首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium carbide residue (CCR) is the end-product of production of acetylene gas for the applications such as welding, lighting, ripening of fruits, and cutting of metals. Due to its high pH value, disposing of CCR as a landfill increases the alkalinity of the environment. Therefore, due to its high calcium content, CCR is mostly blended with other pozzolanic materials, together with activators as binders in the cement matrix. In this study, cement was partially substituted using CCR at 0%, 7.5%, 15%, 22.5% and 30% by weight replacement, and nano silica (NS) was utilized as an additive by weight of binder materials at 0%, 1%, 2%, 3% and 4%. The properties considered were the slump, the compressive strength, the flexural strength, the splitting tensile strength, the modulus of elasticity, and the water absorption capacity. The microstructural properties of the concrete were also examined through FESEM and XRD analysis. The results showed that both CCR and NS increase the concrete’s water demand, hence reducing its workability. Mixes containing up to 15% CCR only showed improved mechanical properties. The combination of CCR and NS significantly improved the mechanical properties and decreased the concrete’s water absorption through improved pozzolanic reactivity as verified by the FESEM and XRD results. Furthermore, the microstructure of the concrete was explored, and the pores were refined by the pozzolanic reaction products. The optimum mix combination was obtained by replacing 15% cement using CCR and the addition of 2% NS by weight of cementitious materials. Therefore, using a hybrid of CCR and NS in concrete will result in reduction of cement utilization in concrete, leading to improved environmental sustainability and economy.  相似文献   

2.
Calcium carbide residue (CCR) is a solid waste resulting from acetylene gas production. In this study, CCR was used as an alkali activator to prepare fly ash (FA)-based geopolymers without any alkali supplementation. We studied the factors (FA/CCR ratio, curing temperature, and water/binder ratio) influencing the mechanical property of FA/CCR-based geopolymers. The compressive strength results showed that, by optimizing these three factors, the FA/CCR mixture has great potential for use as a cementitious material and geopolymer with a dense microstructure having a maximal compressive strength of 17.5 MPa. The geopolymers’ chemical structure, microstructure, and chemical composition were characterized and determined by a combination of techniques. All these results revealed that amorphous C-(A)-S-H (calcium (aluminate) silicate hydrate) gels mainly formed after geopolymerization resulting from the reaction of FA and CCR. In addition, some crystallines, such as ettringite and monosulfate, were also formed. Further, geopolymers prepared with a suitable FA/CCR ratio (1:1 or 1:2) possessed a compact microstructure because of their sufficient reactive SiO2 and Al2O3 and high-enough alkalinity, responsible for higher content of C-(A)-S-H formation and better mechanical property. Too high curing temperature or water content induced the formation of a loosely bound geopolymer matrix that strongly weakens its mechanical property.  相似文献   

3.
The purpose of this research is to explore the feasibility of using calcium carbide residue (CCR), a by-product from acetylene gas production, as a solid alkaline activator on the strength development in CCR–Portland cement-stabilized dredged sludge (CPDS). The effects of cement content, CCR content and curing time on the strength development of CPDS were investigated using a series of unconfined compressive strength (UCS), pH and electric conductivity (EC) tests. Scanning electron microscopy and X-ray diffraction analyses were performed to gain additional insight into the mechanism of strength development. Meanwhile, the carbon footprints of CPDS were calculated. Following the results, it was found that CCR can significantly improve the strength of cemented dredged sludge. On the basis of the strength difference (ΔUCS) and strength growth rate (UCSgr), it was recommended that utilizing 20% cement with the addition of 20% CCR is the most effective way to develop the long-term strength of CPDS. In addition, the microstructural analysis verified that the optimum proportion of CCR benefits the formation of hydration products in CPDS, particularly needle-like gel ettringite, resulting in a less-porous and dense inter-locked structure. Furthermore, the solidification mechanism of CPDS was discussed and revealed. Finally, it was confirmed that CCR can be a sustainable alternative and effective green alkaline activator for the aim of improving cemented dredged sludge.  相似文献   

4.
Using eggshell powder (EP) to replace partial cement in cement-based materials can abate pollution caused by eggshell discard and cement production. In this paper, the surface property of EP and its influence on cement hydration were studied. Quartz powder (QP) and limestone powder (LP) were used as references. First, the chemical composition of EP was characterized. Then, the surface charge properties of these materials were analyzed using zeta potential measurement. The interactions between EP surface and Ca2+ were discussed based on the zeta potential test. Afterward, a scanning electron microscope (SEM) was applied to observe the morphology of hydrates on the surfaces of these materials. The results indicated that, although the compositions of EP and LP are similar, the surface charge properties are significantly different. This is likely due to the existence of organic matter on the surface of EP and the difference in the atomic structure. As shown from the zeta potential test, EP exhibits similar interaction with Ca2+ as QP. The interactions between EP surface and Ca2+ are much weaker than that between LP and Ca2+. These weak interactions lead to the growth of C–S–H on the surface of EP particles less than that of LP particles. The chemical reactivity of EP can be improved by using heat treatment, electrical oven, etc. This study will provide theoretical support for the better use of EP in cement-based materials.  相似文献   

5.
Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.  相似文献   

6.
Hydration is the exothermic reaction between anhydrous cement and water, which forms the solid cement matrix of concrete. Being able to evaluate the hydration is of high interest for the use of both conventional and more climate-friendly building materials. The experimental monitoring is based on temperature or moisture measurements. The first needs adiabatic conditions, which can only be achieved in laboratory. The latter is often measured comparing the weight of the material sample before and after oven drying, which is time-consuming. This study investigates the moisture content of two cement-based and two calcium sulphate based mixtures for the first 90 days by using the calcium carbide method and oven drying at 40 °C and 105 °C (Darr method). Thereby, the amount of chemically bound water is determined to derive the degree of hydration. The calcium carbide measurements highly coincide with oven drying at 40 °C. The calcium carbide method is therefore evaluated as a suitable alternative to the time-consuming Darr drying. The prompt results are seen as a remarkable advantage and can be obtained easily in laboratory as well as in the field.  相似文献   

7.
In this work, the hydration of calcium aluminate cement (CAC, Al2O3 ≥ 70%) paste with nano admixtures (0, 0.05%, 0.1% and 0.2%) of nano-silica (NS) and carbon nano-cones (NC) when W/CAC = 0.35 was investigated. The methods of calorimetry, thermal analysis, X-ray diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM) were used. In addition, the physical and mechanical properties of hardened cement pastes were determined after 3 days of hardening. NS was found to shorten the induction period of CAC hydration and accelerate the time of the secondary heat release effect, especially in the specimens with the highest NS content. The incorporation of NC (up to 0.2%) slows down the hydration process. After 3 days of hydration, the formation of hydration products, such as C2AH8, CAH10, C3AH6 and AH3 hydrates, was observed in CAC pastes, however, the quantitative compositions were different depending on the kind of nano admixture and its amount. SEM results obtained show differences in the effect of NS and NC on the formation of the structure of cement paste during its hardening. Significant changes in CAC paste microstructure were caused by the addition of NS and NC admixtures. Compressive strength was found to increase with the increase of NS and the optimal NS content was found to be 0.10 wt.%. The modification of the cement paste with an NS admixture results in a higher amount of hydrates, lower total porosity, and a higher amount of the smallest pores in the microstructure of the sample. NS and NC influence the hydration behaviour of CAC in different ways, which causes characteristic changes in the microstructure and properties of hardened samples.  相似文献   

8.
Hydration characteristics and mechanical properties of calcium sulphoaluminate (CSA) cement with different contents of CaCO3 and gypsum under NaCl solutions were studied, using the testing methods of isothermal calorimetry, X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), linear shrinkage, and compressive strength. Results show that CaCO3 can promote hydration and reduce the hydration heat of CSA cement. The reaction between gypsum and C4A3S- releases a large quantity of heat in the initial hydration period; however, over 3 days of accumulation, the level of hydration heat is reduced. Under NaCl solutions, the aluminate phase has difficulty reacting with CaCO3 to form carbonate phase but combines with chloride ions to form Friedel’s salt. On the contrary, gypsum reduces aluminate phase, and the content of Friedel’s salt is also reduced. Furthermore, CaCO3 and gypsum both increase the total porosity of the CSA cement paste under NaCl solutions during the early curing phase, and over the long-term, pore structure is also optimized. CaCO3 and gypsum reduce the linear shrinkage of CSA cement paste under NaCl solutions. Overall, the compressive strength of CSA cement is reduced with the addition of CaCO3, and the trend will be sharper with the increase in CaCO3. However, when it comes to gypsum, the compressive strength is almost the same during early curing, but in the long-term, compressive strength improves. Essentially, the compressive strength of CSA cement mortar with CaCO3 and gypsum will improve under NaCl solutions.  相似文献   

9.
In this paper, the effect of iron phase content on the calcination and properties of clinker and barium calcium sulfoaluminate cement was studied. The compressive strength of the samples was tested and combined with an XRD and SEM-EDS analysis, and the microstructure and composition of the barium calcium sulfoaluminate clinker and hydrated samples were characterized. The results showed that the oval-shaped particles were C2S minerals, and the hexagonal plate-shaped or rhombohedral dodecahedral particles were C2.75B1.25A3S¯. The Ba element was mainly distributed in the barium calcium sulfoaluminate region, and some of it was dissolved in C2S; the Fe element was distributed between C2.75B1.25A3S¯ and C2S crystal grains in the form of an iron phase solid solution, which acted as a solvent. When the iron phase composition was C4AF and the iron phase content was 5%, the early hydration and later strength were better, and the compressive strength after curing for 1, 3 and 28 days was 73.2 MPa, 97.9 MPa and 106.9 MPa, respectively. A proper amount of the iron phase can reduce the eutectic point of the sintered mature material system, increase the amount of liquid phase, reduce the viscosity of the liquid phase, effectively accelerate the migration of mineral ions and promote the formation and growth of minerals.  相似文献   

10.
Silicon carbide (SiC) is a wide-bandgap (WBG) semiconductor material, and its preparation process has strict requirements on the purity of raw materials. A self-developed medium-frequency induction heating furnace was used to carry out powder heat treatment and purification experiments on SiC powder to improve the purity of the powder. Samples with 3.5N purity were analyzed using XRD and GDMS characterization methods. It was found that under conditions of high-temperature (2200 °C) and long-time (50 h) processing, the impurity removal effect was quite good, but the powder loss was as high as 53.42%. The powder loss during the low-temperature (less than 2050 °C) and short-time process was less than 1.5%, but the purification effect was not substantial. After a prolonged processing time, the purification effect of low-temperature heat treatment conditions was improved, but the powder loss was also increased to 30%. In contrast, segmented purification processing at a low temperature in the early stage and a high temperature in the later stage achieved a good purification effect. On the premise of maintaining the utilization rate of raw materials, a 5N-purity SiC source was successfully prepared. The test results show that the contents of free Si, free C and free oxygen impurities were reduced to less than 0.01%, and the contents of Al, B, Fe, Mg, Na, Ti and other impurities were less than 1.15 ppm, which is close to the ppb level.  相似文献   

11.
The use of ammonia soda residue (ASR) to prepare building materials is an effective way to dispose of ASR on a large scale, but this process suffers from a lack of data and theoretical basis. In this paper, a composite cementitious material was prepared using ASR and cement, and the hydration mechanism of cementitious materials with 5%, 10%, and 20% ASR was studied. The XRD and SEM results showed that the main hydration products of ASR-cement composite cementitious materials were an amorphous C-S-H gel, hexagonal plate-like Ca(OH)2 (CH), and regular hexagonal plate-like Friedel’s salt (FS). The addition of ASR increased the heat of hydration of the cementitious material, which increased upon increasing the ASR content. The addition of ASR also reduced the cumulative pore volume of the hardened paste, which displayed the optimal pore structure when the ASR content was 5%. In addition, ASR shortened the setting time compared with the cement group, and the final setting times of the pastes with 5%, 10%, and 20% ASR were 30 min, 45 min, and 70 min shorter, respectively. When the ASR content did not exceed 10%, the 3-day compressive strength of the mortar was significantly improved, but the 28-day compressive strength was worse. Finally, the hydration mechanism and potential applications of the cementitious material are discussed. The results of this paper promote the use of ASR in building materials to reduce CO2 emissions in the cement industry.  相似文献   

12.
Reaction-bonded silicon carbide (RBSC) has become an important structural ceramic with the benefit of being capable of preparing complex-shaped products. In order to fabricate high-performance RBSC, particle gradation of raw SiC combined with slip casting was used to prepare the porous preform before liquid silicon infiltration (LSI). The microstructural and mechanical properties of RBSC were compared by adding different amounts of carbon black (CB) content from 4 wt% to 10 wt%. Two pore structures with submicron and nano pores formed in the preform. As the amounts of carbon black increased, the mechanical properties improved and then suddenly weakened due to residual silicon initiating a nonuniform microstructure. The elastic modulus of the preform with 8 wt%CB after LSI was 389 ± 4 GPa and the flexural strength was 340 ± 17 MPa, which improved by about 150% compared to other rapid prototyping methods and has attractive application prospects.  相似文献   

13.
Polyvinyl alcohol (PVA) and calcium sulphoaluminate (CSA) cement were used to prepare repair mortar for the restoration of the walls of a building built with bricks. The preparation, hydration, and properties of the PVA-modified CSA cement repair mortar were studied. Besides this, the mechanism by which PVA improves the bonding strength is also discussed. The results demonstrate that PVA prolongs the setting time of CSA cement, which is ascribed to PVA inhibiting the dissolution of C4A3$ (4CaO·3Al2O3·SO3) and the precipitation of AFt (3CaO·Al2O3·3CaSO4·26H2O) within the hydration age of 0~60 min. PVA lowers the mechanical strength of CSA cement repair mortar at the hydration age of 6 h. After 6 h, the mechanical strength is improved. PVA could also improve the bonding strength between CSA repair mortar and bricks. This is mainly ascribed to the Al ions in both the hydration products of CSA cement and the clay bricks reacting with the hydroxyl group of PVA and forming the chemical bond C-O-Al. Therefore, a tighter combination between CSA cement repair mortar and the clay bricks forms, thereby improving the bonding strength.  相似文献   

14.
Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).  相似文献   

15.
The self-leveling mortar (SLM) of a ternary cementitious system with different dosages of redispersible powder (RP) with ordinary Portland cement (OPC), sulfoaluminate cement (SAC), and calcium sulfate (CS) as cementitious materials was investigated with regard to fluidity, bond strength, shrinkage rate, abrasion resistance, flexural strength, and compressive strength. The performance parameters obtained from the experimental test for SLM were weighted values calculated with an analytic hierarchy process (AHP). The comprehensive index of performance was evaluated on the basis of a weighted-sum method, and the optimal dosage of RP was determined according to the comprehensive index. The experimental results demonstrated that the fluidity of SLM decreased with the increase in RP dosage at the beginning but then increased thereafter and decreased rapidly as the dosage went beyond 3.0%. The addition of RP resulted in a significant improvement in bond strength (of SLM), reduction in the shrinkage rate, abrasion loss, early flexural strength and compressive strength, and resistance to cracking. The properties of SLM with 3.0% RP can meet the requirements of the industrial standard for cementitious self-leveling floor mortar. Compared with the SLM without RP, the bond strength of SLM with 3.0% RP was increased by 46.7%, while the shrinkage rate and abrasion loss were reduced by 50% and 71.9% respectively. The weighted values of fluidity, compressive strength, flexural strength, stability, cohesiveness, and abrasion resistance were 0.422, 0.196, 0.196, 0.089, 0.058, and 0.039, respectively. A higher value of the comprehensive index generally denotes a better performance. The comprehensive index of SLM with 3.0% RP was the highest.  相似文献   

16.
Improving the strength of grey cast iron wheel hubs will improve the safety of automobiles and have a great significance for energy saving and environmental protection. This paper systematically compares the calculation results of Python-based precipitation calculation and JmatPro software simulation with experiments. The results show that with a low mass fraction of niobium (0.098%) cuboid Niobium Carbide (NbC) precipitates do not form in the liquid phase; however, an elongated NbC niobium-rich phase may form during the solidification process and in the solid phase. However, cuboid NbC precipitates can be precipitated from the liquid phase when the niobium mass fraction is higher (0.27%, 0.46%). These results indicate that with the increasing niobium content the amount, particle size, and initial precipitation temperature of niobium carbide precipitated in the matrix structure will increase. According to the observation and statistical analysis of the microstructure, it is found that tensile strength will be improved with an increase in niobium content due to the refinement of the graphite and pearlite interlamellar spacing. In this paper, adding less than 0.32% of Nb to grey cast iron is recommended, considering the comprehensive cost and the effect of niobium in the material structure.  相似文献   

17.
Flexural strength of concrete is an important property, especially for pavements. Concrete with higher flexural strength has fewer cracking and durability issues. Researchers use different materials, including fibers, polymers, and admixtures, to increase the flexural strength of concrete. Silicon carbide and tungsten carbide are some of the hardest materials on earth. In this research, the mechanical properties of carbide concrete composites were investigated. The silicon carbide and tungsten carbide at different percentages (1%, 2%, 3%, and 4%) by weight of cement along with hybrid silicon carbide and tungsten carbide (2% and 4%) were used to produce eleven mixes of concrete composites. The mechanical tests, including a compressive strength test and flexural strength test, along with the rapid chloride permeability test (RCPT), were conducted. It was concluded that mechanical properties were enhanced by increasing the percentages of both individual and hybrid carbides. The compressive strength was increased by 17% using 4% tungsten carbide, while flexural strength was increased by 39% at 4% tungsten carbide. The significant effect of carbides on flexural strength was also corroborated by ANOVA analysis. The improvement in flexural strength makes both carbides desirable for use in concrete pavement. Additionally, the permeability, the leading cause of durability issues, was reduced considerably by using tungsten carbide. It was concluded that both carbides provide promising results by enhancing the mechanical properties of concrete and are compatible with concrete to produce composites.  相似文献   

18.
Environmental considerations and technical benefits have directed research towards reducing cement clinker content in concrete, and one of the best ways to do this is to replace cement with supplementary cementitious materials. High calcium fly ash, ladle furnace slag, and limestone filler were investigated as supplementary cementitious materials in cement pastes, and binary mixtures were produced at 10%, 20%, and 30% cement replacement rates for each material. The water requirement for maximum packing and for normal consistency were obtained for each paste, and strength development was determined at 3, 7, 28, and 90 days for the 20% replacement rate. Furthermore, two ternary mixtures at 30% cement replacement were also prepared for maximum packing density and tested for compressive strength development. The results showed that high calcium fly ash decreased cement paste packing and increased water demand but contributed to strength development through reactivity. Ladle furnace slag and limestone filler, on the other hand, were less reactive and seemed to contribute to strength development through the filler effect. The ternary paste with 70% cement, 20% high calcium fly ash, and 10% limestone filler showed equivalent strength development to that of the reference cement paste.  相似文献   

19.
In order to improve the early strength of fly ash blended cement concrete under steam curing conditions, fly ash was partly substituted by calcined flue gas desulfurization (FGD) gypsum and active calcium aluminate. The effect of the composition and curing condition on the workability, mechanical property, and volume stability was systematically evaluated. The variety of hydration products and the evolution was determined by XRD to explore the formation kinetic of ettringite. Results show that the addition of calcined FGD gypsum and active calcium aluminate is able to improve the early compressive strength but using more FGD gypsum and a high sulfur aluminum ratio leads to a reduction in compressive strength from 28 to 90 days due to the increment of ettringite and crystallization of dihydrate gypsum. Both the free expansion ratio and limited expansion exhibited a continuous increasement with time, especially in the first 14 days of testing. Cracks were not observed on the surface of samples immersed in water for a year. The improvement of strength and shrinkage resistance is mainly due to the formation of ettringite generated before 14 days and the precipitation was highly limited from 14 to 28 days. Moreover, the characteristic peak of gypsum appeared after 28 days, indicating the conversion of partial of calcined FGD gypsum. The work presented here provides a new solution for improving the early strength of fly ash concrete without reducing the later strength and consuming extra energy.  相似文献   

20.
One commonly used cement type for thermal applications is CAC containing 38–40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号