首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to the advantages of relatively low cost, increased energy efficiency, increased deposition rate, and the capacity to create medium to large scale components, wire + arc additive manufacturing (WAAM) has gained growing interest. Super martensitic stainless steel (SMSS) combines outstanding strength, ductility, and corrosion resistance, making it a great option for WAAM. In the present work, an SMSS component was successfully produced by WAAM. Additionally, the influence of post-manufactured heat treatment on the microstructural characteristics and mechanical properties of SMSS components was systematically examined. A microstructural analysis of the as-printed and heat-treated samples revealed the formation of typical martensite and a small amount of retained austenite. However, the sample heat-treated by solutionizing at 1050 °C for 1 h followed by aging at 400 °C for 2 h exhibited a finer martensitic structure with an effective grain size of 5.6 μm compared to as-printed sample, leading to an increase in ultimate tensile strength from 1054 ± 6 MPa to 1141 ± 3 MPa with a concomitant increase in elongation from 7.8 ± 0.4% to 12.6 ± 0.2%. Additionally, the fracture morphology of the solution + aging sample demonstrated a more uniform distribution and greater mean size of dimples, indicating better ductility.  相似文献   

2.
The vacuum hot-rolled SUS314/Q235 stainless steel clad plate has many drawbacks including serious interface alloy element diffusion, stainless steel cladding’s sensitization, and carbon steel substrate’s low strength. In this study, the comprehensive properties were systematically adjusted by changing the thickness of the Ni interlayer (0, 100, 200 μm) and the quenching temperature (1000~1150 °C). The results showed that the Ni interlayer can obviously hinder the diffusion of carbon element, so as to achieve the purpose of eliminating the decarburized layer and reducing the carbon content of the carburized layer. Meanwhile, the perfect metallurgical bonding between the substrate and cladding can be obtained, effectively improving the stainless steel clad plate’s tensile shear strength and comprehensive mechanical properties, and significantly reduce the brittleness of the carburized layer. As the quenching temperature increases, the grains coarsening of carbon steel and stainless steel became more and more serious, and the sensitization phenomenon and the thickness of the carburized layer are gradually decreased. The stainless steel clad plate (Ni layer thickness of 100 μm) quenched at 1050 °C had the best comprehensive mechanical properties. Herein, the interface shear strength, tensile strength and the fracture elongation reached 360.5 MPa, 867 MPa and 16.10%, respectively, achieving strengthening and toughening aim. This is attributed to the disappearance of the sensitization phenomenon, the grain refinement and the lower interface residual stress.  相似文献   

3.
Thermal stability of composite bimetallic wires from five novel microalloyed aluminum alloys with different contents of alloying elements (Zr, Sc, and Hf) is investigated. The alloy workpieces were obtained by induction-casting in a vacuum, preliminary severe plastic deformation, and annealing providing the formation of a uniform microstructure and the nucleation of stabilizing intermetallide Al3(Zr,Sc,Hf) nanoparticles. The wires of 0.26 mm in diameter were obtained by simultaneous deformation of the Al alloy with Cu shell. The bimetallic wires demonstrated high strength and improved thermal stability. After annealing at 450–500 °C, a uniform fine-grained microstructure formed in the wire (the mean grain sizes in the annealed Al wires are 3–5 μm). An increased hardness and strength due to nucleation of the Al3(Sc,Hf) particles was observed. A diffusion of Cu from the shell into the surface layers of the Al wire was observed when heating up to 400–450 °C. The Cu diffusion depth into the annealed Al wire surfaces reached 30–40 μm. The maximum elongation to failure of the wires (20–30%) was achieved after annealing at 350 °C. The maximum values of microhardness (Hv = 500–520 MPa) and of ultimate strength (σb = 195–235 MPa) after annealing at 500 °C were observed for the wires made from the Al alloys alloyed with 0.05–0.1% Sc.  相似文献   

4.
A novel powder wire mesh composite porous plate (PWMCPP) was fabricated with 304 stainless steel powders and wire mesh as raw materials by vacuum solid-state sintering process using self-developed composite rolling mill of powder and wire mesh. The effects of different mesh volume fractions, mesh diameters, and sintering temperatures on the pore structure and Charpy impact properties of PWMCPPs were studied. The results show that PWMCPPs have different shapes and sizes of micropores. Impact toughness of PWMCPPs decreases with increasing wire mesh volume fraction, and increases first and then decreases with increasing wire mesh diameter, and increases with increasing sintering temperature. Among them, the sintering temperature has the most obvious effect on the impact toughness of PWMCPPs, when the sintering temperature increased from 1160 °C to 1360 °C, the impact toughness increased from 39.54 J/cm2 to 72.95 J/cm2, with an increased ratio of 84.5%. The tearing between layers, the fracture of the metallurgical junction, and the fracture of wire mesh are the main mechanisms of impact fractures of the novel PWMCPPs.  相似文献   

5.
The microstructure evolution and mechanical properties of medium carbon martensitic steel during the warm rolling and annealing process were studied by scanning electron microscope (SEM), electron back scattering diffraction (EBSD), and electronic universal testing machine. The results showed that the microstructure of ferrite matrix with mass dispersive cementite particles was obtained by decomposition of martensitic in medium-carbon martensitic steel after warm rolling. The grain size of ferrite was ~0.53 μm, the yield strength and tensile strength were 951 MPa and 968 MPa, respectively, and the total elongation rate was 11.5% after warm rolling at 600 °C. Additionally, after the next 4 h of annealing, the grain size of ferrite and particle size of cementite increased to ~1.35 μm and ~360 nm and the yield strength and tensile strength decreased to 600 MPa and 645 MPa, respectively, with a total elongation increases of 20.9%. The strength of the material increased with increasing strain rate in tension, and the yield-to-tensile strength ratio increased from 0.92 to 0.94 and maintained good plasticity.  相似文献   

6.
In this research, we investigated the influence of the sintering temperature on the physical and mechanical properties of micro-sized bi-material components of 17-4PH stainless steel and 3 mol% yttria-stabilized zirconia fabricated using a two-component micro-powder injection molding (2C-μPIM) process. First, 17-4PH and zirconia powders were separately mixed with binders to obtain feedstocks, which were then injection-molded into the dumbbell shape, followed by the binder extraction process. Subsequently, the debound micro-specimens were subjected to sintering between 1250 °C and 1350 °C for 3 h. Per the observations of the microstructures using scanning electron microscopy (SEM), a strong bond between metal and ceramic in micro-sized 17-4PH/zirconia components was formed when the sintering temperature exceeded 1300 °C. The maximum relative density of 99% was achieved when the bi-material micro-part was sintered at 1350 °C. The linear shrinkage increased from 9.6% to 17.4% when the sintering temperature was increased from 1250 °C to 1350 °C. The highest hardness value of 1439.6 HV was achieved at 1350 °C along the bi-material bonding region. Moreover, a maximum tensile strength of 13.7 MPa was obtained at 1350 °C.  相似文献   

7.
As the commercially most-used Ti-6Al-4V alloy has a different modulus of elasticity compared to the modulus of elasticity of bone and contains allergenic elements, β-Ti alloy could be a suitable substitution in orthopedics. The spark plasma sintering (SPS) method is feasible for the preparation of materials, with very low porosity and fine-grained structure, leading to higher mechanical properties. In this study, we prepared quaternary Ti-25Nb-4Ta-8Sn alloy using the spark plasma sintering method. The material was also heat-treated in order to homogenize the structure and compare the microstructure and properties in as-sintered and annealed states. The SPS sample had a modulus of elasticity of about 63 ± 1 GPa, which, after annealing, increased to the value of 73 ± 1 GPa. The tensile yield strength (TYS) of the SPS sample was 730 ± 52 MPa, ultimate tensile strength (UTS) 764 ± 10 MPa, and ductility 22 ± 9%. Annealed samples reached higher values of TYS and UTS (831 ± 60 MPa and 954 ± 48 MPa), but the ductility decreased to the value of 3 ± 1%. The obtained results are discussed considering the observed microstructure of the alloy.  相似文献   

8.
In order to obtain high-performance aluminum alloy parts fabricated by selective laser melting, this paper investigates the relationship between the process parameters and microstructure properties of AlSi10Mg. The appropriate process parameters are obtained: the layer thickness is 0.03 mm, the laser power is 370 W, the scanning speed is 1454 mm/s, and the hatch spacing is 0.16 mm. With these process parameters, the ultimate tensile strength of the as-printed status is 500.7 ± 0.8 MPa, the yield strength is 311.5 ± 5.9 MPa, the elongation is 7.7 ± 0.5%, and the relative density is 99.94%. After annealing treatment at 275 °C for 2 h, the ultimate tensile strength is 310.8 ± 1.3 MPa, the yield strength is 198.0 ± 2.0 MPa, and the elongation is 13.7 ± 0.6%. The mechanical properties are mainly due to the high relative density, supersaturate solid solution, and fine dispersed Si. The supersaturate solid solution and nano-sized Si formed by the high cooling rate of SLM. After annealing treatment, the Si have been granulated and grown significantly. The ultimate tensile strength and yield strength are reduced, and the elongation is significantly improved.  相似文献   

9.
In this paper, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray stress meter (XRSA), atom probe tomography (APT), hardness, and tensile tests were used to study the effect of tempering temperature on the microstructure and properties of Fe-9Ni-2Cu steel. The results show that after the quenched samples were tempered at 460 °C for 2 h, the hardness values increased from 373 to 397 HV, and elongation also increased from 13% to 16%. With the tempering temperature increasing from 460 to 660 °C, the hardness firstly decreases from 397 to 353 HV and then increases to 377 HV, while the elongation increases to 17% and then decreases to 11%. The variation of the mechanical properties greatly depends on the evolution of the Cu-rich phase and carbides. The precipitation strengthening of the Cu-rich phase and carbides leads to the increase of hardness, but when the precipitate is coarsened, the precipitation strengthening weakens, and then, the hardness increases. When the tempering temperature is 560 °C, a large amount of stable reverse transformation austenite was formed with a content of 7.1%, while the tensile strength reached the lowest value of 1022 MPa and the elongation reached the maximum value of 17%.  相似文献   

10.
Electric field-assisted sintering has ubiquitous merits over conventional sintering technology for the fabrication of difficult-to-deform materials. To investigate the effect of sintering pressure and temperature on the densification of Inconel 718 superalloy, a numerical simulation model was established based on the Fleck-Kuhn-McMeeking (FKM) and Gurson-Tvergaard-Needleman (GTN) models, which covers a wide range of porosity. At a sintering pressure below 50 MPa or a sintering temperature below 950 °C, the average porosity of the sintered superalloy is over 0.17 with low densification. Under a pressure above 110 MPa and a temperature above 1250 °C, the sintered superalloy quickly completes densification and enters the plastic yield stage, making it difficult to control the sintering process. When the pressure is above 70 MPa while the temperature exceeds 1150 °C, the average porosity is 0.11, with little fall when the pressure or temperature rises. The experimental results indicated that the relative density of the sintered superalloy under 70 MPa and 1150 °C is 94.46%, and the proportion of the grain size below 10 μm is 73%. In addition, the yield strength of the sintered sample is 512 MPa, the compressive strength comes to 1260 MPa when the strain is over 0.8, and the microhardness is 395 Hv, demonstrating a better mechanical property than the conventional superalloy.  相似文献   

11.
High-temperature resistant high-entropy alloys (HEAs) have attracted extensive attention due to their excellent thermodynamic stability and mechanical properties, especially at high temperatures. However, a highly effective method for large-size HEAs is still desirable but challengeable. This research reported a facile yet effective strategy for MoNbTaWTi HEAs via in-situ wire arc additive manufacturing (WAAM). The wire was MoNbTaWTi cable-type welding wire (CTWW) consisting of one center wire and seven twisted peripheral wires. Then, additive manufacturing of MoNbTaWTi high entropy alloys (HEAs) was accomplished, and various analytical techniques studied the microstructures and mechanical properties of the overlaying formed layers. X-ray diffraction showed the overlaying formed layers to contain a single disordered BCC solid solution phase with high-temperature structural stability. In addition, the single-phase BCC structure was maintained from 0 to 1400 °C. The bottom of the overlaying formed layers was made of columnar cellular structure, and the upper part resembled “cauliflower-like” fine dendrite and equiaxed crystal structure. The hardness of the overlaying formed layers averaged 533 HV0.2 at room temperature. At 1000 °C, the hardness was around 110 HV1, close to the value of Inconel 718 alloy (125 HV1). The compressive strength of the overlaying formed alloy layers displayed no sensitivity towards change in temperature from 500 to 1000 °C. As the temperature rose from 500 to 1000 °C, the compressive strength changed from 629 to 602 MPa, equivalent to only a 27 MPa decrease. The latter was much higher than the strength of Inconel 718 alloy at the same temperature (200 MPa).  相似文献   

12.
Steel designs with superior mechanical properties have been urgently needed in automotive industries to achieve energy conservation, increase safety, and decrease weight. In this study, the aging process is employed to enhance the yield strength (YS) by tailoring the distribution of V-rich precipitates and to improve ductility by producing high volume fractions of recrystallized ferrite in cold-rolled medium-Mn steel. A reliable method to acquire ultra-high strength (1.0–1.5 GPa), together with ductility (>40%), is proposed via utilizing non-recrystallized austenite and recrystallized ferrite. Similarly to conventional medium-Mn steels, the TRIP effect, along with the mild TWIP effect, is responsible for the main deformation mechanisms during tensile testing. However, the coupled influence of precipitation strengthening, grain refinement strengthening, and dislocation strengthening contributes to an increase in YS. The studied steel, aged at 650 °C for 5 h, demonstrates a YS of 1078 MPa, ultimate tensile strength (UTS) of 1438 MPa, and tensile elongation (TE) of 30%. The studied steel aged at 650 °C for 10 h shows a UTS of 1306 MPa and TE of 42%, resulting in the best product in terms of of UTS and TE, at 55 GPa·%. Such a value surpasses that of the previously reported medium-Mn steels containing equal mass fractions of various microalloying elements.  相似文献   

13.
To study the heat-treatment process of a semi-solid copper alloy, a thixotropic back-extruded tin–bronze shaft sleeve was heat-treated at 630 °C, 660 °C, 690 °C and 720 °C for 1 h, respectively. Microstructure changes and mechanical properties under different solution temperatures of shaft sleeve were characterized using a metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), hardness tester, and tensile tester. The results show that the tensile strength first increases and then decreases; the elongation decreases; and the Brinell hardness increases gradually with increasing solution temperature. When the solution treatment is at 690 °C, the tin–bronze shaft sleeve’s microstructure and comprehensive mechanical properties are the best. The shape factor is 0.75, the average grain size is 82.52 μm, the Brinell hardness is 122 HBW, the tensile strength is 437 MPa, and the elongation is 17.4%, which is 3.4 times higher than that before solution treatment.  相似文献   

14.
The aim of this study was to develop a new Al–Mg–Si–Zr alloy with a high magnesium content to achieve a wide range of mechanical properties using heat treatment and at a lower cost. Additive manufacturing was conducted using a powder bed fusion process with various scan speeds to change the volumetric energy density and establish optimal process conditions. In addition, mechanical properties were evaluated using heat treatment under various conditions. The characterization of the microstructure was conducted by scanning electron microscopy with electron backscatter diffraction and transmission electron microscopy. The mechanical properties were determined by tensile tests. The as-built specimen showed a yield strength of 447.9 ± 3.6 MPa, a tensile strength of 493.4 ± 6.7 MPa, and an elongation of 9.6 ± 1.1%. Moreover, the mechanical properties could be adjusted according to various heat treatment conditions. Specifically, under the HT1 (low-temperature artificial aging) condition, the ultimate tensile strength increased to 503.2 ± 1.1 MPa, and under the HT2 (high-temperature artificial aging) condition, the yield strength increased to 467 ± 1.3 MPa. It was confirmed that the maximum elongation (14.3 ± 0.8%) was exhibited with the HT3 (soft annealing) heat treatment.  相似文献   

15.
Joining additively manufactured (AM) complex shaped parts to larger conventionally produced parts can lead to innovative product designs. Another alternative is direct deposition on a conventional semi-product. Therefore, similar joints of maraging tool steel 1.2709 were produced by AM deposition of powder of this steel on a bulk conventionally manufactured steel part. The resulting hybrid parts were solution annealed and precipitation hardened. Solution annealing at 820 °C for 20 min was followed by furnace cooling. Precipitation hardening was performed at 490 °C for 6 h. The mechanical properties of the samples were characterised using tensile testing and hardness measurement across the joint. Metallographic analysis was also carried out. The tensile properties of the AM and conventionally produced steel after equivalent heat treatments were also determined as the reference values. The mechanical properties of the hybrid parts are close to the properties of both steels. The hybrid parts in the as-built condition had a tensile strength of 1029 MPa and a total elongation of 14%. Solution annealing did not change these properties significantly, except for yield strength, which decreased by approximately 150 MPa. After precipitation annealing, the strength was higher, 2011 MPa, and total elongation dropped to 5%.  相似文献   

16.
To further improve the mechanical properties of H13 steel at room and high temperatures, its precipitates were regulated based on the Thermo-Calc results. Scanning electron microscope (SEM), electron backscattering diffraction (EBSD), transmission electron microscope (TEM), and X-ray diffraction (XRD) Rietveld refinement were used to study the effect of the intercritical annealing on the microstructure and mechanical properties of H13 steel. The results show that the intercritical annealing at 850~95 °C increased the VC volume fraction from 2.23 to 3.03~3.48%. Increasing the VC volume fraction could inhibit the M7C3 precipitation from 10.01 to 6.63~5.72% during tempering. A large amount of VC also promoted the M23C6 precipitation during tempering at higher dislocation densities. The intercortical annealing simultaneously increased the elongation of H13 steel. An excellent combination (room temperature: ultimate tensile strength (UTS) of 898 MPa and total elongation (TEL) of 19.35%, 650 °C: UTS of 439 MPa, and TEL of 27.80%) could be obtained when intercritical annealing is performed at 900 °C. Meanwhile, after aging at 650 °C for 128 h, the room temperature UTS and TEL decreased by only 31 MPa and 0.52%, respectively.  相似文献   

17.
X6CrNiMoVNb11-2 supermartensitic stainless steel, a special type of stainless steel, is commonly used in the production of gas turbine discs in liquid rocket engines and compressor disks in aero engines. By optimizing the parameters of the heat-treatment process, its mechanical properties are specially adjusted to meet the performance requirement in that particular practical application during the advanced composite casting-rolling forming process. The relationship between the microstructure and mechanical properties after quenching from 1040 °C and tempering at 300–670 °C was studied, where the yield strength, tensile strength, elongation and impact toughness under different cooling conditions are obtained by means of mechanical property tests. A certain amount of high-density nanophase precipitation is found in the martensite phase transformation through the heat treatment involved in the quenching and tempering processes, where M23C6 carbides are dispersed in lamellar martensite, with the close-packed Ni3Mo and Ni3Nb phases of high-density co-lattice nanocrystalline precipitation created during the tempering process. The ideal process parameters are to quench at 1040 °C in an oil-cooling medium and to temper at 650 °C by air-cooling; final hardness is averaged about 313 HV, with an elongation of 17.9%, the cross-area reduction ratio is 52%, and the impact toughness is about 65 J, respectively. Moreover, the tempered hardness equation, considering various tempering temperatures, is precisely fitted. This investigation helps us to better understand the strengthening mechanism and performance controlling scheme of martensite stainless steel during the cast-rolling forming process in future applications.  相似文献   

18.
Borated stainless steel (BSS) with a boron content of 1.86% was prepared by a powder metallurgy process incorporating atomization and hot isostatic pressing. After solution quenching at 900–1200 °C, the phase composition of the alloy was studied by quantitative X-ray diffraction phase analysis. The microstructure, fracture morphology, and distributions of boron, chromium, and iron in grains of the alloy were analyzed by field-emission scanning electron microscopy with secondary electron and energy-dispersive spectroscopy. After the coupons were heat treated at different temperatures ranging from 900 to 1200 °C, the strength and plasticity were tested, and the fracture surfaces were analyzed. Undergoing heat treatment at different temperatures, the phases of the alloy were austenite and Fe1.1Cr0.9B0.9 phase. Since the diffusion coefficients of Cr, Fe, and B varied at different temperatures, the distribution of elements in the alloy was not uniform. The alloy with good strength and plasticity can be obtained when the heat treatment temperature of alloy ranged from 1000 to 1150 °C while the tensile strength was about 800 MPa, with the elongation standing about 20%.  相似文献   

19.
This research aims to characterize and examine the microstructure and mechanical properties of the newly developed M789 steel, applied in additive manufacturing. The data presented herein will bring about a broader understanding of the processing–microstructure–property–performance relationships in this material based on its chemical composition and heat treatment. Samples were printed using the laser powder bed fusion (LPBF) process and then the solution was annealed at 1000 °C for 1 h, followed by aging at 500 °C for soaking times of 3, 6 and 9 h. The AM components showed a relative density of 99.1%, which arose from processing with the following parameters: laser power of 200 W, laser speed of 340 mm/s, and hatch distance of 120 µm. Optical and electron microscopy observations revealed microstructural defects, typical for LPBF processes, like voids appearing between the melted pools of different sizes with round or creviced geometries, nonmelted powder particle formation inside such cavities, and small spherical porosity that was preferentially located between the molten pools. In addition, in heat-treated conditions, AM maraging steel has combined oxide inclusions of Ti and Al (TiO2:Al2O3) that reside along the grain boundaries and secondary porosities; these may act as preferential zones for crack initiation and may increase the brittleness of the AM steel under aged conditions. Consequently, the elongation of the AM alloy was low (<3%) for both annealed and aged solution conditions. The tensile strength of AM M789 increased from 968 MPa (solution annealed) to 1500–1600 MPa after the aging process due to precipitation within the intermetallic η-phase. A tensile strength and yield point of 1607 ± 26 and 1617 ± 45 MPa were obtained, respectively, after a full heat treatment at 500 °C/6 h. The results show that 3 h aging of solution annealed AM M789 steel achieves satisfactory material properties in industrial practice. Extending the aging time of printed parts to 6 h yields slightly improved properties but may not be worth the effort, while long-term aging (9 h) was shown to even reduce quality.  相似文献   

20.
Wire mesh is a common material for bolt mesh supporting structures, but its application in engineering has revealed many defects. At the same time, with the development of new materials for civil engineering, the new material mesh performance and cost show outstanding advantages over wire mesh. In this paper, the feasibility of replacing wire mesh with steel-plastic geogrid as an alternative material is carefully studied through indoor tests and field applications. The following conclusions were drawn from a comparative analysis with wire mesh, mainly in terms of mechanical properties, engineering characteristics, and construction techniques: (1) in terms of mesh wire strength, wire mesh is slightly better than steel-plastic geogrid, but in the case of similar tensile strength, the amount of steel used per unit length of steel geogrid bars is only 36.75% of that of steel-plastic geogrid, while the tensile strength of the high-strength steel wire attached to the steel-plastic geogrid belt is about 3.3 times that of steel bars; (2) in terms of junction peel strength, both values are similar, with the injection-moulded junction being 1154.56–1224.38 N and the welded junction of 4 mm mesh being 988.35 N; (3) in terms of the strength of the mesh, steel-plastic geogrid is better than wire mesh, and with the same mesh wire strength, the bearing capacity of steel-plastic geogrid is increased by about 63.17% and the contribution of the mesh wire bearing capacity is increased by 83.66%, with the damage mainly being in the form of wire breakage in the ribbon causing ribbon failure, leading to further damage to the mesh; (4) in terms of the engineering application of steel-plastic geogrid compared to wire mesh, the utilization rate of mesh increases by about 24.99%, the construction efficiency increases by about 14.10%, and the economic benefit increases by about 45.31%. In practical application, the steel-plastic geogrid has good adhesion with surrounding rock and strong corrosion resistance. According to the above research analysis, the steel-plastic geogrid is feasible to replace the wire mesh for bolt mesh supporting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号