valenced images, suggesting specific nVNS driven endogenous neurotransmitter signaling may contribute.  相似文献   

6.
《Brain stimulation》2019,12(5):1197-1204
BackgroundTranscranial direct current stimulation (tDCS) is a promising intervention for major depression. However, its clinical effects are heterogeneous. We investigated, in a subsample of the randomized, clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECT-TDCS), whether the volumes of left and right prefrontal cortex (PFC) and anterior cingulate cortex (ACC) were associated with prefrontal tDCS response.MethodsBaseline structural T1 weighted MRI data were analyzed from 52 patients (15 males). Patients were randomized to the following conditions: escitalopram 20 mg/day, bifrontal tDCS (2 mA, 30min, 22 sessions), or placebo. Antidepressant outcomes were assessed over a treatment period of 10 weeks. Voxel-based gray matter volumes of PFC and ACC were determined using state-of-the-art parcellation approaches.ResultsAccording to our a priori hypothesis, in the left dorsal PFC, larger gray matter volumes were associated with depression improvement in the tDCS group (n = 15) compared to sham (n = 21) (Cohen's d = 0.3, 95% confidence interval [0.01; 0.6], p = 0.04). Neither right PFC nor ACC volumes were associated with depression improvement. Exploratory analyses of distinct PFC subregions were performed, but no area was associated with tDCS response after correction for multiple comparisons.ConclusionLeft PFC baseline gray matter volume was associated with tDCS antidepressant effects. This brain region and its subdivisions should be investigated further as a potential neurobiological predictor for prefrontal tDCS treatment in depression and might be correlated with tDCS antidepressant mechanisms of action.  相似文献   

7.
《Brain stimulation》2020,13(6):1527-1534
BackgroundTranscranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. Recent animal work suggests, however, that TUS effects may be confounded by indirect stimulation of early auditory pathways.ObjectiveWe aimed to investigate in human participants whether TUS elicits audible sounds and if these can be masked by an audio signal.MethodsIn 18 healthy participants, T1-weighted magnetic resonance brain imaging was acquired for 3D ultrasound simulations to determine optimal transducer placements and source amplitudes. Thermal simulations ensured that temperature rises were <0.5 °C at the target and <3 °C in the skull. To test for non-specific auditory activation, TUS (500 kHz, 300 ms burst, modulated at 1 kHz with 50% duty cycle) was applied to primary visual cortex and participants were asked to distinguish stimulation from non-stimulation trials. EEG was recorded throughout the task. Furthermore, ex-vivo skull experiments tested for the presence of skull vibrations during TUS.ResultsWe found that participants can hear sound during TUS and can distinguish between stimulation and non-stimulation trials. This was corroborated by EEG recordings indicating auditory activation associated with TUS. Delivering an audio waveform to participants through earphones while TUS was applied reduced detection rates to chance level and abolished the TUS-induced auditory EEG signal. Ex vivo skull experiments demonstrated that sound is conducted through the skull at the pulse repetition frequency of the ultrasound.ConclusionFuture studies using TUS in humans need to take this auditory confound into account and mask stimulation appropriately.  相似文献   

8.
ObjectiveThis study examined the relationship between circadian typology and risk-taking behavior.MethodsA cross-sectional study was conducted, involving 755 primary and junior school students aged 11–16 years. The Adolescent Risk-Taking Questionnaire and Morningness-Eveningness Questionnaire were administered to assess risk-taking behavior and circadian typology, respectively. Multiple linear regression analyses were performed to analyze the factors influencing risk-taking behavior.ResultsCircadian typology was negatively correlated with risk-taking behavior, with age and sex controlled for (Model 1). When family and class circumstances were added in Model 2, the significance of the association persisted (β = −1.67, 95% CI: [−2.93, −0.42], P = .009). However, the association between circadian typology and risk-taking behavior showed no significance (P = 0.050) when personality characteristics were controlled for in Model 3.ConclusionsThese results provide evidence indicating a relationship between circadian typology and risk-taking behavior, suggesting that evening circadian type is a risk factor for risk-taking behavior in adolescents.  相似文献   

9.
《Clinical neurophysiology》2021,132(2):498-504
Changes in physiological functions after spaceflight and simulated spaceflight involve several mechanisms. Microgravity is one of them and it can be partially reproduced with models, such as head down bed rest (HDBR). Yet, only a few studies have investigated in detail the complexity of neurophysiological systems and their integration to maintain homeostasis. Central nervous system changes have been studied both in their structural and functional component with advanced techniques, such as functional magnetic resonance (fMRI), showing the main involvement of the cerebellum, cortical sensorimotor, and somatosensory areas, as well as vestibular-related pathways. Analysis of electroencephalography (EEG) led to contrasting results, mainly due to the different factors affecting brain activity. The study of corticospinal excitability may enable a deeper understanding of countermeasures' effect, since greater excitability has been shown being correlated with better preservation of functions. Less is known about somatosensory evoked potentials and peripheral nerve function, yet they may be involved in a homeostatic mechanism fundamental to thermoregulation. Extending the knowledge of such alterations during simulated microgravity may be useful not only for space exploration, but for its application in clinical conditions and for life on Earth, as well.  相似文献   

10.
ObjectiveThe aim of this research was to assess the effect of social jetlag (SJL) and its interaction with partial sleep deprivation on resting-state brain activity using the fractional amplitude of low-frequency fluctuation (fALFF) during free-living conditions.MethodsA total of 28 normal weight healthy subjects were enrolled in four study groups (with SJL [with sleep deprivation and without sleep deprivation] and without SJL [with sleep deprivation and without sleep deprivation]), matched 1:1:1:1 for age, gender, and body mass index (BMI). Resting-state functional magnetic resonance imaging (fMRI) scans were collected with SIEMENS 3T scanner while subjects were in a fasting state.ResultsParticipants with SJL had significantly higher fALFF values in right lingual gyrus and right putamen and significantly lower fALFF values in left and right inferior parietal lobe in comparison with participants without SJL and without sleep deprivation. Subjects with sleep deprivation had significantly higher fALFF in the thalamus and left superior frontal gyrus. In those with both SJL and sleep deprivation, we observed higher fALFF values in right Brodmann Area (BA)18 and lower values in left and right parietal inferior lobe. Subjects with SJL alone had significantly lower fALFF values in left frontal mid gyrus (BA6) than those with sleep deprivation alone.ConclusionsSJL was associated with altered resting-state brain activity in regions that have been shown to be involved in hedonic feeding. The effect of SJL was independent of effects induced by short sleep duration. These alterations might represent the substrate for the increased risk of obesity observed in those with SJL.  相似文献   

11.
《Clinical neurophysiology》2021,132(1):167-177
ObjectiveImagined walking has yielded insights into normal locomotor control and could improve understanding of neurologic gait dysfunction. This study evaluated brain activation during imagined walking in chronic stroke.MethodsTen persons with stroke and 10 matched controls completed a walking test battery and a magnetic resonance imaging session including imagined walking and knee extension tasks. Brain activations were compared between tasks and groups. Associations between activations and composite gait score were also calculated, while controlling for lesion load.ResultsStroke and worse gait score were each associated with lesser overall brain activation during knee extension but greater overall activation during imagined walking. During imagined walking, the stroke group significantly activated the primary motor cortex lower limb region and cerebellar locomotor region. Better walking function was associated with less activation of these regions and greater activation of medial superior frontal gyrus area 9.ConclusionsCompared with knee extension, imagined walking was less sensitive to stroke-related deficits in brain activation but better at revealing compensatory changes, some of which could be maladaptive.SignificanceThe identified associations for imagined walking suggest potential neural mechanisms of locomotor adaptation after stroke, which could be useful for future intervention development and prognostication.  相似文献   

12.
《Clinical neurophysiology》2021,132(5):1163-1172
ObjectiveCompared to typically developing (TD) peers, children with attention deficit hyperactivity disorder (ADHD) manifest reduced short interval cortical inhibition (SICI) in the dominant motor cortex measured with transcranial magnetic stimulation (TMS). This multimodal study investigates the inhibitory neurophysiology and neurochemistry by evaluating the relationship between SICI and γ-amino butyric acid (GABA+) levels, measured with magnetic resonance spectroscopy (MRS).MethodsAcross two sites, 37 children with ADHD and 45 TD children, ages 8–12 years, participated. Single and paired pulse TMS to left motor cortex quantified SICI during REST and at times of action selection (GO) and inhibition (STOP) during a modified Slater-Hammel stop signal reaction task. MRS quantified GABA+ levels in the left sensorimotor cortex. Relationships between SICI and GABA+, as well as stopping efficiency and clinical symptoms, were analyzed with correlations and repeated-measure, mixed-models.ResultsIn both groups, higher GABA+ levels correlated with less SICI. In TD children only, higher GABA+ levels correlated with larger TMS motor evoked potentials (MEPs) at REST. In GO and STOP trials, higher GABA+ was associated with smaller MEP amplitudes, for both groups. Overall, GABA+ levels did not differ between groups or correlate with ADHD clinical symptoms.ConclusionsIn children with higher motor cortex GABA+, motor cortex is less responsive to inhibitory TMS (SICI). Comparing the relationships between MRS-GABA+ levels and responses to TMS at REST vs. GO/STOP trials suggests differences in inhibitory neurophysiology and neurotransmitters in children with ADHD. These differences are more prominent at rest than during response inhibition task engagement.SignificanceEvaluating relationships between GABA+ and SICI may provide a biomarker useful for understanding behavioral diagnoses.  相似文献   

13.
《Clinical neurophysiology》2021,132(10):2447-2455
ObjectiveThe aim was to find a sensitive method to highlight the remodeling of the brain’s bioelectric activity in post-stroke repair.MethodsFifteen mild upper limb paretic stroke patients and age-matched healthy controls were included. Repeated trials of finger tapping around the 10th and 100th days after stroke onset were recorded with a 128-channel EEG. Power spectra and Inter Trial Coherence (ITC) calculations were synchronized to tappings. ITC was correlated with motor performance.ResultsITC, in low frequency bands, designates the motor related bioelectric activity in channel space in both healthy subjects and patients. Ten days after stroke onset, delta-theta ITC was severely reduced compared to baseline, while three months later ITC reorganized partially over the ipsilesional central-parietal areas reflecting the improvement of motor networks. Decreased ITC in the central-parietal area remained significant compared to controls. Delta band ITC over the dorsolateral-prefrontal cortex correlates with the performance on Nine Hole Peg Test. At post-recovery, non-paretic hand tappings show significantly decreased delta-theta ITC over the supplementary motor area, which reflects network remodeling.ConclusionsInter Trial Coherence is a useful measure of brain reorganization during stroke recovery.SignificanceDelta- theta ITC is a sensitive indicator of impaired motor execution.  相似文献   

14.
《Brain stimulation》2020,13(3):891-899
BackgroundBrain mapping is fundamental to understanding brain organization and function. However, a major drawback to the traditional Brodmann parcellation technique is the reliance on the use of postmortem specimens. It has therefore historically been difficult to make any comparison regarding functional data from different regions or hemispheres within the same individual. Moreover, this method has been significant limited by subjective boundaries and classification criteria and therefore suffer from reproducibility issues. The development of transcranial magnetic stimulation (TMS) offers an alternative approach to brain mapping, specifically the motor cortical regions by eliciting quantifiable functional reactions.ObjectiveTo precisely describe the motor cortical topographic representation of pharyngeal constrictor musculature using TMS and to further map the brain for use as a tool to study brain plasticity.Methods51 healthy subjects (20 male/31 female, 19–26 years old) were tested using single-pulse TMS combined with intraluminal catheter-guided high-resolution manometry and a standardized grid cap. We investigated various parameters of the motor-evoked potential (MEP) that include the motor map area, amplitude, latency, center of gravity (CoG) and asymmetry index.ResultsCortically evoked response latencies were similar for the left and right hemispheres at 6.79 ± 0.22 and 7.24 ± 0.27 ms, respectively. The average scalp positions (relative to the vertex) of the pharyngeal motor cortical representation were 10.40 ± 0.19 (SE) cm medio-lateral and 3.20 ± 0.20 (SE) cm antero-posterior in the left hemisphere and 9.65 ± 0.24 (SE) cm medio-lateral and 3.18 ± 0.23 (SE) cm antero-posterior in the right hemisphere. The mean motor map area of the pharynx in the left and right hemispheres were 9.22 ± 0.85(SE) cm2and 10.12 ± 1.24(SE) cm2, respectively. The amplitudes of the MEPs were 35.94 ± 1.81(SE)uV in the left hemisphere and 34.49 ± 1.95(SE)uV in the right hemisphere. By comparison, subtle but consistent differences in the degree of the bilateral hemispheric representation were also apparent both between and within individuals.ConclusionThe swallowing musculature has a bilateral motor cortical representation across individuals, but is largely asymmetric within single subjects. These results suggest that TMS mapping using a guided intra-pharyngeal EMG catheter combined with a standardized gridded cap might be a useful tool to localize brain function/dysfunction by linking brain activation to the corresponding physical reaction.  相似文献   

15.
In advanced Parkinson's disease (PD), therapeutic interventions include device-aided therapies such as continuous subcutaneous apomorphine infusion (CSAI), levodopa-carbidopa intestinal gel (LCIG) infusion, and deep brain stimulation (DBS). We reappraised the evidence guiding the decision of appropriate device-aided therapies in advanced PD, and systematically reviewed the literature (including ongoing clinical trials) comparing CSAI, LCIG, DBS in terms of efficacy and cost-effectiveness, with particular consideration to possible conflicts of interests. Of 14,980 documents screened, sixteen were included (4 and 13 studies examining efficacy and cost-effectiveness, respectively). LCIG and DBS showed higher efficacy compared to best medical therapy (BMT). DBS was more expensive than BMT and LCIG. Lifetime costs of CSAI were lower of those of DBS, and DBS lifetime costs were lower than those of LCIG. The majority of studies (11 out of 16) showed direct or indirect sponsorship from pharmaceutical or device companies. Only one ongoing clinical trial comparing LCIG with DBS was found. Device-aided therapies address unmet needs in advanced PD. LCIG and DBS are superior to BMT in head-to-head studies; however, initial and lifetime costs should be considered when choosing those therapies. Guidelines to assist clinicians and patients to choose device-aided therapies, free from conflict of interests, are required.  相似文献   

16.
《Brain stimulation》2023,16(1):28-39
BackgroundPrevious studies have shown that interpersonal neural synchronization (INS) is a ubiquitous phenomenon between individuals, and recent studies have further demonstrated close associations between INS and shared external sensorimotor input and/or internal mental processes within a dyad. However, most previous studies have employed an observational approach to describe the behavior-INS correlation, leading to difficulties in causally disentangling the relationship among INS, external sensorimotor input and the internal mental process.Objective/hypothesisThe present study aimed to directly change the level of INS through anodal transcranial direct current stimulation (tDCS) to test whether the change in INS would directly impact the internal mental process (Hypothesis 1) or indirectly through external sensorimotor input; the interaction behaviors were also changed (Hypothesis 2) or not (Hypothesis 3).MethodsThirty pairs of romantically involved heterosexual couples were recruited for a within-subjects design. Three conditions were assessed: a true stimulation condition with 20-min anodal high-definition tDCS to the right anterior temporal lobe (rATL) of women before they communicated with their partners, a sham stimulation condition and a control brain region stimulation condition. The comparison between the true and sham or control brain region conditions allows us to detect the true effect of brain stimulation on INS. Functional near-infrared spectroscopy (fNIRS) hyperscanning was used to simultaneously collect dyadic participants' hemodynamic signals during communication. INS, empathy, and interaction behaviors were examined and compared among different stimulation conditions.ResultsTrue brain stimulation significantly decreased INS between the rATL of the women and sensorimotor cortex (SMC) of the men compared to the sham stimulation condition (t(27.8) = ?2.821, P = 0.009, d = 0.714) and control brain region stimulation condition (t(27.2) = ?2.606, P = 0.015, d = 0.664) during communication. It also significantly decreased the level of emotional empathy (F(2,145) = 6.893, P = 0.001) but did not change sensorimotor processes, such as verbal or nonverbal interaction behaviors. However, nonverbal behaviors mediated the relationship between the changes in INS and emotional empathy (lower limit confidence interval = 0.01, upper limit confidence interval = 2.66).Conclusion(s)These findings support the third hypothesis, suggesting that INS is associated with the shared internal mental process indirectly via the sensorimotor process, but the sensorimotor process itself does not covary with the INS and the associated internal mental process. These results provide new insight into the hierarchical architecture of dual-brain function from a bottom-up perspective.  相似文献   

17.
ObjectivesThe pathogenesis of hypoxic-ischemic white matter injury (WMI) in premature infants is still unclear, and the imbalance of cerebral iron metabolism may play an important role. Our study set out to investigate the changes in iron distribution, iron content and malondialdehyde (MDA) in disparate brain regions (parietal cortex, corpus callosum, hippocampus) within 84 days after hypoxia-ischemia (HI) in neonatal rats and to clarify the role of iron metabolism in WMI.Materials and MethodsWe adopted a rat model of hypoxic-ischemic WMI. Alterations in iron metabolism were detected by iron staining and iron assay kits, and the degree of brain injury was determined by MDA assays.ResultsOur results showed that different degrees of brain iron deposition occurred within 28 days after HI, and iron staining was the most obvious 3 days after HI. The iron content increased remarkably at 1–7 d after HI in the mixed tissues, especially at 3 d after HI. While the iron content in the parietal cortex and corpus callosum elevated obviously 14 days after HI. And the change trend of MDA was almost consistent with that of the iron content.ConclusionsOur findings revealed that brain iron metabolism changed dynamically in 3-day-old neonatal rats suffering from HI, which may cause lipid peroxidation damage to brain tissues. This process may be one of the pathogeneses of hypoxic-ischemic WMI.  相似文献   

18.
IntroductionAlterations in large scale neural networks leading to neurophysiological changes have been described in Parkinson's disease (PD). The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been suggested as a promising tool to identify and quantify neurophysiological mechanisms. The aim of this study was to investigate specific changes in electrical brain activity in response to stimulation of four brain areas in patients with PD.Methods21 healthy controls and 32 patients with PD underwent a combined TMS-EEG assessment that included stimulation of four brain areas: left M1, right M1, left dorso-lateral prefrontal cortex (DLPFC), and right DLPFC. Six measures were calculated to characterize the TMS evoked potentials (TEP) using EEG: (1) wave form adherence (WFA), (2) late phase deflection (LPD), (3) early phase deflection (EPD), (4) short-term plasticity (STP), (5) inter-trial adherence, and (6) connectivity between right and left M1 and DLPFC. A Linear mixed-model was used to compare these measures between groups and areas stimulated.ResultsPatients with PD showed lower WFA (p = 0.052), lower EPD (p = 0.009), lower inter-trial adherence (p < 0.001), and lower connectivity between homologs areas (p = 0.050), compared to healthy controls. LPD and STP measures were not different between the groups. In addition, lower inter-trial adherence correlated with longer disease duration (r = −0.355, p = 0.050).ConclusionsOur findings provide evidence to various alterations in neurophysiological measures in patients with PD. The higher cortical excitability along with increased variability and lower widespread of the evoked potentials in PD can elucidate different aspects related to the pathophysiology of the disease.  相似文献   

19.
《Clinical neurophysiology》2020,131(2):529-541
ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.  相似文献   

20.
Bilateral limb-shaking transient ischemic attack (LS-TIA) is a rare disease involving carotid artery stenosis, characterized by ballism-like involuntary movements of the arms and legs. We describe the case report of a male patient in his 80s presented with continuous bilateral ballism in the arms and legs and tongue dyskinesia. Magnetic resonance imaging showed no ischemic lesions, while cerebral angiography revealed right internal carotid artery (ICA) occlusion and 80% stenosis of the left ICA. 99mTc-ethyl cysteinate dimer single-photon emission computed tomography demonstrated hypoperfusion in the right cerebral cortex but hyperperfusion in both basal ganglia. Left ICA stenting was performed, and involuntary limb shaking disappeared. This case report highlights the importance of accurate diagnosis and treatment of bilateral ballism as LS-TIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号