首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose: The present study evaluated the marginal gap of lithium disilicate crowns fabricated through three different wax pattern techniques; Conventional, Milling and 3D-printing. Materials and Methods: Thirty stone models were replicated from a stainless-steel model representing a prepared tooth; ten were sent to make conventional wax patterns while the remaining were sent to a digital dental scanner. The computer aided design was completed and STL (Standard Tessellation Language) files were sent to either milling or 3D-printing machines. All wax patterns (n = 30) were pressed, and a stabilizing instrument was used to secure the crowns on the master model. The marginal gap was measured at 18 points for each crown using a digital microscope (µm) (n = 540) and compared using One-way ANOVA (p ≤ 0.05). Results: There was a significant difference in the marginal gap value between all three groups (p < 0.01) where the milled group showed the least mean gap (28.87 ± 30.18 µm), followed by 3D printed (47.85 ± 27.44 µm), while the highest mean marginal gap was found in the conventional group (63.49 ± 28.05 µm). Conclusion: Milled and 3D-printed wax patterns produced better fitting crowns compared to conventional techniques.  相似文献   

2.
Lithium disilicate and zirconia are the two most popular materials for aesthetic and dental prosthetic work; however, due to their limitations, a new material is being researched, namely zirconia-reinforced lithium disilicate, the surface of which is treated with different procedures to achieve the best possible surface properties. In this study, the surface of zirconia-reinforced lithium disilicate glass-ceramic was treated using different methods (conventional and laser) to determine the effects of the treatment procedures on the surface properties and surface roughness to achieve a higher strength of adhesion from the self-adhesive resin cement to zirconia-reinforced lithium disilicate. The treated surfaces were investigated using profilometry, X-ray diffraction and energy dispersive X-ray fluorescence. The results obtained were statistically evaluated. The results show that the surface roughness is highest for the samples treated with Er:YAG (erbium-doped yttrium aluminium garnet laser) and silanisation. Furthermore, the surface treatment procedures applied did not change the composition of the surface.  相似文献   

3.
The aim of the current study was to evaluate the influence of hydrofluoric (HF) acid concentration and conditioning time on the shear bond strength (SBS) of dual cure resin cement to pressed lithium disilicate ceramic compared to treatment with an Etch and Prime self-etching glass-ceramic primer (EP). A total of 100 samples of pressed lithium disilicate (IPS e.max Press, Ivoclar Vivadent) were randomly divided into five groups (n = 20) according to surface treatment: two different concentrations of HF (5% or 9%), for different durations (20 or 90 s), or treatment with EP. Adhesion of light-cured resin cement to the treated surface was tested by the SBS test. The substrate surfaces of the specimen after failures were examined by SEM. Data were analyzed using Weibull distribution. The highest cumulative failure probability of 63.2% of the shear bond strength (η parameter) values was in the 9% HF −90 s group (17.71 MPa), while the lowest values were observed in the 5% HF −20 s group (7.94 MPa). SBS values were not affected significantly by the conditioning time (20 s or 90 s). However, compared to treatment with 5% HF, surface treatment with 9% HF showed a significantly higher η (MPa) as well as β (reliability parameter). Moreover, while compared to 9% HF for 20 s, EP treatment did not differ significantly in SBS values. Examination of the failure mode revealed a mixed mode of failure in all the groups. Within the limits of this study, it is possible to assume that IPS e.max Press surface treatment with 9% HF acid for only 20 s will provide a better bonding strength with resin cement than using 5% HF acid.  相似文献   

4.
Purpose: This study aims to evaluate the effectiveness of two ceramic and two composite polishing systems for a novel chairside computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic with three-dimensional and two-dimensional microscopy images. This ceramic material can be used for implant-supported or tooth-borne single-unit prostheses. Materials and Methods: Sixty flat samples of novel chairside CAD/CAM reinforced lithium disilicate ceramic (Amber Mill, Hass Bio) were divided into five groups (n = 15/group) and treated as follows: Group 1 (NoP), no polished treatment; group 2 (CeDi), polished with ceramic Dialite LD (Brasseler USA); group 3, (CeOp) polished with ceramic OptraFine (Ivoclar Vivadent); group 4, (CoDi) polished with composite DiaComp (Brasseler USA), and group 5 (CoAs), polished with composite Astropol (Ivoclar Vivadent). The polished ceramic surface topography was observed and measured with three-dimensional and two-dimensional images. Results: All polishing systems significantly reduced the surface roughness compared with the non-polished control group (Sa 1.15 μm). Group 2 (CeDi) provided the smoothest surface arithmetical mean eight with 0.32 μm, followed by group 3 (CeOp) with 0.34 μm. Group 5 (CoAs) with 0.52 μm provided the smoothest surface among the composite polishing kits. Group 4 (CoDi) with 0.66 μm provided the least smooth surface among all polishing systems tested. Conclusions: Despite the effectiveness of ceramic polishing systems being superior to composite polishing systems of the CAD/CAM lithium disilicate restorative material, both polishing systems significantly improved the smoothness.  相似文献   

5.
Objectives: To evaluate the microleakage and marginal gap of various luting materials after cementing ceramic crowns. Methods: Cervical margins of human molars were designed as circular chamfers. Cementation of full-contour ceramic crowns was conducted with zinc-phosphate cement (Harvard cement), resin cement (Panavia F 2.0) and self-adhesive resin cements (RelyX Unicem, BifixSE, MaxCem Elite, PermaCem2.0, G-Cem). Aging of specimens was performed in artificial saliva, at 37 °C for four weeks and thermocycling. The marginal gap was measured with a scanning electron microscope and silver precipitation within the microleakage. All data were compared statistically. Results: Independent of the margin preparation, the highest median value for microleakage was 320.2 μm (Harvard cement), and the lowest was 0 μm (Panavia F 2.0). The median value for enamel was 0 µm and for dentin 270.9 μm (p < 0.001), which was independent of the luting material. The marginal and absolute marginal gaps were not significantly different between the tested materials. There was no correlation between microleakage and the marginal gaps. Conclusion: Significant differences in microleakage were found between the tested luting materials (p < 0.05). Independent from the luting materials, the microleakage in dentin showed significantly higher values than in enamel.  相似文献   

6.
The purpose of this study was to investigate the effect of silane-containing universal adhesives on the bonding strength of lithium disilicate. Two-hundred-and-forty lithium disilicate blocks were divided into 16 groups according to the following surface treatments: hydrofluoric acid (HF)-treated or not, silane-treated or not, and the type of universal adhesive used (All-Bond Universal (ABU); Prime & bond (PB); Clearfil Universal Bond (CU); Single bond Universal (SBU)). After surface treatment, resin discs were bonded to each lithium disilicate using dual-cure resin cement. Bonded specimens were stored in distilled water for 24 h and then subjected to microtensile bond strength (μTBS) test. Failure modes were examined under stereomicroscope. Microscopic observation of bonded interfaces was analyzed using scanning electron microscopy. The μTBS data were statistically analyzed. Regardless of silane treatment, all groups treated with HF showed higher bonding strengths compared to those that were not treated with HF (p < 0.05). In groups treated with HF, the bonding strength increased after silane application (p < 0.05) except PB and CU (p > 0.05). Adhesive failures were dominant in all groups, but some mixed failures were observed in ABU treated with HF and silane. While most of the specimens that were not treated with silane after HF application only showed loose bonding between the ceramic and resin cement due to partial gaps, the specimens treated with silane application after HF showed a tight ceramic–resin interface. In conclusion, the silane in universal adhesives did not effectively improve the bonding strength between lithium disilicate and resin cement.  相似文献   

7.
The purpose of this study was to demonstrate the time-efficiency and the clinical effectiveness of chairside-fabricated lithium disilicate single crowns by digital impressions compared to the conventional method. Thirteen patients requiring a single crown on the maxillary or mandibular premolar or first molar were assigned as study subjects. The impressions were obtained using the conventional method and two digital methods with intraoral scanners: AEGIS.PO (Digital Dentistry Solution, Seoul, Korea) and CEREC Omnicam (Sirona, Bensheim, Germany). Two types of lithium disilicate single crowns were obtained; a reference crown (by conventional workflow) and a chairside crown (by digital workflow). The total time taken for fabricating the chairside crown was recorded. The replica technique was performed to compare the marginal and internal fit of the two types of crowns. In addition, accuracy of the intraoral scanners was evaluated by the best-fit alignment method. The difference between the groups was analyzed using the two-tailed paired t-test or one-way ANOVA, followed by the Student–Newman–Keuls test for multiple comparisons. Statistical significance was accepted at p < 0.05 for all statistical tests. The time required to obtain the impressions by the AEGIS (7:16 ± 1:50 min:s) and CEREC (7:29 ± 2:03 min:s) intraoral scans was significantly lower than the conventional method (12:41 ± 1:16 min:s; p < 0.001). There was no significant difference between the intraoral scanners. The total working time to fabricate the chairside crown averaged 30:58 ± 4:40 min:s. The average marginal gap was not significantly different between the reference (107.86 ± 42.45 µm) and chairside (115.52 ± 38.22 µm) crowns (p > 0.05), based on results of replica measurement. The average internal gaps were not significantly different. The average value of the root mean square between the AEGIS (31.7 ± 12.3 µm) and CEREC (32.4 ± 9.7 µm) scans was not significantly different (p > 0.05). Intraoral scans required a significantly shorter impression time than the conventional method, and it was possible to fabricate a lithium disilicate crown in a single visit. There were no statistically significant differences in the fit of the restorations and accuracy of the intraoral scanners compared to the conventional workflow.  相似文献   

8.
The purpose of this study is to evaluate the effect of pulp chamber extension angles and filling material mechanical properties on the biomechanical response of a ceramic endocrown. A 3D model of maxillary molar that underwent endodontically treatment was exported to computer aided design software to conduct finite element analysis (FEA). The endocrown model was modified considering different pulp chamber extension angles (right angle; 6°, 12° and 18° of axial divergence). The solids were imported into the computer aided engineering software in Standard for the Exchange of Product Data (STEP) format. Nine different filling materials were simulated to seal the orifice of the root canal system under each endocrown restoration (resin composite, bulk-fill resin composite, alkasite, flowable resin composite, glass ionomer cement, autocured resin-reinforced glass ionomer cement, resin cement, bulk-fill flowable resin composite, zinc oxide cement), totaling 36 models. An axial load (300 N) was applied at the occlusal surface. Results were determined by colorimetric graphs of von-Misses stress (VMS) and Maximum Principal Stress (MPS) on tooth, cement layer, and endocrown restorations. VMS distribution showed a similar pattern between the models, with more stress at the load region for the right-angled endocrowns. The MPS showed that the endocrown intaglio surface and cement layer showed different mechanical responses with different filing materials and pulp chamber angles. The stress peaks plotted in the dispersion plot showed that the filling material stiffness is proportional to the stress magnitude in the endocrown, cement layer and tooth adhesive surface. In addition, the higher the pulp chamber preparation angle, the higher the stress peak in the restoration and tooth, and the lower the stress in the cement layer. Therefore, 6° and 12° pulp chamber angles showed more promising balance between the stresses of the adhesive interface structures. Under the conditions of this study, rigid filling materials were avoided to seal the orifice of root canal system when an endocrown restoration was planned as rehabilitation. In addition, the pulp chamber axial walls were prepared between 6° and 12° of divergence to balance the stress magnitude in the adhesive interface for this treatment modality.  相似文献   

9.
The aim of this study was to determine the resistance to fracture of feldspathic restorations with lithium disilicate and crystallized with different ovens and programs. Methods: Sixty monolithic restorations (LD) (EMAX CAD™ LT, Ivoclar-Vivadent™) were designed with the same parameters and milled with a CAD/CAM system (CEREC SW 5.1, CEREC MCXL, Dentsply-Sirona™, Bensheim). Each restoration was randomly assigned by randomization software (RANDNUM) to one of the three groups: (a) (NF) Oven P310 (Ivoclar, Vivadent) normal crystallization program, (b) (FF) Ivoclar P310 oven (Ivoclar-Vivadent™) rapid crystallization program, or (c) (SF) SpeedFire oven (Dentsply-Sirona™). Results: There were statistically significant differences between the groups (ANOVA, p < 0.05). The NF and FF groups showed the highest values of resistance to fracture, with statistically significant differences with the SF group. Conclusions: Using a furnace from the same dental company with predetermined programs from the material manufacturer, as well as using a predetermined program for rapid crystallization, has no effect on fracture resistance, and would save clinical time when performing ceramic restorations with lithium disilicate, while keeping their mechanical properties.  相似文献   

10.
All-ceramic restorations have become increasingly popular in dentistry. Toward ensuring that these restorations adhere to the tooth structure, this study determines the optimal femtosecond laser (FL) treatment parameters for lithium disilicate glass-ceramics and highly translucent zirconia ceramics with respect to surface morphology. For both the ceramics, the following surface conditions were investigated: (1) as-sintered; (2) Al2O3 sandblasted; (3) FL treatment (dot pattern with line distances of 14, 20, and 40 µm); (4) FL treatment (crossed-line pattern with a line distance of 20 and 40 µm). Surface roughness parameters were estimated using a 3D confocal laser microscope; microstructures were analyzed using a scanning electron microscope. Peak fluence (Fpeak) values of 4 and 8 J/cm2 and irradiation numbers (N) of 20 and 10 shots were selected to create dot patterns in highly translucent zirconia and lithium disilicate glass-ceramics, respectively. Furthermore, Fpeak = 8 J/cm2 and N = 20 shots were chosen to obtain crossed-line patterns in both ceramics. Our results show that lithium disilicate glass-ceramics and highly translucent zirconia exhibit a similar surface morphology under each of the surface treatment conditions. Therefore, FL irradiation of dot or crossed-line patterns (at a distance of 20 and 40 µm) are potential candidates for future investigations.  相似文献   

11.
The aim of this study was to compare the load-to-failure resistance and optical properties of nano-lithium disilicate (NLD) with lithium disilicate (LDS) and zirconia-reinforced lithium silicate (ZLS) in different aging processes. Thirty crowns were milled from NLD, LDS, and ZLS (n = 10). All crowns were subjected to thermomechanical aging and loaded until catastrophic failure. Ten specimens from each material were prepared in two different thicknesses (0.7 mm and 1.5 mm, n = 5), and color coordinates were measured before and after coffee thermocycling. Color differences (ΔE00) and relative translucency parameter (RTP) were calculated. Data were analyzed by using ANOVA and Bonferroni-corrected t-tests (α = 0.05). ZLS had the highest load-to-failure resistance (p ≤ 0.002), while the difference between LDS and NLD was nonsignificant (p = 0.776). The interaction between material type and thickness affected ΔE00 (p < 0.001). Among the 0.7 mm thick specimens, ZLS had the lowest ΔE00 (p < 0.001). Furthermore, 1.5 mm thick ZLS had lower ΔE00 than that of 1.5 mm thick LDS (p = 0.036). Other than ZLS (p = 0.078), 0.7 mm thick specimens had higher ΔE00 (p < 0.001). The interaction between material type, thickness, and thermocycling affected RTP (p < 0.001). Thinner specimens presented higher RTP (p < 0.001). NLD and LDS had higher RTP than ZLS (p ≤ 0.036). However, 0.7 mm thick specimens had similar RTP after coffee thermocycling (p ≥ 0.265). Coffee thermocycling reduced the RTP values of 0.7 mm thick NLD (p = 0.032) and LDS (p = 0.008). NLD may endure the occlusal forces present in the posterior region. However, long-term coffee consumption may impair the esthetics of restorations particularly when thin NLD is used.  相似文献   

12.
This study aimed at evaluating the effects of different surface conditionings on the microshear bond strength (µSBS) of a self-adhesive resin cement to VITA Suprinity (ZLS) and IPS e.max CAD (LD). Three surface conditioning protocols were performed on ZLS and LD before luting with a self-adhesive resin cement (RelyX Unicem 2, RXU): hydrofluoric acid (HF), HF + silane (HF + S), or Monobond Etch & Prime (EP). In each group, 15 cylindrical buildups of RXU were prepared on five milled bars and submitted to a µSBS test. Data were statistically analyzed with two-way ANOVA and Tukey’s post hoc test (p < 0.05). Failure modes were recorded and classified as adhesive, mixed, cohesive in resin, or ceramic, and statistically analyzed with Fisher’s exact test (p = 0.05). One additional bar per group was used for the morphological characterization of the conditioned surface by means of SEM. The material per se did not significantly influence adhesion (p = 0.744). Conditioning protocol was a significant factor: EP yielded significantly higher μSBS than HF (p = 0.005), while no significant differences emerged between EP and HF + S (p = 0.107), or HF + S and HF (p = 0.387). The material-conditioning protocol interaction was not statistically significant (p = 0.109). Significant intergroup differences were found in distribution of failure modes: mixed failures were predominant in the ZLS/EP group, while the other groups showed a prevalence of adhesive failures. The self-etching primer showed promising results in terms of immediate bond strength of a self-adhesive resin cement to lithium-silica-based glass ceramics, suggesting its alternative use to hydrofluoric acid and silane conditioning protocols.  相似文献   

13.
Background: The purpose was to compare the fracture resistance and the mode of failure of different contemporary restorative materials to restore implant supported, cement-retained mandibular molars. Methods: Two 5 × 10 mm titanium dental implants were mounted in resin blocks and prefabricated titanium and zirconia abutments were connected to each implant. Each implant received forty crowns resembling mandibular first molars. The specimens were divided into four groups (n = 10/group) for each abutment according to the type of material; Group A: porcelain fused to metal crowns; Group B: monolithic zirconia crowns; Group C: zirconia coping with ceramic veneer; Group D: all ceramic lithium disilicate crowns. Specimens were cemented to the abutments, mounted into a universal testing machine, and vertical static load was applied at a speed of 1 mm/min. The test stopped at signs of visual/audible fracture/chipping. Fracture resistance values were analyzed using ANOVA and Tukey’s tests (α ≤ 0.05). The modes of failure were visually observed. Results: A statistically significant difference (p < 0.001) of the fracture resistance values among tested groups was found. The group that showed the highest fracture resistance was Group A for both the titanium and the zirconia abutments (3.029 + 0.248 and 2.59 ± 0.39, respectively) while Group D for both abutments (1.134 + 0.289 and 1.68 ± 0.13) exhibited the least resistance. Conclusions: Fracture resistance and fracture mode varied depending on type of restorative material. For both titanium and zirconia abutments, porcelain fused to metal showed the highest fracture resistance values followed by monolithic zirconia.  相似文献   

14.
Background: The aim of this study was to test the impact of hot acids etching and two types of adhesive cement on the retention of zirconia crowns. Methods: Forty maxillary premolars were prepared, and zirconia crowns were designed and fabricated with proximal extensions, then divided into 4 groups (n = 10). Group AP; the crowns were air-abraded and cemented using Panavia SA Cement. Group AL; the crowns were air- abraded and cemented using GC LinkForce. Group AHP; the crowns were air-abraded, etched with the hot acids (48% hydrofluoric acid and 69% nitric acid), and cemented using Panavia SA Cement. Group AHL; the crowns were air-abraded, etched with the hot acids, and cemented using GC LinkForce. Each zirconia crown was pre-treated and bonded to its corresponding tooth. After thermocycling (5–55 °C/10,000), the retention test was performed and the load required to dislodge the crown was reported in Newton (N), and mode of failure was recorded. The retention strength (MPa) was calculated for each tested variable and statistically analyzed. Results: Group AHP showed the highest mean value of the retention strength, followed by group AP then group AHL. Group AL showed the lowest value. A statistically significant effect (p = 0.001) of the hot acids etching on the retention of zirconia crown was found. Also, there was a significant effect (p = 0.000) of the cement type. The interaction between surface treatment and the cement type has no significant impact (p = 0.882). The main mode of failure for Panavia SA Cement is mixed mode of failure, while for G-CEM LinkForce is adhesive failure. Conclusions: Hot acid etching pre-treatment improved the retention of zirconia crown. Usage of Panavia SA Cement with hot acids etching is effective can be used for adhesive cementation of zirconia crown.  相似文献   

15.
Owing to its excellent mechanical properties and aesthetic tooth-like appearance, lithium disilicate glass–ceramic is more attractive as a crown for dental restorations. In this study, lithium disilicate glass–ceramics were prepared from SiO2–Li2O–K2O–P2O5–CeO2 glass systems with various Al2O3 contents. The mixed glass was then heat-treated at 600 °C and 800 °C for 2 h to form glass–ceramic samples. Phase formation, microstructure, mechanical properties and bioactivity were investigated. The phase formation analysis confirmed the presence of Li2Si2O5 in all the samples. The glass–ceramic sample with an Al2O3 content of 1 wt% showed rod-like Li2Si2O5 crystals that could contribute to the delay in crack propagation and demonstrated the highest mechanical properties. Surface treatment with hydrofluoric acid followed by a silane-coupling agent provided the highest micro-shear bond strength for all ceramic conditions, with no significant difference between ceramic samples. The biocompatibility tests of the material showed that Al2O3-added lithium disilicate glass–ceramic sample was bioactive, thus activating protein production and stimulating the alkaline phosphatase (ALP) activity of osteoblast-like cells.  相似文献   

16.
This study tested whether three different cement layer thicknesses (60, 120 and 180 μm) would provide the same bonding capacity between adhesively luted lithium disilicate and human dentin. Ceramic blocks were cut to 20 blocks with a low-speed diamond saw under cooling water and were then cemented to human flat dentin with an adhesive protocol. The assembly was sectioned into 1 mm2 cross-section beams composed of ceramic/cement/dentin. Cement layer thickness was measured, and three groups were formed. Half of the samples were immediately tested to evaluate the short-term bond strength and the other half were submitted to an aging simulation. The microtensile test was performed in a universal testing machine, and the bond strength (MPa) was calculated. The fractured specimens were examined under stereomicroscopy. Applying the finite element method, the residual stress of polymerization shrinkage according to cement layer thickness was also calculated using first principal stress as analysis criteria. Kruskal–Wallis tests showed that the ‘‘cement layer thickness’’ factor significantly influenced the bond strength results for the aged samples (p = 0.028); however, no statistically significant difference was found between the immediately tested groups (p = 0.569). The higher the cement layer thickness, the higher the residual stress generated at the adhesive interface due to cement polymerization shrinkage. In conclusion, the cement layer thickness does not affect the immediate bond strength in lithium disilicate restorations; however, thinner cement layers are most stable in the short term, showing constant bond strength and lower residual stress.  相似文献   

17.
Digital dentistry is increasingly replacing conventional methods of manually producing dental restorations. With regards to computer-aided manufacturing (CAM), milling is state of the art. Additive manufacturing (AM), as a complementary approach, has also found its way into dental practices and laboratories. Vat photo-polymerization is gaining increasing attention, because it enables the production of full ceramic restorations with high precision. One of the two predominantly used ceramic materials for these applications is lithium disilicate, Li2Si2O5. This glass ceramic exhibits a substantial fracture toughness, although possesses much lower bending strength, than the other predominantly used ceramic material, zirconia. Additionally, it shows a much more natural optical appearance, due to its inherent translucency, and therefore is considered for anterior tooth restorations. In this work, an optimized formulation for photo-reactive lithium disilicate suspensions, to be processed by vat photo-polymerization, is presented. Following the fundamental theoretical considerations regarding this processing technique, a variety of solvents was used to adjust the main properties of the suspension. It is shown that this solvent approach is a useful tool to effectively optimize a suspension with regards to refractive index, rheology, and debinding behavior. Additionally, by examining the effect of the absorber, the exposure time could be reduced by a factor of ten.  相似文献   

18.
During professional hygiene procedures, different instruments used may cause various damage to dental prostheses. Deplaquing and scaling with curettes and ultrasonic instruments may inadvertently increase the surface roughness of the material and the risk of future bacterial adhesion and/or also compromise the marginal seal of the prosthesis. Hence, the aim of this study was to assess the qualitative effects of two types of curettes and one piezoelectric instrument with a stainless-steel tip on three types of metal-free samples. After treating the samples with different instrumentations, they were analyzed using the scanning electron microscope and then underwent a qualitative microanalysis by using a spectroscopy machine. All the materials tested in this study have undergone significant changes of their superficial structure after instrumentation both with mechanical and manual instruments. Plastic curettes appeared to be less aggressive than the other instruments. Disilicate samples show a significantly lower degree of surface glazing erosion compared to the zirconia sample with all the instruments used.  相似文献   

19.
Computer aided design/computer aided manufacturing (CAD/CAM) polymers for long-term dental restorations benefit from enhanced mechanical properties. However, the quantification of their bonding properties on teeth is lacking. Therefore, the aim of this study was to determine the retention strength (RS) of differently pretreated new developed polymethylmethacrylate/urethanedimethacrylate-based CAD/CAM polymer bonded on dentin. In summary, 120 human caries-free molars were prepared, and polymeric crowns were milled and pretreated (n = 20): visio.link (VL), Scotchbond Universal (SU), Monobond Plus/Heliobond (MH), Margin Bond (MB), Margin Bond mixed with acetone (1:1) (MBA) or not pretreated (CG). Half of the specimens were cemented using Variolink II and the other half with RelyX Ultimate. Specimens were stored for 24 h in distilled water and thermal cycled (5000 ×, 5 °C/55 °C). The retention load was measured and failure types were defined. RS was calculated and analyzed using both two- and one-way ANOVA with a post-hoc Scheffé-test, unpaired t-test, Kaplan–Meier with Breslow–Gehan test and chi-squared test (p < 0.05). Crowns bonded using RelyX Ultimate showed higher RS than those bonded using Variolink II. The pretreatment showed no impact on the RS. However, survival analysis within Variolink II found an impact of pretreatment. The median RS for MH was the lowest and statistically different from MB, MBA and CG. For Variolink II MH had the poorest survival as the estimated cumulative failure function of the debonded crown increased very quickly with increasing TBS. Within the RelyX Ultimate groups, no significant differences were determined. The newly developed CAD/CAM polymer showed the highest bonding properties after cementation using RelyX Ultimate.  相似文献   

20.
The aim of this study was to evaluate four test methods on the adhesion of resin composite to resin composite, and resin composite to glass ceramic. Resin composite specimens (N = 180, Quadrant Universal LC) were obtained and distributed randomly to test the adhesion of resin composite material and to ceramic materials (IPS e.max CAD) using one of the four following tests: (a) Macroshear SBT: (n = 30), (b) macrotensile TBT: (n = 30), (c) microshear µSBT: (n = 30) and (d) microtensile µTBT test (n = 6, composite-composite:216 sticks, ceramic-composite:216 sticks). Bonded specimens were stored for 24 h at 23 °C. Bond strength values were measured using a universal testing machine (1 mm/min), and failure types were analysed after debonding. Data were analysed using Univariate and Tukey’s, Bonneferroni post hoc test (α = 0.05). Two-parameter Weibull modulus, scale (m), and shape (0) were calculated. Test method and substrate type significantly affected the bond strength results, as well as their interaction term (p < 0.05). Resin composite to resin composite adhesion using SBT (24.4 ± 5)a, TBT (16.1 ± 4.4)b and µSBT (20.6 ± 7.4)a,b test methods presented significantly lower mean bond values (MPa), compared to µTBT (36.7 ± 8.9)b (p < 0.05). When testing adhesion of glass ceramics to resin composite, µSBT (6.6 ± 1)B showed the lowest and µTBT (24.8 ± 7)C,D the highest test values (MPa) (SBT (14.6 ± 5)A,D and TBT (19.9 ± 5)A,B) (p < 0.05). Resin composite adhesion to ceramic vs. resin composite did show significant difference for the test methods SBT and µTBT (resin composite (24.4 ± 5; 36.7 ± 9 MPa) vs. glass ceramic (14.6 ± 5; 25 ± 7 MPa)) (p > 0.05). Among substrate–test combinations, Weibull distribution presented the highest shape values for ceramic–resin in µSBT (7.6) and resin–resin in µSBT (5.7). Cohesive failures in resin–resin bond were most frequently observed in SBT (87%), followed by TBT (50%) and µSBT (50%), while mixed failures occurred mostly in ceramic–resin bonds in the SBT (100%), TBT (90%), and µSBT (90%) test types. According to Weibull modulus, failure types, and bond strength, µTBT tests might be more reliable for testing resin-based composites adhesion to resin, while µSBT might be more suitable for adhesion testing of resin-based composites to ceramic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号