首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundPrevious research in animals and humans has demonstrated a potential role of stress regulatory systems, such as the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system, in the development of substance use disorders. We thus investigated alterations of HPA and eCB markers in individuals with chronic cocaine use disorder by using an advanced hair analysis technique.MethodsWe compared hair concentrations of glucocorticoids (cortisone, cortisol) and the eCBs 2-arachidonylglycerol, anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA) between 48 recreational cocaine users (RCU), 25 dependent cocaine users (DCU), and 67 stimulant-naïve controls. Self-reported substance use and hair concentrations of substances were also assessed.ResultsSignificantly higher concentrations of hair cortisone were found in RCU and DCU compared with controls. Hair concentrations of OEA and PEA were significantly lower in DCU compared with RCU and controls. Additionally, within cocaine users, elevated cocaine hair concentration was a significant predictor for increased glucocorticoid and decreased OEA hair levels. Moreover, higher 3,4-methyl​enedioxymethamphetamine hair concentration was correlated with elevated cortisone and AEA, OEA, and PEA levels in hair within cocaine users, whereas more self-reported cannabis use was associated with lower eCBs levels in hair across the total sample.ConclusionOur findings support the hypothesis that the HPA axis and eCB system might be important regulators for substance use disorders. The mechanistic understanding of changes in glucocorticoid and eCB levels in future research might be a promising pharmacological target to reduce stress-induced craving and relapse specifically in cocaine use disorder.  相似文献   

2.
Chronic stress is the primary environmental risk factor for the development and exacerbation of affective disorders, thus understanding the neuroadaptations that occur in response to stress is a critical step in the development of novel therapeutics for depressive and anxiety disorders. Brain endocannabinoid (eCB) signaling is known to modulate emotional behavior and stress responses, and levels of the eCB 2-arachidonoylglycerol (2-AG) are elevated in response to chronic homotypic stress exposure. However, the role of 2-AG in the synaptic and behavioral adaptations to chronic stress is poorly understood. Here, we show that stress-induced development of anxiety-like behavior is paralleled by a transient appearance of low-frequency stimulation-induced, 2-AG-mediated long-term depression at GABAergic synapses in the basolateral amygdala, a key region involved in motivation, affective regulation, and emotional learning. This enhancement of 2-AG signaling is mediated, in part, via downregulation of the primary 2-AG-degrading enzyme monoacylglycerol lipase (MAGL). Acute in vivo inhibition of MAGL had little effect on anxiety-related behaviors. However, chronic stress-induced anxiety-like behavior and emergence of long-term depression of GABAergic transmission was prevented by chronic MAGL inhibition, likely via an occlusive mechanism. These data indicate that chronic stress reversibly gates eCB synaptic plasticity at inhibitory synapses in the amygdala, and in vivo augmentation of 2-AG levels prevents both behavioral and synaptic adaptations to chronic stress.  相似文献   

3.
Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength.  相似文献   

4.
The endocannabinoid (eCB) system regulates mood, emotion, and stress coping, and dysregulation of the eCB system is critically involved in pathophysiology of depression. The eCB ligand 2-arachidonoylglycerol (2-AG) is inactivated by monoacylglycerol lipase (MAGL). Using chronic unpredictable mild stress (CUS) as a mouse model of depression, we examined how 2-AG signaling in the hippocampus was altered in depressive-like states and how this alteration contributed to depressive-like behavior. We report that CUS led to impairment of depolarization-induced suppression of inhibition (DSI) in mouse hippocampal CA1 pyramidal neurons, and this deficiency in 2-AG-mediated retrograde synaptic depression was rescued by MAGL inhibitor JZL184. CUS induced depressive-like behaviors and decreased mammalian target of rapamycin (mTOR) activation in the hippocampus, and these biochemical and behavioral abnormalities were ameliorated by chronic JZL184 treatments. The effects of JZL184 were mediated by cannabinoid CB1 receptors. Genetic deletion of mTOR with adeno-associated viral (AAV) vector carrying the Cre recombinase in the hippocampus of mTORf/f mice recapitulated depressive-like behaviors induced by CUS and abrogated the antidepressant-like effects of chronic JZL184 treatments. Our results suggest that CUS decreases eCB-mTOR signaling in the hippocampus, leading to depressive-like behaviors, whereas MAGL inhibitor JZL184 produces antidepressant-like effects through enhancement of eCB-mTOR signaling.  相似文献   

5.
THC-like psychoactive cannabinoids permeate the lipid bilayer of the membrane, altering its physicochemical properties and activating phospholipases. As a result, an increased production of arachidonic acid occurs with its cascade of eicosanoids, including prostaglandins. In addition, THC and its psychoactive derivatives bind within the membrane in a stereospecific fashion, to a transmembrane G protein coupled receptor (GPCR) for which THC has a much higher affinity than the natural ligands, arachidonylethanolamide (AEA) and 2-arachidonyglycerol (2-AG). These natural lipid ligands may be considered signaling molecules which are generated in the membrane lipid bilayer. THC alters the physicochemical disposition of the lipid bilayer and interacts with the integral membrane protein receptors through alteration of the boundary lipid. This effect is distinct from the mechanism resulting from its persistent binding to a G protein coupled transmembrane receptor. THC does not interact directly with neurotransmitter receptors but alters their pharmacological response in an allosteric fashion. It is proposed that the binding of AEA and 2-AG to the G protein coupled transmembrane receptor possesses a physiological function which is to regulate the signaling between boundary lipids and membrane receptors in response to extracellular signals. AEA and 2-AG are eicosanoid signaling molecules which modulate the activity of G protein coupled transmembrane receptors. AEA and 2-AG should not be identified with synthetic ligand molecules dubbed 'endogenous cannabinoids' which are 'xenobiotics' with no physiological regulating function. THC deregulates persistently a basic signaling mechanism of the membrane lipid bilayer and of its integrated receptors with resulting impairment of cellular function of brain, heart and male gonads. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Cannabinoids have long been shown to have a range of potential therapeutic effects, including antiemetic actions, analgesia, and anxiolysis. However, psychomimetic and memory disruptive side effects, as well as the potential for abuse and dependence, have restricted their clinical development. Endogenous cannabinoids (i.e., endocannabinoids; eCBs), such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are produced throughout the limbic system and other brain regions associated with emotionality and are believed to modulate behavioral responses to stress-related conditions. AEA and 2-AG are rapidly metabolized by the respective enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Accordingly, inhibition of each enzyme increases brain levels of the appropriate eCB. Although FAAH inhibition has been established to decrease anxiety-like behavior, the role of 2-AG has been difficult to ascertain until the recent synthesis of JZL184, a potent and selective MAGL inhibitor. In the present study, we investigated the effects of inhibiting FAAH or MAGL on anxiety-like behavior in marble burying, a model of repetitive, compulsive behaviors germane to anxiety disorders such as obsessive-compulsive disorder. The FAAH inhibitor PF-3845, the MAGL inhibitor JZL184, and the benzodiazepine diazepam decreased marble burying at doses that did not affect locomotor activity. In contrast, Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of marijuana, did not consistently reduce marble burying without also eliciting profound decreases in locomotor behavior. The CB1 cannabinoid receptor antagonist rimonabant blocked the reduction in marble burying caused by FAAH and MAGL inhibitors, but not by diazepam, indicating a CB1 receptor mechanism of action. These data indicate that elevation of AEA or 2-AG reduces marble burying behavior and suggest that their catabolic enzymes represent potential targets for the development of new classes of pharmacotherapeutics to treat anxiety-related disorders.  相似文献   

7.
The specific protein target of delta9-tetrahydrocannabinol (delta9-THC), the main active ingredient of Cannabis sativa L., was characterized from rat brain nearly 20 years ago, and several endogenous compounds and proteins comprising the endocannabinoid (eCB) system have since been discovered. It has become evident that the eCB system consists of at least two cannabinoid receptors (i.e. the CB1 and CB2 receptors), in addition to their endogenous ligands (the eCBs) and several enzymes involved in the biosynthesis and catabolism of the eCBs. The two well-established eCBs, N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), are produced by neurons on demand, act near their sites of synthesis and are effectively metabolized by fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL), respectively. Inhibitors specifically targeting these enzymes could offer novel therapeutic approaches (e.g. for the treatment of pain and movement disorders). This MiniReview summarizes the literature concerning the potential therapeutic potential of FAAH and MGL inhibitors.  相似文献   

8.

Rationale

The central endocannabinoid system (eCB system) sustains the activity of the hypothalamus–pituitary–adrenal (HPA) axis in mediating individual emotional responses. Deviation in maturational trajectories of these two physiological systems, may persistently adjust individual behavioral phenotype.

Objective

We investigated, in outbred CD1 male mice, whether exposure to prenatal stress may influence short- and long-term emotional and neurochemical responses to a pharmacological stimulation of the eCB system during adolescence.

Methods

To mimic prenatal stress, pregnant mice were supplemented with corticosterone in the drinking water (33.3 mg/l); their adolescent male offspring received daily injections of the fatty acid amide hydrolase inhibitor, URB597 (0.4 mg/kg), in order to enhance eCB signaling. Mice were then tested for: locomotor activity during adolescence and locomotor activity, anxiogenic, and anhedonic profiles in adulthood. We analyzed the expression of CB1 receptors (CB1Rs) in prefrontal cortex, hippocampus, striatum, and cerebellum in adulthood.

Results

Corticosterone administration (PC group) resulted, in adolescence, in a reduction in body weight and locomotion, while in adulthood, in increased anxiety-related behavior and reduced CB1Rs expression in cerebellum. URB597 exposure reduced locomotor activity and increased anhedonia in adulthood. CB1Rs were up-regulated in striatum and hippocampus and down-regulated in the cerebellum. PC-URB597 mice failed to show reductions in locomotion; exhibited increased risk assessment behavior; and showed reduced CB1Rs expression within the prefrontal cortex.

Conclusions

Present results provide support to the hypothesis that precocious manipulations mapping onto the HPA axis and eCB system may persistently adjust individual emotional responses and eCB system plasticity.  相似文献   

9.
Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.Subject terms: Experimental organisms, Stress and resilience, Limbic system, Behavioural methods, Anxiety  相似文献   

10.
Stress plays an important role in psychiatric disorders, and preclinical evidence indicates that the central endocannabinoid system modulates endocrine and neuronal responses to stress. This study aimed to investigate the effect of acute stress on circulating concentrations of endocannabinoids (eCBs) in healthy humans. A total of 71 adults participated in two sessions in which they were exposed to either a standardized psychosocial stress procedure (Trier Social Stress Test) or a control task. Blood samples for eCB and cortisol assays and cardiovascular and subjective measures were obtained before and at regular intervals after the tasks. Serum concentrations of the eCBs, N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), as well as of the N-acylethanolamides (NAEs), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA), and of the O-acylglycerol, 2-oleoylglycerol (2-OG), were determined. Compared with the control condition, stress increased serum concentrations of AEA and the other NAEs immediately after the stress period. Increases in PEA were positively correlated with increases in serum cortisol after stress. Furthermore, anxiety ratings at baseline were negatively correlated with baseline concentrations of AEA. The sex and menstrual cycle status of the subject affected the NAE responses to stress. Interestingly, subjects of Asian and African-American races exhibited different patterns of stress responses compared with the Caucasian subjects. These results indicate that stress increases circulating NAEs in healthy human volunteers. This finding supports a protective role for eCBs in anxiety. Further research is needed to elucidate the function of these lipid mediators, and to determine the mechanisms that regulate their appearance in the circulation.  相似文献   

11.
Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the 'on-demand' synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI.  相似文献   

12.
An organism's ability to adapt successfully to stress reflects an equilibrium that requires not only an appropriate response, but also an ability to control that response. The hypothalamic-pituitary-adrenal (HPA) axis contributes to these homeostatic actions. Previous research implicates involvement of the serotonergic 5-HT2A receptors of the hypothalamic paraventricular nucleus (PVN) in HPA axis activation. However, the sensitivity of these receptors to activate the PVN under conditions of chronically elevated glucocorticoids is not known. To this extent, we investigated the effects of chronic corticosterone administration on c-fos expression induced by the serotonergic 5-HT2A/2C receptor agonist DOI within the PVN. Under resting conditions, DOI evokes a robust activation of the PVN; however, following chronic treatment with corticosterone, this response is abolished. These results indicate that chronically elevated glucocorticoid levels desensitize serotonergic 5-HT2A receptors within the PVN, a phenomenon which may contribute to HPA axis suppression following protracted glucocorticoid hypersecretion.  相似文献   

13.
Opioids and cannabinoids are among the most widely consumed drugs of abuse in humans and the phenomena of cross-tolerance or mutual potentiation have been demonstrated between the two drugs. Several authors have suggested that both drugs share common links in their molecular mechanisms of action, although this has been a matter of controversy. Furthermore, no data exist on the possible adaptive changes in the contents of arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), the two major endogenous ligands for cannabinoid receptors, in morphine-tolerant rats. In the present work, we investigated the alterations in cannabinoid receptor functionality and endocannabinoid levels in rats chronically treated with morphine (5 mg/kg, s.c., twice a day for 5 days). Autoradiographic-binding studies using [(3)H]CP-55 940 revealed a slight but significant reduction in cannabinoid receptor level in the cerebellum and hippocampus of morphine-tolerant rats, while CP-55 940-stimulated [(35)S]GTPgammaS binding showed a strong decrease (40%) in receptor/G protein coupling in the limbic area of these animals. Moreover, in the same brain regions we measured, by isotope-dilution gas chromatography/mass spectrometry, the contents of AEA and 2-AG. Chronic morphine exposure produced a strong reduction in 2-AG contents without changes in AEA levels in several brain regions (ie striatum, cortex, hippocampus, limbic area, and hypothalamus). These findings clearly demonstrate that prolonged activation of opioid receptors could alter the cannabinoid system, in terms of both receptor functionality and endocannabinoid levels, and suggest the involvement of this system, alone or in combination with other mediators, in the phenomenon of morphine tolerance.  相似文献   

14.
Previous studies suggest that central arginine vasopressin (AVP) signaling can inhibit the hypothalamic–pituitary–adrenal (HPA) axis. To test a role for the AVP V1A receptor in stress HPA axis habituation, adult male rats were exposed to 5 consecutive days of 3 h restraint with or without continuous intracerebroventricular infusion of the V1A receptor antagonist d(CH2)5Tyr(Me)AVP (10 μg/day). Assessment of neuropeptide expression and HPA output under basal conditions revealed no effects of V1A receptor antagonism in stress naive animals. Between the first and last day of restraint exposure, controls showed marked declines in ACTH and corticosterone responses, and maintained plasma concentrations of testosterone. In contrast, V1A receptor antagonized animals displayed significantly smaller declines in ACTH and corticosterone responses, and a decrease in plasma testosterone. Despite their reduced expression of HPA axis habituation, antagonized animals continued to show stress-induced increases in AVP mRNA in the hypothalamic paraventricular nucleus and bed nucleus of the stria terminalis, and even higher levels of AVP expression in the medial amygdala relative to controls. The data leave open the nature and extent to which these and other AVP-containing pathways are recruited during repeated restraint, but nevertheless reveal a critical role for central V1A receptors in stress adaptation. As the effects of V1A receptor antagonism were restricted to the repeated restraint condition, we conclude that normal adaptation to stress involves a shift toward enhanced AVP utilization and/or V1A receptor signaling.  相似文献   

15.
Psychobiology is the discipline that attempts to integrate the impact of environmental and psychological variables on biological systems. This paper focuses on the psychobiology of the hypothalamic-pituitary-adrenal (HPA) axis and illustrates several processes that influence the response of the HPA axis. The interaction of the developing rodent or primate with their primary care giver has permanent long-term effects on the HPA axis. Manipulations that alter maternal behavior during critical periods of development permanently modify the HPA axis. The HPA axis can be programmed to be hypo-responsive or hyper-responsive as a function of time and length of maternal separation. In the adult organism, the HPA response to stress is highly dependent on specific psychological factors such as control, predictability, and feedback. In primates, social variables have been shown to diminish or exacerbate the HPA stress response. During the post-natal period of development, the mother appears to actively inhibit the pups' HPA axis. Different aspects of maternal behavior regulate different components of the HPA system.  相似文献   

16.
Anandamide (AEA) and 2-arachidonyl glycerol (2-AG), endogenous ligands for the CB1 and CB2 cannabinoid receptors, are referred to as endocannabinoids because they mimic the actions of delta9-tetrahydrocannabinol (Δ9-THC), a plant-derived cannabinoid. The processes by which AEA and 2-AG are biosynthesized, released, taken up by cells and hydrolyzed have been of much interest as potential therapeutic targets. In this review we will discuss the progress that has been made to characterize the primary pathways for AEA and 2-AG formation and breakdown as well as the role that specialized membrane microdomains known as lipid rafts play in these processes. Furthermore we will review the recent advances made to track and detect AEA in biological matrices.  相似文献   

17.
Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic–pituitary–adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.  相似文献   

18.
19.
1. Two endocannabinoids, arachidonoyl ethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) bind and activate G-protein-coupled cannabinoid receptors, but limited data exist on their relative ability to activate G-proteins. 2. Here we assess agonist potency and efficacy of various cannabinoids, including 2-AG, HU-310 (2-arachidonoyl glyceryl ether, a third putative endocannabinoid), HU-313 (another ether analogue of 2-AG), AEA, R-methanandamide (an enzymatically stable analogue of AEA), and CP-55,940 at rat brain CB(1) receptors using agonist-stimulated [(35)S]-GTPgammaS binding to cerebellar membranes and whole brain sections. Degradation of endocannabinoids under experimental conditions was monitored by HPLC. 3. To enhance efficacy differences, agonist dose-response curves were generated using increasing GDP concentrations. At 10(-6) M GDP, all compounds, except HU-313, produced full agonists responses approximately 2.5 fold over basal. The superior efficacy of 2-AG over all other compounds became evident by increasing GDP (10(-5) and 10(-4) M). 4. In membrane incubations, 2-AG was degraded by 85% whereas AEA and HU-310 were stable. Pretreatment of membranes with phenylmethylsulphonyl fluoride inhibited 2-AG degradation, resulting in 2 fold increase in agonist potency. Such pretreatment had no effect on AEA potency. 5. Responses in brain sections were otherwise consistent with membrane binding data, but 2-AG evoked only a weak signal in brain sections, apparently due to more extensive degradation. 6. These data establish that even under conditions of substantial degradation, 2-AG is a full efficacy agonist, clearly more potent than AEA, in mediating CB(1) receptor-dependent G-protein activity in native membranes.  相似文献   

20.
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号