首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microchannel radiator is advantageous due to its high efficiency and large boiling heat transfer coefficient of two-phase flow. Based on the research of uniform lattice structures, this study proposed a microchannel heat exchanger with a nonuniform lattice structure. The calculation, optimal formation, and boiling heat transfer performance of the nonuniform lattice structure based on selective laser melting (SLM) were investigated, and heat exchange samples were successfully prepared using SLM. The porosity and pore morphology of the samples were analysed, and the contrast experiments of boiling heat transfer were conducted with deionised water. The results revealed that the heat flow density of the lattice structure was a minimum of 244% higher than that of the traditional liquid-cooled plate. The critical heat flux density of the lattice structure is 110 W∙cm−2, and the critical heat flux density of the traditional flat plate is 45 W∙cm−2. In addition, the effects of cell structures indicated that for frame cells, the heat transfer effect of nonuniform frames was inferior to that of uniform frames; for face-centred cubic (FCC) cells, the nonuniform and uniform frames exhibited the same trend. However, the heat flow density of FCC cells was 25% higher than that of frame structures.  相似文献   

2.
The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.  相似文献   

3.
Heat transfer under flow boiling is better in a rectangular channel filled with open-cell metal foam than in an empty channel, but the high pressure drop is a drawback of the empty channel method. In this study, various types of metal foam insert configurations were tested to reduce the pressure drop while maintaining high heat transfer. Specifically, we measured the boiling heat transfer and pressure drop of a two-phase vertical upward flow of R245fa inside a channel. To measure the pressure and temperature differences of the metal foam, differential pressure transducers and T-type thermocouples were used at both ends of the test section. While the saturation pressure was kept constant at 5.9 bar, the steam quality at the inlet of the test section was changed from 0.05 to 0.99. The channel height, moreover, was 3 mm, and the mass flux ranged from 133 to 300 kg/m2s. The two-phase flow characteristics were observed through a high-speed visualization experiment. Heat transfer tended to increase with the mean vapor quality, and, as expected, the fully filled metal foam channel offered the highest thermal performance. The streamwise insert pattern model had the lowest heat transfer at a low mass flux. However, at a higher mass flux, the three different insert models presented almost the same heat transfer coefficients. We found that the streamwise pattern model had a very low pressure drop compared to that of the spanwise pattern models. The goodness factors of the flow area and the core volume of the streamwise patterned model were higher than those of the full-filled metal foam channel.  相似文献   

4.
The requirements of high-strength, wear-resistance and lightweight of brake drums have been continually increasing in recent years and any specific aluminum alloy or particle-reinforced aluminum matrix composites may not satisfy all the demands. Combining dissimilar materials to play their respective advantages is a solution to this problem. In this study, a compound casting method was used to combine solid SiCp/A357 composite and a liquid 7050 aluminum alloy to prepare an aluminum matrix composite with a layered structure. The ProCAST numerical simulation software was used to predict the heat transfer in compound casting process and guide the preheating temperature of the wear-resistant ring in the experiment. An Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used to observe microstructures around the solid–liquid bonding interface, the element distribution and phase component of which were analyzed by Energy Dispersive Spectroscopy (EDS) and mechanical properties were evaluated by microhardness and shear tests. The results showed that the interface of the layered aluminum matrix composite prepared by this method achieved complete metallurgical bonding and a transition zone formed on the solid surface. After T6 heat treatment, the average shear strength of the interface increased from 19.8 MPa to 33.8 MPa.  相似文献   

5.
Aluminum matrix composites reinforced with carbon fiber have been manufactured for the first time by infiltrating an A413 aluminum alloy in carbon fiber woven using high-pressure die casting (HPDC). Composites were manufactured with unidirectional carbon fibers and with 2 × 2 twill carbon wovens. The HPDC allowed full wetting of the carbon fibers and the infiltration of the aluminum alloy in the fibers meshes using aluminum at 680 °C. There was no discontinuity at the carbon fiber-matrix interface, and porosity was kept below 0.1%. There was no degradation of the carbon fibers by their reaction with molten aluminum, and a refinement of the microstructure in the vicinity of the carbon fibers was observed due to the heat dissipation effect of the carbon fiber during manufacturing. The mechanical properties of the composite materials showed a 10% increase in Young’s modulus, a 10% increase in yield strength, and a 25% increase in tensile strength, which are caused by the load transfer from the alloy to the carbon fibers. There was also a 70% increase in elongation for the unidirectionally reinforced samples because of the finer microstructure and the load transfer to the fibers, allowing the formation of larger voids in the matrix before breaking. The comparison with different mechanical models proves that there was an effective load transference from the matrix to the fibers.  相似文献   

6.
Among different promising solutions, coupling closed-cell aluminium foam composite panels prepared by a powder metallurgical method with pore walls interconnected by microcracks, with low thermal conductivity phase change materials (PCMs), is one of the effective ways of increasing thermal conductivity for better performance of thermal storage systems in buildings. The internal structure of the foam formation, related to the porosity which decides the heat transfer rate, plays a significant role in the thermal energy storage performance. The dependence of the heat transfer characteristics on the internal foam structure is studied numerically in this work. The foamable precursor of 99.7% pure aluminium powder mixed with 0.15 wt.% of foaming agent, TiH2 powder, was prepared by compacting, and extruded to a volume of 20 × 40 × 5 mm. Two aluminium foam samples of 40 × 40 × 5 mm were examined with apparent densities of 0.7415 g/cm3 and 1.62375 g/cm3. The internal porous structure of the aluminium foam samples was modelled using X-ray tomography slices through image processing techniques for finite element analysis. The obtained numerical results for the heat transfer rate and effective thermal conductivity of the developed surrogate models revealed the influence of porosity, struts, and the presence of pore walls in determining the heat flow in the internal structure of the foam. Additionally, it was found that the pore size and its distribution determine the uniform heat flow rate in the entire foamed structure. The numerical data were then validated against the analytical predictions of thermal conductivity based on various correlations. It has been found that the simplified models of Bruggemann and Russell and the parallel–series model can predict the excellent effective thermal conductivity results of the foam throughout the porosity range. The optimal internal foam structure was studied to explore the possibilities of using aluminium foam for PCM-based thermal storage applications.  相似文献   

7.
A smart possible way to cool electronics equipment is represented by passive methods, which do not require an additional power input, such as Phase Change Materials (PCMs). PCMs have the benefit of their latent heat being exploited during the phase change from solid to liquid state. This paper experimentally investigates the melting of different PCMs having different melting temperatures (42, 55 and 64 °C). Two copper foams, having 10 PPI and relative densities of 6.7% and 9.5%, i.e., porosities of 93.3% and 90.5%, respectively, are used to enhance the thermal conductivity of PCMs. The block composed by the PCM and the copper foam is heated from one side, applying three different heat fluxes (10, 15 and 20 kW m−2): the higher the heat flux, the higher the temperature reached by the heated side and the shorter the time for a complete melting of the PCM. The copper foam with a relative density of 9.5% shows slightly better performance, whereas the choice of the melting temperature of the PCM depends on the time during which the passive cooling system must work. The effect of the foam material is also presented: a copper foam presents better thermal performances than an aluminum foam with the same morphological characteristics. Finally, experimental dimensionless results are compared against values predicted by a correlation previously developed.  相似文献   

8.
This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.  相似文献   

9.
Accurate prediction and control of the steel plate temperature in the laminar cooling process are very challenging. In this research, an experimental platform was built to measure the heat transfer characteristics of the steel plate in the process of matrix laminar spray cooling when the steel plate is one millimeter away from the upper surface. The “buried couple method” was used, including the cooling temperature and cooling rate. Then, the temperature and the integrated heat transfer coefficient at the steel plate surface were calculated by the time-sequential function method (TSFM). The obtained results show that the fast cooling stage under the water cooling condition occurred in the first 1.5 s, and the measuring point temperature decreased by 8%. The “re-reddening” phenomenon of the steel plate appeared with time, and the measuring point temperature increased by 37%. Second, the maximum calculated difference between the surface temperature and the measuring point temperature was 0.75 °C, and the integrated heat transfer coefficient conformed to the periodic boundary features. The comprehensive convective heat transfer coefficient on the surface was in agreement with the periodic boundary characteristics, and its value exhibited oscillatory attenuation with the cooling process, and the oscillatory peak period was about 6 seconds. Two methods, sequential function method (SFM) and finite difference method (FDM), were used to verify the correctness of TSFM.  相似文献   

10.
Fluidity tests of pure aluminum 1070 and Al-Si alloys with Si contents of up to 25% were conducted using a die cast machine equipped with a spiral die. The effects of the channel gap, die temperature, and injection speed on the fluidity were investigated. When the channel gap was small (0.5 mm), the flow length of the 1070 was minimized, and the fluidity increased monotonically at a gradual rate with increasing Si content. In contrast, larger gaps yielded convex fluidity–Si content curves. Additionally, heating the die had less of an influence on the fluidity of the 1070 than on that of the Al-Si alloy. These results are discussed in the context of the peeling of the solidification layer from the die based on the thicknesses of foils and strips cast by melt spinning and roll casting, respectively. At lower Si contents, heat shrinkage was greater and the latent heat was lower. When the heat shrinkage was greater, the solidification layer began to peel earlier, and the heat transfer between the solidification layer and the die became smaller. As a result, the fluidity of the 1070 was greatest when the channel gap was 0.8 mm.  相似文献   

11.
Heat pumps are the ideal solution for powering new passive and low-energy buildings, as geothermal resources provide buildings with heat and electricity almost continuously throughout the year. Among geothermal technologies, heat pump systems with vertical well heat exchangers have been recognized as one of the most energy-efficient solutions for space heating and cooling in residential and commercial buildings. A large number of scientific studies have been devoted to the study of heat transfer in and around the ground heat exchanger. The vast majority of them were performed by numerical simulation of heat transfer processes in the soil massif–heat pump system. To analyze the efficiency of a ground heat exchanger, it is fundamentally important to take into account the main factors that can affect heat transfer processes in the soil and the external environment of vertical ground heat exchangers. In this work, numerical simulation methods were used to describe a mathematical model of heat transfer processes in a porous soil massif and a U-shaped vertical heat exchanger. The purpose of these studies is to determine the influence of the filtration properties of the soil as a porous medium on the performance characteristics of soil heat exchangers. To study these problems, numerical modeling of hydrodynamic processes and heat transfer in a soil massif was performed under the condition that the pores were filled only with liquid. The influence of the filtration properties of the soil as a porous medium on the characteristics of the operation of a soil heat exchanger was studied. The dependence of the energy characteristics of the operation of a soil heat exchanger and a heat pump on a medium with which the pores are filled, as well as on the porosity of the soil and the size of its particles, was determined.  相似文献   

12.
The manufacturing of aluminium foams with a total porosity of 87% using the sponge replication method and a combination of the sponge replication and freezing technique is presented. Foams with different cell counts were prepared from polyurethane (PU) templates with a pore count per inch (ppi) of 10, 20 and 30; consolidation of the foams was performed in an argon atmosphere at 650 °C. The additional freezing steps resulted in lamellar pores in the foam struts. The formation of lamellar pores increased the specific surface area by a factor of 1.9 compared to foams prepared by the sponge replication method without freezing steps. The formation of additional lamellar pores improved the mechanical properties but reduced the thermal conductivity of the foams. Varying the pore cell sizes of the PU template showed that—compared to foams with dense struts—the highest increase (~7 times) in the specific surface area was observed in foams made from 10 ppi PU templates. The effect of the cell size on the mechanical and thermal properties of aluminium foams was also investigated.  相似文献   

13.
Long term stability is crucial to maturing any photovoltaic technology. We have studied the influence of sodium, which plays a key role in optimizing the performance of Cu(In,Ga)Se2 (CIGSe) solar cells, on the long-term stability of flexible CIGSe solar cells on polyimide foil. The standardized procedure of damp heat exposure (85% relative humidity at 85 °C) was used to simulate aging of the unencapsulated cells in multiple time steps while they were characterized by current-voltage analysis, capacitance-voltage profiling, as well as electroluminescence imaging. By comparing the aging process to cells that were exposed to heat only, it could be confirmed that moisture plays the key role in the degradation process. We found that cells with higher sodium content suffer from a more pronounced degradation. Furthermore, the experimental results indicate the superposition of an enhancing and a deteriorating mechanism during the aging process. We propose an explanation based on the corrosion of the planar contacts of the solar cell.  相似文献   

14.
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH2) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition) layer and shifted to the low-porosity (without TiH2 addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures), can be fabricated.  相似文献   

15.
In this paper, we present a new approach to model the steady-state heat transfer in heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is based on the natural parallelization of the main computations and their further simplifications due to the numerical nature of the problem. The approach does not require the distinct separation of scales, which makes its applicability to the numerical modeling of the composites very broad. Our novelty relies on modifications to the standard higher-order shape functions, which are then applied to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special shape function assessment) has not been previously used for an approximation order higher than p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some numerical results are presented and compared with the standard direct finite-element solutions. The first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is subject to heating. The second test is the challenging problem of metal foam analysis. The thermal conductivity of air and aluminum differ by several orders of magnitude, which is typically very difficult for the upscaling methods. A very good agreement between our upscaled and reference results was observed, together with a significant reduction in the number of degrees of freedom. The error analysis and the p-convergence of the method are also presented. The latter is studied in terms of both the number of degrees of freedom and the computational time.  相似文献   

16.
The damage process and failure mechanisms were analyzed by a series of quasi-static compressive experiments of seven materials including pure epoxy (EP), three different PPI (pores per linear inch) foam nickel-iron, and three different PPI foam nickel/iron-epoxy interpenetrating phase composites (IPC). Plotting the stress–strain curves of different materials, their change rules are discussed, then the effective elastic modulus and yield limit of the materials are provided, and the energy absorption properties of different materials are analyzed by the stress–strain curves. It was found that the effective elastic modulus and specific stiffness of the three IPC materials were higher than pure foam nickel-iron. The brittleness of epoxy can be obviously changed by selecting a suitable PPI foam nickel-iron composited with it. The unit volume energy absorption rate of foam nickel/iron-epoxy was significantly higher than pure epoxy and pure foam nickel-iron. It was also found that the energy absorption rate decreased with the increase in PPI. The stress relaxation rate decreased first and then increased with the increase in PPI. The creep behavior of the three composites was obvious in the creep elastic stage, and the creep rate increased with the increase in PPI. The creep rate decreased with the increase in PPI in the creep transition stage.  相似文献   

17.
The thermal measurement sensor applied to hypersonic vehicles requires characteristic size in the order of micrometers and characteristic time in the order of microseconds. The measurement criteria of localized detection, high temporal-spatial precision, and long-term stability cannot all be reached by current thermal measuring techniques. This work presents a temperature sensor with excellent temporal-spatial resolution that can measure both in-plane and out-of-plane heat flow. The sensor was made of thin platinum nano-film and an aluminum nitride ceramic sheet. The sensor was calibrated using a thermostatic vacuum chamber and used for in-plane and out-of-plane heat flow measurements. The temperature measurement accuracy of the sensor was estimated to be 0.01 K. The sensor’s resolution for measuring heat flow density is more than 500 W/m2 and its measurement uncertainty is roughly 3%. To ensure the structural stability of the device, the aluminum nitride ceramic sheet was chosen as the substrate of the thermal sensing unit, and the response time became longer due to the high thermal conductivity of aluminum nitride. The suspension platinum nano-film sensor can reach a sub-microsecond response time according to the theoretical derivation. Experimental results of pneumatic thermal effects of high-temperature flames using the sensor prove that the designed sensor has good sensitivity and accuracy.  相似文献   

18.
The mineralogical structure of flux films is a critical factor in controlling heat transfer in the mold and avoiding the longitudinal cracking of slabs during the continuous casting of peritectic steel. In this study, the layered structure, crystallization ratio, mineralogical species, and morphology features of flux films were characterized by optical microscopy, X-ray diffraction, and electron-probe microanalysis. Microstructural observation revealed that the normal flux films for peritectic steels present a multilayered structure and high crystallization ratio (60~90 vol%), mainly composed of well-developed crystalline akermanite and cuspidine. In contrast, the films with outstanding flux characteristics with abundant longitudinal cracks on the slab surface have a low crystallization ratio (<50 vol%) or vast crystallite content (>80 vol%). Furthermore, heat transfer analysis showed that the low crystallization ratio and the vast crystallite content of flux films worsen the heat transfer rate or uniformity in the mold, whereas the appropriate thickness and cuspidine content of flux films can improve the heat transfer performance. From the above results, it is concluded that using strong crystalline flux to obtain the ideal mineral phase structure of flux film is one of the important measures for reducing longitudinal cracks during continuous casting of peritectic steel slabs.  相似文献   

19.
New designs of the microchannel with a two-sided wedge shape at the base were studied numerically. Five different wedge angles ranging from 3° to 15° were incorporated into the microchannel design. Simulation of this novel microchannel was carried out using Computational Fluid Dynamics (CFD). Three-dimensional models of the microchannel heat sink were created, discretized, and based on Navier–Stokes and energy equations; laminar numerical solutions were obtained for heat transfer and pressure drop. Flow characteristics of water as coolant in a microchannel were studied. It was observed that numerical results are in good agreement with experimental results. It was found that the Nusselt number and friction factor are significantly varied with the increase in Reynolds number. The Nusselt number varies in the following ranges of 5.963–8.521, 5.986–8.550, 6.009–8.568, 6.040–8.609, and 6.078–8.644 at 3°, 6°, 9°, 12°, and 15°, respectively. The microchannel with a wedge angle of 15° was found to be better in terms of Nusselt number and thermo-hydraulic performance. The enhancement in the Nusselt number is found as 1.017–1.036 for a wedge angle of 15°; however, friction factors do not show the perceptible values at distinct values of wedge angle. Moreover, the thermo-hydraulic performance parameters (THPP) were evaluated and found to be maximum in the range of 1.027–1.045 for a wedge angle of 15°. However, minimum THPP was found in the range of 1.005–1.0185 for a wedge angle of 3°.  相似文献   

20.
The study deals with an application of aluminum foam as an energy-absorbing material for the carrying structure of a rail car. The material is particularly recommended for circular tube carrying structures. The authors conducted mathematical modeling of dynamic loads on the carrying structure of an open wagon that faces shunting impacts with consideration of the center sill filled with aluminum foam. It was established that the maximum accelerations on the carrying structure of an open wagon were 35.7 m/s2, which was 3.5% lower in comparison with those for a circular tube structure without a filler. The results obtained were proved by computer modeling. The strength of the carrying structure of an open wagon was also calculated. It was established that aluminum foam applied as a filler for the center sill decreased the maximum equivalent stresses in the carrying structure of an open wagon by about 5% and displacements by 12% in comparison with those involving the circular tube carrying structure of an open wagon without a filler. The natural frequencies and the oscillation modes of the carrying structure of an open wagon were defined. The designed models of the dynamic loading of the carrying structure of an open wagon were verified with an F-test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号