首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction.  相似文献   

2.
One way to prevent cement from ending up in landfills after its shelf life is to regain its activity and reuse it as a binder. As has been discovered, milling by planetary ball mill is not effective. Grinding by collision is considered a more efficient way to refine brittle material and, in the case of cement, to regain its activity. There has been considerable research regarding the partial replacement of cement using disintegrated cement in mortar or concrete in the past few decades. This article determines and compares the creep and shrinkage properties of cement mortar specimens made from old disintegrated, old non-disintegrated, and new non-disintegrated Portland cement. The tests show that the creep strains for old disintegrated and old non-disintegrated cement mortars are close, within a 2% margin of each other. However, the creep strains for new non-disintegrated cement mortar are 30% lower. Shrinkage for old disintegrated and non-disintegrated cement mortar is 20% lower than for new non-disintegrated cement mortar. The research shows that disintegration is a viable procedure to make old cement suitable for structural application from a long-term property standpoint. Additionally, it increases cement mortar compressive strength by 49% if the cement is disintegrated together with sand.  相似文献   

3.
Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.  相似文献   

4.
Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.  相似文献   

5.
This study sought to examine the performance design of concrete mix proportions to ensure chloride resistance and early strength with respect to C35 (35 MPa), which is the minimum compressive strength class of concrete used in a marine environment. For the proposed concrete mixture, C24 (24 MPa) was selected and binders for concrete were manufactured using a blend of OPC (ordinary Portland cement), EPC (early Portland cement), and GGBS (ground granulated blast-furnace slag). The results of the experiment confirmed that the combined use of EPC and GGBS greatly improve the early-strength development and chloride resistance of concrete. An analysis revealed that the time for removal of forms can be reduced by 5–9 h from the aspect of early concrete strength. Moreover, in terms of construction productivity, EPC and GGBS were reduced by up to 16.39 h/cycle compared to other concretes. Regarding economic and environmental impacts, EPC and GGBS were more effective than C35 concrete. This study is significant as its findings help make it possible to examine the most economical concrete mix design in relation to strength development according to the application of EPC, GGBS, and PC-based admixtures.  相似文献   

6.
The interest of the construction industry in alkali-activated materials has increased to the extent that these materials are recognized as alternatives to ordinary Portland cement-based materials in the quest for sustainable construction. This article presents the design and construction of a prototype of an eco-friendly house built from concrete blocks produced using alkali activation technology or geopolymerization. The prototype meets the requirements of the current Colombian Regulations for Earthquake Resistant Buildings (NSR-10) and includes standards related to the performance of the materials, design, and construction method for earthquake-resistant confined masonry of one- or two-story buildings. The alkali-activated blocks were obtained from different precursors (aluminosilicates), including a natural volcanic pozzolan, ground granulated blast furnace slag, fly ash, construction and demolition waste (concrete, ceramic, brick, and mortar), and red clay brick waste. The physical-mechanical characterization of the alkali-activated blocks allowed their classification according to the structural specifications of the Colombian Technical Standard NTC 4026 (equivalent to ASTM C90). The global warming potential (GWP) or “carbon footprint” attributed to the raw materials of alkali-activated blocks was lower (25.4–54.7%) than that of the reference blocks (ordinary Portland cement concrete blocks). These results demonstrate the potential of alkali-activated materials for application in the construction of eco-friendly houses.  相似文献   

7.
This work studies the possibility of incorporating different proportions of glass powder from the waste glass (rejected material called fine cullet) produced during the glass recycling process into the manufacturing of mortar and concrete. For this purpose, the material is characterized by its chemical composition and pozzolanic activity, and the shape and size of its particles are studied. It is then incorporated as a substitute for cement into the manufacturing of mortar and concrete at 25% and 40% of cement weight, and its effect on setting times, consistency, and mechanical strength is analyzed. Its behavior as a slow pozzolan is verified, and the possibility of incorporating it into concrete is ratified by reducing its cement content and making it a more sustainable material.  相似文献   

8.
The goal of the work was to describe properties of asphalt-cement concrete (ACC) with reclaimed asphalt pavement (RAP), Portland cement, sand, and rubber powder (RP), as a material to base courses of road pavements. The mixtures were designed with the RAP in the amount of 75, 80, and 85% (m/m) and chosen cement-sand-rubber (CSR) mortar. Three CSR mortars were composed with cement CEM 42.5 R in the amount 29% (m/m); washed sand 0/2 mm in the amount 29, 35, or 41%; rubber powder of granulation 0/1 mm in the amount of 18, 24, or 29% (m/m); and water in the amount 12% fulfilled w/c = 0.4. The optimum moisture content of the selected ACC with CSR mortar determined in the modified Proctor compaction test was approximately 6% and maximum dry density 2.000 g/cm3. Laboratory tests of indirect tensile strength, stiffness modulus (IT-CY and 4PB-PR), water resistance, fatigue life, and complex modulus (E*) at different temperatures were conducted and analyzed. The test results are presented, among others, in the form: the isotherm of complex modulus, Black curve, the master curve, and the Cole-Cole plot.  相似文献   

9.
The properties of cement concrete using waste materials—namely, recycled cement mortar, fly ash–slag, and recycled concrete aggregate—are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash–slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS–RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS–RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS–RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS–RCM additive as 30% of the cement mass.  相似文献   

10.
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.  相似文献   

11.
Alkali-activated mortars and concretes have been gaining increased attention due to their potential for providing a more sustainable alternative to traditional ordinary Portland cement mixtures. In addition, the inclusion of high volumes of recycled materials in these traditional mortars and concretes has been shown to be particularly challenging. The compositions of the mixtures present in this paper were designed to make use of a hybrid alkali-activation model, as they were mostly composed of class F fly ash and calcium-rich precursors, namely, ordinary Portland cement and calcium hydroxide. Moreover, the viability of the addition of fine milled glass wastes and fine limestone powder, as a source of soluble silicates and as a filler, respectively, was also investigated. The optimization criterium for the design of fly ash-based alkali-activated mortar compositions was the maximization of both the compressive strength and environmental performance of the mortars. With this objective, two stages of optimization were conceived: one in which the inclusion of secondary precursors in ambient-cured mortar samples was implemented and, simultaneously, in which the compositions were tested for the determination of short-term compressive strength and another phase containing a deeper study on the effects of the addition of glass wastes on the compressive strength of mortar samples cured for 24 h at 80 °C and tested up to 28 days of curing. Furthermore, in both stages, the effects (on the compressive strength) of the inclusion of construction and demolition recycled aggregates were also investigated. The results show that a heat-cured fly ash-based mortar containing a 1% glass powder content (in relation to the binder weight) and a 10% replacement of natural aggregate for CDRA may display as much as a 28-day compressive strength of 31.4 MPa.  相似文献   

12.
Open stockpiling and the continual production of industrial solid wastes such as red mud (RM) and yellow phosphorus slag (YPS) have caused serious environmental pollution issues. Additionally, concrete prepared easily and with high strength is a widely applied building material. Therefore, replacing part or all of the cement for preparing concrete with RM and YPS will greatly reduce this kind of solid waste and, thus, decrease environmental pressures. This study investigated the best ratio for the replacement of concrete with RM and YPS, testing the mechanical properties as well as the morphology, material composition, and microporous structure of the interface transition zone (ITZ). The results showed for the concrete prepared with ordinary Portland cement replaced by 10.00 wt.% RM and 18 wt.% YPS, compared to ordinary Portland cement concrete, the compressive strength of concrete with basalt aggregate and dolomite aggregate increased by 25.04% and 27.27%, respectively, when the concrete was cured with steam for 28 days. Furthermore, it had a smaller average pore diameter and crystal size in the ITZ. The aggregate and matrix were more closely intertwined. This was because RM had a low cementitious activity and mainly had a filling effect when added to concrete, while the highly active silica in YPS could react with the Ca(OH)2 crystal (CH) produced from cement hydration to form calcium silicate hydrate (CSH) gel, improving the mechanical properties and microstructure of the concrete.  相似文献   

13.
Development of sustainable concrete as an alternative to conventional concrete helps in reducing carbon dioxide footprint associated with the use of cement and disposal of waste materials in landfill. One way to achieve that is the use of fly ash (FA) as an alternative to ordinary Portland cement (OPC) because FA is a pozzolanic material and has a high amount of alumina and silica content. Because of its excellent mechanical properties, several studies have been conducted to investigate the use of alkali-activated FA-based concrete as an alternative to conventional concrete. FA, as an industrial by-product, occupies land, thereby causing environmental pollution and health problems. FA-based concrete has numerous advantages, such as it has early strength gaining, it uses low natural resources, and it can be configurated into different structural elements. This study initially presents a review of the classifications, sources, chemical composition, curing regimes and clean production of FA. Then, physical, fresh, and mechanical properties of FA-based concretes are studied. This review helps in better understanding of the behavior of FA-based concrete as a sustainable and eco-friendly material used in construction and building industries.  相似文献   

14.
In this paper, the traditional, silicate-based Portland cement (PC) was employed as the control to explore the impact of adding varying amounts of metakaolin (MK) on the mechanical properties of cement mortar. In fact, as a mineral admixture, metakaolin (MK) has the ability to significantly improve the early strength and sulfate resistance of cement mortar in traditional, silicate-based Portland cement (PC). In addition to this, the performance of Portland cement mortar is greatly affected by the curing mode. The previous research mainly stays in the intermittent curing and alkaline excitation mode, and there are few studies on the influence of relatively humidity on it. Moreover, the paper investigated the impact of four different curing methods about humidity on the mechanical properties and sulfate resistance. The results show that the best content of metakaolin in Portland cement is 10% (M10), and the best curing method is 95% humidity in the first three days followed by 60% humidity in the later period (3#). Based on previous literature that suggests that adding MK thickens water film layer on the surface of mortar, the mechanism of MK increasing the early strength of cement was analyzed. The compressive strength of the Portland cement containing 10% MK (M10) after 1 day curing is 3.18 times that of pristine PC mortar, and is comparable if PC is cured for three days under the same curing conditions. The traditional PC mortar is highly dependent on the wet curing time, and normally requires a curing time of at least seven days. However, the incorporation of MK can greatly reduce the sensitivity of Portland cement to water; MK cement mortar with only three days wet curing (3#M10) can reach 49.12 MPa after 28 days, which can greatly shorten the otherwise lengthy wet curing time. Lastly, the cement specimens with MK also demonstrated excellent resistance against sulfate corrosion. The work will provide a strong theoretical basis for the early demolding of cement products in construction projects. At the same time, this study can also provide a theoretical reference for the construction of climate drought and saline land areas, which has great reference value.  相似文献   

15.
Concrete is the most commonly used structural material, without which modern construction could not function. It is a material with a high potential to adapt to specific operating conditions. The use of this potential is made by its material modification. The aim of the performed investigations was the assessment of rational application possibilities of fly ashes from thermally conversed municipal sewage sludge as an alternative concrete admixture. A concrete mix was designed, based on the Portland cement CEM I 42.5R and containing various quantity of ash, amounting to 0–25% of cement mass. The samples were conditioned and heated in a furnace at the temperature of 300 °C, 500 °C, and 700 °C. Physical and chemical properties of the ashes as well as utility properties of the concrete, i.e., density, compressive strength after 28, 56, and 90 days of maturation, frost resistance, and compressive strength in high temperature were determined. The tests were performed at cubic samples with 10 cm edge. The replacement of a determined cement quantity by the fly ashes enables obtaining a concrete composite having good strength parameters. The concrete modified by the fly ashes constituting 20% of the cement mass achieved its average compressive strength after 28 days of maturation equal to 50.12 MPa, after 56 days 50.61 MPa and after 90 days 50.80 MPa. The temperature growth weakens the composite structure. The obtained results confirm the possibility of waste recycling in the form of fly ashes as a cement substitute in concrete manufacturing.  相似文献   

16.
For complete utilization of construction and demolition (C&D) waste, an investigation of all size fractions of C&D waste generated during the recycling process should be conducted. In this work, the effects of three recycled concrete materials with different sizes (recycled coarse aggregate (RCA) with a size of 4.75–25 mm, recycled fine aggregate (RFA) of 0.15–4.75 mm, and recycled powder (RP) smaller than 0.15 mm) produced from concrete waste on the fresh and hardened mechanical properties of concrete were evaluated. The replacement ratios of natural coarse and fine aggregates by RCA and RFA were 30, 60, and 100%, and those of ordinary Portland cement for RP were 10, 20, and 30%. The results showed that the concrete properties deteriorated with increasing replacement ratio regardless of the type of recycled materials. The properties were reduced in the order of the use of RFA, RCA, and the simultaneous use of RCA and RFA. In addition, concrete with 30% RP showed lower mechanical strength than concrete with 100% RCA and 100% RFA. However, all concretes could be applicable for structural purposes under different environmental exposure conditions. In particular, concretes with 10% RP and 20% RP showed better cost-benefits compared to natural aggregate concrete with 100% ordinary Portland cement. These promising findings provide valuable initiatives for the effective and complete recycling of C&D waste.  相似文献   

17.
In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system.  相似文献   

18.
Recently, interest in sustainable development has been increased. In this regard, efforts have been made to prevent environmental pollution, and research on the recycling of construction industry byproducts has been actively conducted in the construction industry. In South Korea, about 20 million tons of waste wash water from the ready-mixed concrete production process are generated, and some of them are recycled using recycling facilities in a ready-mixed concrete plant, but a significant portion of them is discharged or landfilled without permission, causing environmental problems. To increase the recycling rate of steel slag and reduce environmental pollution in the construction industry, we simultaneously applied blast furnace slag fine aggregate (BSFA) and recycled water (RW) to cement mortar. In this study, to examine the feasibility of RW and BSFA, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage, carbonation depth, and chloride penetration resistance of cement mortar using RW and BSFA. From the test results, the 28-day compressive strengths of all samples using RW and BSFA were higher than that of the control sample. In the case of samples using RW, as the BSFA replacement ratio was increased, the carbonation depth of the samples decreased. Therefore, when RW and BSFA are used properly, the mechanical properties of cement mortar, carbonation resistance, and chloride ion penetration resistance are expected to be effectively improved.  相似文献   

19.
Blast furnace ferronickel slag (BFFS) is generated in the production of ferronickel alloys and is used as cement replacement in concrete or mortar. The effectivity in reducing cement consumption and improving performance are limited. By referring to the paste replacement method, this work used BFFS to replace an equal volume of the white Portland cement paste to obtain greater performance enhancement. BFFS was used with five levels of replacement (0%, 5%, 10%, 15%, 20%) and four water-to-cement ratios (0.40, 0.45, 0.50, 0.55) were designed. Fluidity, mechanical strength, hydration products, and pore structure of every mixture were measured. The results showed that the workability of the mortars decreased due to the reduced volume of water, but the 28-day compressive strength of the mortars increased, and the cement content of the mortars was also reduced by 33 wt %. The X-ray diffraction (XRD) patterns revealed that there existed a carboaluminate phase, and the presence of the ettringite was stabilized, indicating that the accumulating amount of the hydration products of the mortar increased. Furthermore, the BFFS could consume the portlandite and free water to form a higher amount of chemically bound water due to its pozzolanic activity. A high degree of hydration and a large volume of the hydration products refined the porosity of the hardened mortars, which explained the enhancement of the strength of the mortars. Compared to the cement replacement method, the paste replacement method was more effective in preparing eco-friendly mortar or concrete by recycling BFFS for reducing the cement content of the mortar while improving its strength.  相似文献   

20.
The concept of the alkaline activity of powdered materials introduced into cement compositions has been proposed, along with methods for its determination. The possibility of using waste glass as an active additive to Portland cement was evaluated from the standpoint of alkaline activity. Replacing the Portland cement component with glass waste in the form of glass powder at amounts from 1 to 35% made it possible to maintain the cement composition’s alkaline activity at a level that met the standard requirements. The previously unknown effects of mixed alkali in Portland cement in the presence of glass waste are described. Portland cement has a high potassium alkaline activity; however, container glass has a high sodium alkaline activity and a fairly low potassium alkaline activity. When glass waste is introduced into the structure of cement compositions, potassium alkaline activity is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号