首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) inhibited 99.9% (20,698/20,709) of Enterobacteriaceae isolates at ≤8 μg/ml. This compound was active against resistant subsets, including ceftazidime-nonsusceptible Enterobacter cloacae (MIC50/90, 0.25/0.5 μg/ml) and extended-spectrum β-lactamase (ESBL) phenotype isolates. An ESBL phenotype was noted among 12.4% (1,696/13,692 isolates from targeted species) of the isolates, including 776 Escherichia coli (12.0% for this species; MIC50/90, 0.12/0.25 μg/ml), 721 Klebsiella pneumoniae (16.3%; MIC50/90, 0.12/0.25 μg/ml), 119 Klebsiella oxytoca (10.3%; MIC50/90, 0.06/0.25 μg/ml), and 80 Proteus mirabilis (4.9%; MIC50/90, 0.06/0.12 μg/ml) isolates. The most common enzymes detected among ESBL phenotype isolates from 2013 (n = 743) screened using a microarray-based assay were CTX-M-15-like (n = 307), KPC (n = 120), SHV ESBLs (n = 118), and CTX-M-14-like (n = 110). KPC producers were highly resistant to comparators, and ceftazidime-avibactam (MIC50/90, 0.5/2 μg/ml) and tigecycline (MIC50/90, 0.5/1 μg/ml; 98.3% susceptible) were the most active agents against these strains. Meropenem (MIC50/90, ≤0.06/≤0.06 μg/ml) and ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) were active against CTX-M-producing isolates. Other enzymes were also observed, and ceftazidime-avibactam displayed good activity against the isolates producing less common enzymes. Among 11 isolates displaying ceftazidime-avibactam MIC values of >8 μg/ml, three were K. pneumoniae strains producing metallo-β-lactamases (all ceftazidime-avibactam MICs, >32 μg/ml), with two NDM-1 producers and one K. pneumoniae strain carrying the blaKPC-2 and blaVIM-4 genes. Therapeutic options for isolates producing β-lactamases may be limited, and ceftazidime-avibactam, which displayed good activity against strains, including those producing KPC enzymes, merits further study in infections where such organisms occur.  相似文献   

2.
The combination of aztreonam plus avibactam is being developed for use in infections caused by metallo-β-lactamase-producing Enterobacteriaceae strains that also produce serine β-lactamases. The in vitro activities of aztreonam-avibactam and comparator antimicrobials were determined against year 2012 and 2013 clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii using the broth microdilution methodology recommended by the Clinical and Laboratory Standards Institute (CLSI). A total of 28,501 unique clinical isolates were obtained from patients in 190 medical centers within 39 countries. MIC90 values of aztreonam and aztreonam-avibactam against all collected isolates of Enterobacteriaceae (n = 23,516) were 64 and 0.12 μg/ml, respectively, with 76.2% of the isolates inhibited by ≤4 μg/ml of aztreonam (the CLSI breakpoint) and 99.9% of the isolates inhibited by ≤4 μg/ml of aztreonam-avibactam using a fixed concentration of 4 μg/ml of avibactam. The MIC90 was 32 μg/ml for both aztreonam and aztreonam-avibactam against P. aeruginosa (n = 3,766). Aztreonam alone or in combination with avibactam had no in vitro activity against isolates of A. baumannii. PCR and sequencing were used to characterize 5,076 isolates for β-lactamase genes. Aztreonam was not active against most Enterobacteriaceae isolates producing class A or class C enzymes alone or in combination with class B metallo-β-lactamases. In contrast, >99% of Enterobacteriaceae isolates producing all observed Ambler classes of β-lactamase enzymes were inhibited by ≤4 μg/ml aztreonam in combination with avibactam, including isolates that produced IMP-, VIM-, and NDM-type metallo-β-lactamases in combination with multiple serine β-lactamases.  相似文献   

3.
Escherichia coli (328 isolates), Klebsiella pneumoniae (296), Klebsiella oxytoca (44), and Proteus mirabilis (33) isolates collected during 2012 from the nine U.S. census regions and displaying extended-spectrum-β-lactamase (ESBL) phenotypes were evaluated for the presence of β-lactamase genes, and antimicrobial susceptibility profiles were analyzed. The highest ESBL rates were noted for K. pneumoniae (16.0%, versus 4.8 to 11.9% for the other species) and in the Mid-Atlantic and West South Central census regions. CTX-M group 1 (including CTX-M-15) was detected in 303 strains and was widespread throughout the United States but was more prevalent in the West South Central, Mid-Atlantic, and East North Central regions. KPC producers (118 strains [112 K. pneumoniae strains]) were detected in all regions and were most frequent in the Mid-Atlantic region (58 strains). Thirteen KPC producers also carried blaCTX-M. SHV genes encoding ESBL activity were detected among 176 isolates. Other β-lactamase genes observed were CTX-M group 9 (72 isolates), FOX (10), TEM ESBL (9), DHA (7), CTX-M group 2 (3), NDM-1 (2 [Colorado]), and CTX-M groups 8 and 25 (1). Additionally, 62.9% of isolates carried ≥2 β-lactamase genes. KPC producers were highly resistant to multiple agents, but ceftazidime-avibactam (MIC50/90, 0.5/2 μg/ml) and tigecycline (MIC50/90, 0.5/1 μg/ml) were the most active agents tested. Overall, meropenem (MIC50, ≤0.06 μg/ml), ceftazidime-avibactam (MIC50, 0.12 to 0.5 μg/ml), and tigecycline (MIC50, 0.12 to 2 μg/ml) were the most active antimicrobials when tested against this collection. NDM-1 producers were resistant to all β-lactams tested. The diversity and increasing prevalence of β-lactamase-producing Enterobacteriaceae have been documented, and ceftazidime-avibactam was very active against the vast majority of β-lactamase-producing strains isolated from U.S. hospitals.  相似文献   

4.
The in vitro activity of ceftazidime-avibactam was evaluated against 34,062 isolates of Enterobacteriaceae from patients with intra-abdominal, urinary tract, skin and soft-tissue, lower respiratory tract, and blood infections collected in the INFORM (International Network For Optimal Resistance Monitoring) global surveillance study (176 medical center laboratories in 39 countries) in 2012 to 2014. Overall, 99.5% of Enterobacteriaceae isolates were susceptible to ceftazidime-avibactam using FDA approved breakpoints (susceptible MIC of ≤8 μg/ml; resistant MIC of ≥16 μg/ml). For individual species of the Enterobacteriaceae, the ceftazidime-avibactam MIC inhibiting ≥90% of isolates (MIC90) ranged from 0.06 μg/ml for Proteus species to 1 μg/ml for Enterobacter spp. and Klebsiella pneumoniae. Carbapenem-susceptible isolates of Escherichia coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis with a confirmed extended-spectrum β-lactamase (ESBL) phenotype, or a ceftazidime MIC of ≥16 μg/ml if the ESBL phenotype was not confirmed by clavulanic acid inhibition, were characterized further to identify the presence of specific ESBL- and plasmid-mediated AmpC β-lactamase genes using a microarray-based assay and additional PCR assays. Ceftazidime-avibactam demonstrated potent activity against molecularly confirmed ESBL-producing (n = 5,354; MIC90, 0.5 μg/ml; 99.9% susceptible), plasmid-mediated AmpC-producing (n = 246; MIC90, 0.5 μg/ml; 100% susceptible), and ESBL- and AmpC-producing (n = 152; MIC90, 1 μg/ml; 100% susceptible) isolates of E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis. We conclude that ceftazidime-avibactam demonstrates potent in vitro activity against globally collected clinical isolates of Enterobacteriaceae, including isolates producing ESBLs and AmpC β-lactamases.  相似文献   

5.
The mechanism of aminoglycoside resistance among 338 gentamicin-nonsusceptible Gram-negative bacteria (207 Enterobacteriaceae and 131 Pseudomonas aeruginosa) was assessed, and the in vitro activity of ceftazidime-avibactam against these isolates was determined. Aminoglycoside-modifying enzymes were detected in 91.8% of Enterobacteriaceae and 13.7% of P. aeruginosa isolates. A single strain of Klebsiella pneumoniae harbored a 16S rRNA methylase (ArmA). The ceftazidime-avibactam MIC90 values were 0.5 μg/ml (MIC, ≤8 μg/ml for 100% of isolates) and 16 μg/ml (MIC, ≤8 μg/ml for 87.8% of isolates) against gentamicin-nonsusceptible Enterobacteriaceae and P. aeruginosa isolates, respectively.  相似文献   

6.
Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine β-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC90 for biapenem-RPX7009 was 1 μg/ml, with a MIC90 of 4 μg/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 μg/ml for both agents. The MIC90s for biapenem-RPX7009 were 0.25 μg/ml for Prevotella spp., 0.125 μg/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 μg/ml for Fusobacterium mortiferum, 0.5 μg/ml for Fusobacterium varium, ≤0.5 μg/ml for Gram-positive cocci and rods, and 0.03 to 8 μg/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (≥32 μg/ml). Against Bacteroides strains with an imipenem MIC of 2 μg/ml, biapenem-RPX7009 had MICs of 0.5 to 2 μg/ml, with MICs of 0.5 to 32 μg/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 μg/ml, the MICs for biapenem-RPX7009 were 4 to 16 μg/ml, with MICs of 8 to >32 μg/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp.  相似文献   

7.
The comparative in vitro activity of SMT19969, a novel, narrow-spectrum, nonabsorbable agent, was studied against 50 ribotype-defined Clostridium difficile strains, 174 Gram-positive and 136 Gram-negative intestinal anaerobes, and 40 Gram-positive aerobes. SMT19969 was one dilution more active against C. difficile isolates (MIC range, 0.125 to 0.5 μg/ml; MIC90, 0.25 μg/ml), including ribotype 027 strains, than fidaxomicin (range, 0.06 to 1 μg/ml; MIC90, 0.5 μg/ml) and two to six dilutions lower than either vancomycin or metronidazole. SMT19969 and fidaxomicin were generally less active against Gram-negative anaerobes, especially the Bacteroides fragilis group species, than vancomycin and metronidazole, suggesting that SMT19969 has a lesser impact on the normal intestinal microbiota that maintain colonization resistance. SMT19969 showed limited activity against other Gram-positive anaerobes, including Bifidobacteria species, Eggerthella lenta, Finegoldia magna, and Peptostreptococcus anaerobius, with MIC90s of >512, >512, 64, and 64 μg/ml, respectively. Clostridium species showed various levels of susceptibility, with C. innocuum being susceptible (MIC90, 1 μg/ml) and C. ramosum and C. perfringens being nonsusceptible (MIC90, >512 μg/ml). Activity against Lactobacillus spp. (range, 0.06 to >512 μg/ml; MIC90, >512 μg/ml) was comparable to that of fidaxomicin and varied by species and strain. Gram-positive aerobic cocci (Staphylococcus aureus, Enterococcus faecalis, E. faecium, and streptococci) showed high SMT19969 MIC90 values (128 to >512 μg/ml).  相似文献   

8.
More than 5 million Americans are bitten by animals, usually dogs, annually. Bite patients comprise ∼1% of all patients who visit emergency departments (300,000/year), and approximately 10,000 require hospitalization and intravenous antibiotics. Ceftaroline is the bioactive component of the prodrug ceftaroline fosamil, which is FDA approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs), including those containing methicillin-resistant Staphylococcus aureus (MRSA). There are no in vitro data about the activity of ceftaroline against Pasteurella multocida subsp. multocida and Pasteurella multocida subsp. septica, other Pasteurella spp., or other bite wound isolates. We therefore studied the in vitro activity of ceftaroline against 243 animal bite isolates. MICs were determined using the broth microdilution method according to CLSI guidelines. Comparator drugs included cefazolin, ceftriaxone, ertapenem, ampicillin-sulbactam, azithromycin, doxycycline, and sulfamethoxazole-trimethoprim (SMX-TMP). Ceftaroline was the most active agent against all 5 Pasteurella species, including P. multocida subsp. multocida and P. multocida subsp. septica, with a maximum MIC of ≤0.008 μg/ml; more active than ceftriaxone and ertapenem (MIC90s, ≤0.015 μg/ml); and more active than cefazolin (MIC90, 0.5 μg/ml) doxycycline (MIC90, 0.125 μg/ml), azithromycin (MIC90, 0.5 μg/ml), ampicillin-sulbactam (MIC90, 0.125 μg/ml), and SMX-TMP (MIC90, 0.125 μg/ml). Ceftaroline was also very active against all S. aureus isolates (MIC90, 0.125 μg/ml) and other Staphylococcus and Streptococcus species, with a maximum MIC of 0.125 μg/ml against all bite isolates tested. Ceftaroline has potential clinical utility against infections involving P. multocida, other Pasteurella species, and aerobic Gram-positive isolates, including S. aureus.  相似文献   

9.
The activities of the novel β-lactam–β-lactamase inhibitor combination ceftazidime-avibactam and comparator agents were evaluated against a contemporary collection of clinically significant Gram-negative bacilli. Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits Ambler class A, C, and some D enzymes. A total of 10,928 Gram-negative bacilli—8,640 Enterobacteriaceae, 1,967 Pseudomonas aeruginosa, and 321 Acinetobacter sp. isolates—were collected from 73 U.S. hospitals and tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories, North Liberty, IA, USA). Ceftazidime was combined with avibactam at a fixed concentration of 4 μg/ml. Overall, 99.8% of Enterobacteriaceae strains were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Ceftazidime-avibactam was active against extended-spectrum β-lactamase (ESBL)-phenotype Escherichia coli and Klebsiella pneumoniae, meropenem-nonsusceptible (MIC ≥ 2 μg/ml) K. pneumoniae, and ceftazidime-nonsusceptible Enterobacter cloacae. Among ESBL-phenotype K. pneumoniae strains, 61.1% were meropenem susceptible and 99.3% were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Among P. aeruginosa strains, 96.9% were inhibited at a ceftazidime-avibactam MIC of ≤8 μg/ml, and susceptibility rates for meropenem, ceftazidime, and piperacillin-tazobactam were 82.0, 83.2, and 78.3%, respectively. Ceftazidime-avibactam was the most active compound tested against meropenem-nonsusceptible P. aeruginosa (MIC50/MIC90, 4/16 μg/ml; 87.3% inhibited at ≤8 μg/ml). Acinetobacter spp. (ceftazidime-avibactam MIC50/MIC90, 16/>32 μg/ml) showed high rates of resistance to most tested agents. In summary, ceftazidime-avibactam demonstrated potent activity against a large collection of contemporary Gram-negative bacilli isolated from patients in U.S. hospitals in 2012, including organisms that are resistant to most currently available agents, such as K. pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae and meropenem-nonsusceptible P. aeruginosa.  相似文献   

10.
Secondary to the stability of aztreonam against metallo-β-lactamases, coupled with avibatam''s neutralizing activity against often coproduced extended-spectrum β-lactamases (ESBLs) or AmpC enzymes, the combination of aztreonam and avibactam has been proposed as a principal candidate for the treatment of infections with metallo-β-lactamase-producing Gram-negative organisms. Using the neutropenic-mouse thigh infection model, we evaluated the efficacy of human simulated doses of aztreonam-avibactam and aztreonam against 14 Enterobacteriaceae and 13 Pseudomonas aeruginosa isolates, of which 25 produced metallo-β-lactamases. Additionally, six P. aeruginosa isolates were also evaluated in immunocompetent animals. A humanized aztreonam dose of 2 g every 6 h (1-h infusion) was evaluated alone and in combination with avibactam at 375 or 600 mg every 6 h (1-h infusion), targeting the percentage of the dosing interval in which free-drug concentrations remained above the MIC (fT>MIC). Efficacy was evaluated as the change in bacterial density after 24 h compared with the bacterial density at the initiation of dosing. Aztreonam monotherapy resulted in reductions of two of the Enterobacteriaceae bacterial isolates (aztreonam MIC, ≤32 μg/ml; fT>MIC, ≥38%) and minimal activity against the remaining isolates (aztreonam MIC, ≥128 μg/ml; fT>MIC, 0%). Alternatively, aztreonam-avibactam therapy resulted in the reduction of all 14 Enterobacteriaceae isolates (aztreonam-avibactam MICs, ≤16 μg/ml; fT>MIC, ≥65%) and no difference between the 375- and 600-mg doses of avibactam was noted. Similar pharmacodynamically predictable activity against P. aeruginosa was noted in studies with neutropenic and immunocompetent mice, with activity occurring when the MICs were ≤16 μg/ml and variable efficacy noted when the MICs were ≥32 μg/ml. Again, no difference in efficacy between the 375- and 600-mg doses of avibactam was observed. Aztreonam-avibactam represents an attractive treatment option for infections with metallo-β-lactamase-producing Gram-negative pathogens that coproduce ESBLs or AmpC.  相似文献   

11.
RX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shown in vitro activity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis. Enterobacteriaceae (657), Pseudomonas aeruginosa (200), and Acinetobacter baumannii (202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were tested in vitro by broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% of Enterobacteriaceae isolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positive Protea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active against Pseudomonas aeruginosa isolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active against P. aeruginosa than tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent against Acinetobacter baumannii (MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.  相似文献   

12.
Plazomicin is a next-generation aminoglycoside that is not affected by most clinically relevant aminoglycoside-modifying enzymes. The in vitro activities of plazomicin and comparator antimicrobials were evaluated against a collection of 5,015 bacterial isolates obtained from patients in Canadian hospitals between January 2011 and October 2012. Susceptibility testing was performed using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method, with MICs interpreted according to CLSI breakpoints, when available. Plazomicin demonstrated potent in vitro activity against members of the family Enterobacteriaceae, with all species except Proteus mirabilis having an MIC90 of ≤1 μg/ml. Plazomicin was active against aminoglycoside-nonsusceptible Escherichia coli, with MIC50 and MIC90 values identical to those for aminoglycoside-susceptible isolates. Furthermore, plazomicin demonstrated equivalent activities versus extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella pneumoniae, with 90% of the isolates inhibited by an MIC of ≤1 μg/ml. The MIC50 and MIC90 values for plazomicin against Pseudomonas aeruginosa were 4 μg/ml and 16 μg/ml, respectively, compared with 4 μg/ml and 8 μg/ml, respectively, for amikacin. Plazomicin had an MIC50 of 8 μg/ml and an MIC90 of 32 μg/ml versus 64 multidrug-resistant P. aeruginosa isolates. Plazomicin was active against methicillin-susceptible and methicillin-resistant Staphylococcus aureus, with both having MIC50 and MIC90 values of 0.5 μg/ml and 1 μg/ml, respectively. In summary, plazomicin demonstrated potent in vitro activity against a diverse collection of Gram-negative bacilli and Gram-positive cocci obtained over a large geographic area. These data support further evaluation of plazomicin in the clinical setting.  相似文献   

13.
Vancomycin, linezolid, and daptomycin are very active against staphylococci, but isolates with decreased susceptibility to these antimicrobial agents are isolated sporadically. A total of 19,350 Staphylococcus aureus isolates (51% methicillin resistant [MRSA]) and 3,270 coagulase-negative staphylococci (CoNS) were collected consecutively from 82 U.S. medical centers from January 2008 to December 2011 and tested for susceptibility against ceftaroline and comparator agents by the reference broth microdilution method. Among S. aureus strains, 14 isolates (0.07%) exhibited decreased susceptibility to linezolid (MIC, ≥8 μg/ml), 18 (0.09%) to daptomycin (MIC, ≥2 μg/ml), and 369 (1.9%) to vancomycin (MIC, ≥2 μg/ml; 368 isolates at 2 μg/ml and 1 at 4 μg/ml). Fifty-one (1.6%) CoNS were linezolid resistant (MIC, ≥8 μg/ml), and four (0.12%) were daptomycin nonsusceptible (MIC, ≥2 μg/ml). Ceftaroline was very active against S. aureus overall (MIC50/90, 0.5/1 μg/ml; 98.5% susceptible), including MRSA (MIC50/90, 0.5/1 μg/ml; 97.2% susceptible). All daptomycin-nonsusceptible and 85.7% of linezolid-resistant S. aureus isolates were susceptible to ceftaroline. Against S. aureus isolates with a vancomycin MIC of ≥2 μg/ml, 91.9, 96.2, and 98.9% were susceptible to ceftaroline, daptomycin, and linezolid, respectively. CoNS strains were susceptible to ceftaroline (MIC50/90, 0.25/0.5 μg/ml; 99.1% inhibited at ≤1 μg/ml), including methicillin-resistant (MIC50/90, 0.25/0.5 μg/ml), linezolid-resistant (MIC50/90, 0.5/0.5 μg/ml), and daptomycin-nonsusceptible (4 isolates; MIC range, 0.03 to 0.12 μg/ml) strains. In conclusion, ceftaroline demonstrated potent in vitro activity against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin, and it may represent a valuable treatment option for infections caused by these multidrug-resistant staphylococci.  相似文献   

14.
Telavancin had MIC50, MIC90, and MIC100 values of 0.03, 0.06, and 0.12 μg/ml, respectively, against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and non-multidrug-resistant (non-MDR) and MDR subsets. MRSA with elevated MIC values for vancomycin (2 to 4 μg/ml) or daptomycin (1 to 2 μg/ml) had telavancin MIC50 (0.06 μg/ml) values 2-fold higher than those of isolates with lower MIC results (MIC50, 0.03 μg/ml). However, telavancin had MIC90 and MIC100 results of 0.06 and 0.12 μg/ml (100% susceptible), respectively, regardless of the MRSA subset.  相似文献   

15.
A total of 1,356 clinical isolates were tested against daptomycin by broth microdilution methods. Daptomycin was active against seven groups of viridans group streptococci (MIC50 and MIC90 values ranging from ≤0.06 and ≤0.06 μg/ml [Streptococcus bovis and Streptococcus dysgalactiae] to 0.5 and 1 μg/ml [Streptococcus mitis, Streptococcus oralis, and Streptococcus parasanguinis], respectively), beta-hemolytic streptococci serogroups C, F, and G (MIC50 and MIC90, ≤0.06 to 0.25 and 0.12 to 0.25 μg/ml, respectively), Corynebacterium spp. (MIC50 and MIC90, ≤0.06 and 0.12 μg/ml, respectively), and Micrococcus spp. (MIC50 and MIC90, ≤0.06 and 0.25 μg/ml, respectively). Listeria monocytogenes exhibited higher daptomycin MICs (MIC50 and MIC90, 2 and 4 μg/ml, respectively) than other tested organisms.  相似文献   

16.
Solithromycin, a fourth-generation macrolide (a fluoroketolide with enhanced activity against macrolide-resistant bacteria due to interaction with three ribosomal sites) and the first fluoroketolide, was tested against a 2014 collection of 6,115 isolates, including Streptococcus pneumoniae (1,713 isolates), Haemophilus influenzae (1,308), Moraxella catarrhalis (577), Staphylococcus aureus (1,024), and beta-hemolytic streptococci (1,493), by reference broth microdilution methods. The geographic samples included 2,748 isolates from the United States, 2,536 from Europe, 386 from Latin America, and 445 from the Asia-Pacific region. Solithromycin was observed to be very active against S. pneumoniae (MIC50/90, 0.008/0.12 μg/ml), demonstrating 2-fold greater activity than telithromycin (MIC50/90, 0.015/0.25 μg/ml) and 16- to >256-fold greater activity than azithromycin (MIC50/90, 0.12/>32 μg/ml), with all strains being inhibited at a solithromycin MIC of ≤1 μg/ml. Against H. influenzae, solithromycin showed potency identical to that of telithromycin (MIC50/90, 1/2 μg/ml), and both of these compounds were 2-fold less active than azithromycin (MIC50/90, 0.5/1 μg/ml). All but one of the M. catarrhalis isolates were inhibited by solithromycin at ≤0.25 μg/ml. Solithromycin inhibited 85.3% of S. aureus isolates at ≤1 μg/ml, and its activity was lower against methicillin-resistant (MIC50/90, 0.06/>32 μg/ml) than against methicillin-susceptible (MIC50/90, 0.06/0.06 μg/ml) isolates. Little variation in solithromycin activity was observed by geographic region for the species tested. Solithromycin was very active against beta-hemolytic streptococci (MIC50/90, 0.015/0.03 μg/ml), and all isolates were inhibited at MIC values of ≤0.5 μg/ml. In conclusion, solithromycin demonstrated potent activity against global and contemporary (2014) pathogens that represent the major causes of community-acquired bacterial pneumonia. These data support the continued clinical development of solithromycin for the treatment of this important indication.  相似文献   

17.
Ceftolozane/tazobactam, a novel antimicrobial agent with activity against Pseudomonas aeruginosa (including drug-resistant strains) and other common Gram-negative pathogens (including most extended-spectrum-β-lactamase [ESBL]-producing Enterobacteriaceae strains), and comparator agents were susceptibility tested by a reference broth microdilution method against 7,071 Enterobacteriaceae and 1,971 P. aeruginosa isolates. Isolates were collected consecutively from patients in 32 medical centers across the United States during 2011 to 2012. Overall, 15.7% and 8.9% of P. aeruginosa isolates were classified as multidrug resistant (MDR) and extensively drug resistant (XDR), and 8.4% and 1.2% of Enterobacteriaceae were classified as MDR and XDR. No pandrug-resistant (PDR) Enterobacteriaceae isolates and only one PDR P. aeruginosa isolate were detected. Ceftolozane/tazobactam was the most potent (MIC50/90, 0.5/2 μg/ml) agent tested against P. aeruginosa and demonstrated good activity against 310 MDR strains (MIC50/90, 2/8 μg/ml) and 175 XDR strains (MIC50/90, 4/16 μg/ml). Ceftolozane/tazobactam exhibited high overall activity (MIC50/90, 0.25/1 μg/ml) against Enterobacteriaceae and retained activity (MIC50/90, 4/>32 μg/ml) against many 601 MDR strains but not against the 86 XDR strains (MIC50, >32 μg/ml). Ceftolozane/tazobactam was highly potent (MIC50/90, 0.25/0.5 μg/ml) against 2,691 Escherichia coli isolates and retained good activity against most ESBL-phenotype E. coli isolates (MIC50/90, 0.5/4 μg/ml), but activity was low against ESBL-phenotype Klebsiella pneumoniae isolates (MIC50/90, 32/>32 μg/ml), explained by the high rate (39.8%) of meropenem coresistance observed in this species phenotype. In summary, ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers. Importantly, ceftolozane/tazobactam retained potency against many MDR and XDR strains.  相似文献   

18.
A total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited all Staphylococcus aureus isolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). Among Streptococcus pneumoniae isolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most common Enterobacteriaceae species (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).  相似文献   

19.
Telavancin had MIC50 and MIC90 values of 0.03 and 0.06 μg/ml (100.0% susceptible), respectively, against methicillin-resistant and -susceptible Staphylococcus aureus. Telavancin was active against vancomycin-susceptible Enterococcus faecalis (MIC50/90, 0.12/0.12 μg/ml; 100% susceptible) and Enterococcus faecium (MIC50/90, 0.03/0.06 μg/ml), while higher MIC values were obtained against vancomycin-resistant E. faecium (MIC50/90, 1/2 μg/ml) and E. faecalis (MIC50/90, >2/>2 μg/ml). Streptococci showed telavancin modal MIC results of ≤0.015 μg/ml, except against Streptococcus agalactiae (i.e., 0.03 μg/ml). This study reestablishes the telavancin spectrum of activity against isolates recovered from the United States (2011-2012) using the revised broth microdilution method.  相似文献   

20.
The in vitro activity of ceftolozane in combination with tazobactam (fixed concentration of 4 μg/ml) was evaluated against 2,435 Pseudomonas aeruginosa clinical isolates obtained from across Canada using Clinical and Laboratory Standards Institute broth microdilution methods. The MIC50 and MIC90 values for ceftolozane-tazobactam were 0.5 μg/ml and 1 μg/ml, respectively (a 32-fold-lower MIC90 than that for ceftazidime). Eighty-nine percent (141/158) of multidrug-resistant isolates were inhibited by ≤8 μg/ml of ceftolozane-tazobactam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号