首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jingfei Luan  Jianhui Chen 《Materials》2012,5(11):2423-2438
Novel photocatalysts Y2MSbO7 (M = Ga, In, Gd) were synthesized by the solid state reaction method for the first time. A comparative study on the structural and photocatalytic properties of Y2MSbO7 (M = Ga, In, Gd) was reported. The results showed that Y2GaSbO7, Y2InSbO7 and Y2GdSbO7 crystallized with the pyrochlore-type structure, cubic crystal system, and space group Fd3m. The lattice parameter for Y2GaSbO7 was 10.17981 Å. The lattice parameter for Y2InSbO7 was 10.43213 Å. The lattice parameter for Y2GdSbO7 was 10.50704 Å. The band gap of Y2GaSbO7 was estimated to be 2.245 eV. The band gap of Y2InSbO7 was 2.618 eV. The band gap of Y2GdSbO7 was 2.437 eV. For the photocatalytic water-splitting reaction, H2 or O2 evolution was observed from pure water with Y2GaSbO7, Y2InSbO7 or Y2GdSbO7 as catalyst under visible light irradiation. (Wavelength > 420 nm). Furthermore, H2 and O2 were also evolved by using Y2GaSbO7, Y2InSbO7 or Y2GdSbO7 as a catalyst from CH3OH/H2O and AgNO3/H2O solutions, respectively, under visible light irradiation (λ > 420 nm). Y2GaSbO7 showed the highest activity compared with Y2InSbO7 or Y2GdSbO7. At the same time, Y2InSbO7 showed higher activity compared with Y2GdSbO7. The photocatalytic activities were further improved under visible light irradiation with Y2GaSbO7, Y2InSbO7 or Y2GdSbO7 being loaded by Pt, NiO or RuO2. The effect of Pt was better than that of NiO or RuO2 for improving the photocatalytic activity of Y2GaSbO7, Y2InSbO7 or Y2GdSbO7.  相似文献   

2.
Originally, the new catalyst Bi2SmSbO7 was synthesized by the hydrothermal synthesis method or by the solid-phase sintering method at a lofty temperature. A solvothermal method was utilized to prepare a Bi2SmSbO7/ZnBiYO4 heterojunction photocatalyst (BZHP). The crystal structure of Bi2SmSbO7 belonged to the pyrochlore structure and face-centered cubic crystal system by the space group of Fd3m. The cell parameter a was equivalent to 10.835(1) Å (Bi2SmSbO7). With Bi2SmSbO7/ZnBiYO4 heterojunction (BZH) as the photocatalyst, the removal rate (RR) of direct orange (DO) and the total organic carbon were 99.10% and 96.21% after visible light irradiation of 160 min (VLI-160M). The kinetic constant k toward DO concentration and visible light irradiation time (VLI) with BZH as photocatalyst reached 2.167 min−1. The kinetic constant k, which was concerned with total organic carbon, reached 0.047 min−1. The kinetic curve that came from DO degradation with BZH as a catalyst under VLI conformed to the second-order reaction kinetics. After VLI-160M, the photocatalytic degradation (PD) removal percentage of DO with BZH as the photocatalyst was 1.200 times, 1.268 times or 3.019 times that with Bi2SmSbO7 as the photocatalyst, ZnBiYO4 as the photocatalyst or with nitrogen-doped titanium dioxide as the photocatalyst. The photocatalytic activity (PA) was as following: BZH > Bi2SmSbO7 > ZnBiYO4 > nitrogen-doped titanium dioxide. After VLI-160M for three cycles of experiments with BZH as the photocatalyst, the RR of DO reached 98.03%, 96.73% and 95.43%, respectively, which meant that BZHP possessed high stability. By using the experiment of adding a trapping agent, the oxidative purifying capability for degradation of direct orange, which was in gradual depressed order, was as following: hydroxyl radical > superoxide anion > holes. Finally, the possible degradation pathway and degradation mechanism of DO were discussed systematically. A new high active heterojunction catalyst BZHP, which could efficiently remove toxic organic pollutants such as DO from dye wastewater after VLI, was obtained. Our research was meant to improve the photocatalytic property of the single photocatalyst.  相似文献   

3.
Severe environmental pollution is caused by the massive discharge of complex industrial wastewater. The photocatalytic technology has been proved as an effective way to solve the problem, while an efficient photocatalyst is the most critical factor. Herein, a new photocatalyst MIL-68(Ga)_NH2 was obtained by hydrothermal synthesis and were characterized by PXRD, FTIR, 1H NMR, and TGA systematically. The result demonstrates that MIL-68(Ga)_NH2 crystallized in orthorhombic system and Cmcm space group with the unit cell parameters: a = 36.699 Å, b = 21.223 Å, c = 6.75 Å, V = 5257.6 Å3, which sheds light on the maintenance of the crystal structure of the prototype material after amino modification. The conversion of Cr(VI) and binary pollutant Cr(VI)/RhB in wastewater under visible light stimulation was characterized by the UV-vis DRS. Complementary experimental results indicate that MIL-68(Ga)_NH2 exhibits remarkable photocatalytic activity for Cr(VI) and the degradation rate reaches as high as 98.5% when pH = 2 and ethanol as hole-trapping agent under visible light irradiation with good reusability and stability. Owing to the synergistic effect between Cr(VI) and RhB in the binary pollutant system, MIL-68(Ga)_NH2 exhibits excellent catalytic activity for both the pollutants, the degradation efficiency of Cr(VI) and RhB was up to 95.7% and 94.6% under visible light irradiation for 120 min, respectively. The possible removal mechanism of Cr(VI)/RhB based on MIL-68(Ga)_NH2 was explored. In addition, Ga-based MOF was applied in the field of photocatalytic treatment of wastewater for the first time, which broadened the application of MOF materials in the field of photocatalysis.  相似文献   

4.
The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO2 photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%). The noble metal deposition onto the TiO2 surface was achieved by in situ chemical reduction (CRIS) or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM). Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH4. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm) in the presence of oxalic acid (50 mM) as a sacrificial hole scavenger component. The H2 evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H2 formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H+/H2 redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H2 gas in the reaction mixture.  相似文献   

5.
In this study, expired egg white was used as a template, and a sol–gel method was employed to prepare pure-phase TiO2 nano-powder and mixed-phase powders doped with NaF and NaI. The influences of different calcination temperatures, doping elements, and doping amounts during the preparation process on the photocatalytic performance and activity of the prepared TiO2 powders were studied. The results of the experiments showed that the F-doped TiO2 had the highest photocatalytic activity when the doping amount was 1.2%, as examined by EDS, where the sintering temperature was 500 °C. F-doped TiO2 nanoparticles were also synthesized by the sol–gel method using tetrabutyl titanate and NaF mixed with expired egg white protein as the precursor. The F-TiO2 photocatalyst was characterized using FE-SEM, HR-TEM, EDS, XPS, and UV-Vis, and the photocatalytic activity was evaluated by photodegradation of methylene blue under visible light. The results showed that doping with F reduced the energy band gap (3.04 eV) of TiO2, thereby increasing the photocatalytic activity in the visible-light region. The visible-light wavelength range and photocatalytic activity of the catalyst were also affected by the doping amount.  相似文献   

6.
Titanium oxide is widely applied as a photocatalyst. However, its low efficiency and narrow light absorption range are two main disadvantages that severely impede its practical application. In this work, black TiOx films with different chemical compositions were fabricated by tuning target voltage and controlling O2 flow during reactive DC magnetron sputtering. The optimized TiOx films with mixed phases (TiO, Ti2O3, Ti3O5, and TiO2) exhibited fantastic photothermal and photocatalytic activity by combining high light-absorptive Ti2O3 and Ti3O5 phases with the photocatalytic TiO2 phase. The sample prepared with oxygen flow at 5.6 ± 0.2 sccm and target voltage near 400 V exhibited excellent optical absorbance of 89.29% under visible light, which could improve surface temperature to 114 °C under sunlight. This film could degrade Rhodamine-B up to 74% after 150 min of UV irradiation. In a word, this work provides a guideline for fabricating black TiOx films with photothermal-assisted photocatalytic activity by reactive DC magnetron sputtering, which could avoid the usage of hydrogen and is convenient for quantity preparation.  相似文献   

7.
A magnetically recyclable Ni/NiO/g-C3N4 photocatalyst with significantly enhanced H2 evolution efficiency was successfully synthesized by a simple ethanol-solvothermal treatment. The presence of electronegative g-C3N4 is found to be the key factor for Ni0 formation in ternary Ni/NiO/g-C3N4, which provides anchoring sites for Ni2+ absorption and assembling sites for Ni0 nanoparticle formation. The metallic Ni0, on one side, could act as an electron acceptor enhancing carrier separation and transfer efficiency, and on the other side, it could act as active sites for H2 evolution. The NiO forms a p–n heterojunction with g-C3N4, which also promotes carrier separation and transfer efficiency. The strong magnetic property of Ni/NiO/g-C3N4 allows a good recyclability of catalyst from aqueous solution. The optimal Ni/NiO/g-C3N4 showed a full-spectrum efficiency of 2310 μmol·h−1·g−1 for hydrogen evolution, which is 210 times higher than that of pure g-C3N4. This ethanol solvothermal strategy provides a facile and low-cost synthesis of metal/metal oxide/g-C3N4 for large-scale application.  相似文献   

8.
Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol–gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV−Vis spectroscopy, N2 adsorption/desorption at −196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc’s plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc’s plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.  相似文献   

9.
White LEDs were encapsulated using Cs4PbBr6 quantum dots and Gd2O3:Eu red phosphor as lamp powder. Under the excitation of a GaN chip, the color coordinates of the W-LED were (0.33, 0.34), and the color temperature was 5752 K, which is close to the color coordinate and color temperature range of standard sunlight. The electric current stability was excellent with an increase in the electric current, voltage, and luminescence intensity of the quantum dots and phosphors by more than 10 times. However, the stability of the quantum dots was slightly insufficient over long working periods. The photocatalytic devices were constructed using TiO2, CsPbBr3, and NiO as an electron transport layer, light absorption layer, and catalyst, respectively. The Cs–Pb–Br-based perovskite quantum dot photocatalytic devices were constructed using a two-step spin coating method, one-step spin coating method, and full PLD technology. In order to improve the water stability of the device, a hydrophobic carbon paste and carbon film were selected as the hole transport layer. The TiO2 layer and perovskite layer with different thicknesses and film forming qualities were obtained by changing the spin coating speed. The influence of the spin coating speed on the device’s performance was explored through SEM and a J–V curve to find the best spin coating process. The device constructed by the two-step spin coating method had a higher current density but no obvious increase in the current density under light, while the other two methods could obtain a more obvious light response, but the current density was very low.  相似文献   

10.
Fe–doped titanium dioxide–carbonized medium–density fiberboard (Fe/TiO2–cMDF) was evaluated for the photodegradation of methylene blue (MB) under a Blue (450 nm) light emitting diode (LED) module (6 W) and commercial LED (450 nm + 570 nm) bulbs (8 W, 12 W). Adsorption under daylight/dark conditions (three cycles each) and photodegradation (five cycles) were separately conducted. Photodegradation under Blue LED followed pseudo-second-order kinetics while photodegradation under commercial LED bulbs followed pseudo-first-order kinetics. Photodegradation rate constants were corrected by subtracting the adsorption rate constant except on the Blue LED experiment due to their difference in kinetics. For 8 W LED, the rate constants remained consistent at ~11.0 × 10−3/h. For 12 W LED, the rate constant for the first cycle was found to have the fastest photodegradation performance at 41.4 × 10−3/h. After the first cycle, the rate constants for the second to fifth cycle remained consistent at ~28.5 × 10−3/h. The energy supplied by Blue LED or commercial LEDs was sufficient for the bandgap energy requirement of Fe/TiO2–cMDF at 2.60 eV. Consequently, Fe/TiO2–cMDF was considered as a potential wood-based composite for the continuous treatment of dye wastewater under visible light.  相似文献   

11.
Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N2 physisorption isotherms were also determined. The Ni/Al2O3 sample reveled agglomerated (1 μm) of nanoparticles of Ni (30–80 nm) however, NiO particles were also identified, probably for the low temperature during the H2 reduction treatment (350 °C), the Cu/Al2O3 sample presented agglomerates (1–1.5 μm) of nanoparticles (70–150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH3ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption.  相似文献   

12.
Diesel particulates are deposited in the diesel particulate filter and removed by the regeneration process. The Printex-U (PU) particles are simulated as the diesel soot to investigate the influence of thermal aging conditions on soot combustion performance with the addition of catalysts. The comprehensive combustion index S, combustion stability index Rw and peak temperature Tp are obtained to evaluate the combustion performance. Compared with the PU/Pt mixtures of different Pt contents (2 g/ft3, 3.5 g/ft3, and 5 g/ft3), the 10 g/ft3 Pt contents improve soot combustion with the outstanding oxygen absorption ability. When the weight ratio of PU/Pt mixture is 1:1, the promoted effect achieves the maximum degree. The S and Rw increase to 8.90 × 10−8 %2min−2°C−3 and 39.11 × 105, respectively, compared with pure PU. After the thermal aging process, the PU/Pt mixture with a 350 °C aging temperature for 10 h promotes the soot combustion the best when compared to pure PU particles. It is not good as the PU/Pt mixture without aging, because the inner properties of soot and Pt/Al2O3 catalyst may have been changed. The S and Rw are 9.07 × 10−8 %2min−2°C−3 and 38.39 × 105, respectively, which are close to the no aging mixture. This work plays a crucial role in understanding the mechanism of the comprehensive effect of soot and catalyst on soot combustion after the thermal aging process.  相似文献   

13.
A simple and efficient approach for the high-purity CaSO4·2H2O (DH) whiskers and α-CaSO4·0.5H2O (α-HH) whiskers derived from such phosphogypsum (PG) was proposed. The impact of different experimental parameters on supersaturated dissolution–recrystallization and preparation processes of α-CaSO4·0.5H2O was elaborated. At 3.5 mol/L HCl concentration, the dissolution temperature and time were 90 °C and 20 min, respectively. After eight cycles and 5–8 times cycles, total crystallization amount of CaSO4·2H2O was 21.75 and 9.97 g/100 mL, respectively, from supersaturated HCl solution. The number of cycles affected the shape and amount of the crystal. Higher HCl concentration facilitated CaSO4·2H2O dissolution and created a much higher supersaturation, which acted as a larger driving force for phase transformation of CaSO4·2H2O to α-CaSO4·0.5H2O. The HCl solution system’s optimum experimental conditions for HH whiskers preparation involved acid leaching of CaSO4·2H2O sample, with HCl concentration 6.0 mol/L, reaction temperature 80 °C, and reaction time 30 min–60 min. Under the third cycle conditions, α-CaSO4·0.5H2O whiskers were uniform in size, clear, and distinct in edges and angles. The length range of α-CaSO4·0.5H2O whiskers was from 106 μm to 231 μm and diameter range from 0.43 μm to 1.35 μm, while the longest diameter ratio was 231. Purity of α-CaSO4·0.5H2O whiskers was approximately 100%, where whiteness reached 98.6%. The reuse of the solution enables the process to discharge no waste liquid. It provides a new reference direction for green production technology of phosphogypsum.  相似文献   

14.
CeO2/UiO-66-NH2 (marked as Ce/UN) composites were in-situ synthesized by a hydrothermal method. The properties, photocatalytic aspects, and degradation mechanism of Ce/UN were studied carefully. SEM results show that Ce/UN have a 3D flower-like structure, where octahedral UiO-66-NH2 nanoparticles are embedded in the two-dimensional sheet of CeO2. TEM results demonstrate that CeO2 and UiO-66-NH2 are bonded interfacially to constitute a hetero-junction construction. Data obtained by electrochemical impedance spectroscopy and fluorescence spectroscopy established that Ce/UN has less charge shift resistance and luminescence intensity than these of two pure substances. When the ratio of Ce/UN is 1:1, and the calcination temperature 400 °C is used, the degradation efficiency of RhB in photocatalysis by obtained Ce/UN is about 96%, which is much higher than in the case of CeO2 (4.5%) and UiO-66-NH2 (54%). The improved photocatalytic properties of Ce/UN may be due to the formation of hetero-junction, which is conducive for most photo-carriers and thus the interfacial charge shift efficiency is enhanced. By the free radical capture test, it can be inferred that the major active substances involved in the degradation related to photocatalysis is H+ and · O2.  相似文献   

15.
Antibiotic contamination has received widespread attention globally. In this work, the oxygen-doped porous graphite carbonitride (g-C3N4) was prepared with urea and ammonium oxalate (CNUC) or urea and glycine (CNUG) as precursors by thermal polymerization. Using bisphenol A (BPA) as a probe and CNUC or CNUG as photocatalysts, the removal performance test was carried out. Meanwhile, all prepared photocatalysts were characterized by XRD, FT-IR, SEM, TEM, XPS, UV-Vis DRS, PL and EIS. Under visible light irradiation, both CNUC and CNUG exhibited about seven and five times greater photocatalytic activity than that of pure g-C3N4, respectively. The radical capture experiments verified that superoxide radicals (•O2) and holes (h+) were the main active species in the photocatalytic degradation of BPA by CNUC, and the possible photocatalytic mechanism of CNUC was proposed. In addition, all these results indicate that CNUC catalyst can effectually inhibit the photocorrosion and keep superior stability. The proposed technique provides a prospective approach to develop nonmetal-modified photocatalysts for future applications.  相似文献   

16.
Materials with pyrochlore structure A2B2O7 have attracted considerable attention owing to their various applications as catalysts, sensors, electrolytes, electrodes, and magnets due to the unique crystal structure and thermal stability. At the same time, the possibility of using such materials for electrochemical applications in salt melts has not been studied. This paper presents the new results of obtaining high-density Mg2+-doped ceramics based on Gd2Zr2O7 with pyrochlore structure and comprehensive investigation of the electrical properties and chemical stability in a lithium chloride melt with additives of various concentrations of lithium oxide, performed for the first time. The solid solution of Gd2−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.10) with the pyrochlore structure was obtained by mechanically milling stoichiometric mixtures of the corresponding oxides, followed by annealing at 1500 °C. The lattice parameter changed non-linearly as a result of different mechanisms of Mg2+ incorporation into the Gd2Zr2O7 structure. At low dopant concentrations (x ≤ 0.03) some interstitial positions can be substituted by Mg2+, with further increasing Mg2+-content, the decrease in the lattice parameter occurred due to the substitution of host-ion sites with smaller dopant-ion. High-density ceramics 99% was prepared at T = 1500 °C. According to the results of the measurements of electrical conductivity as a function of oxygen partial pressure, all investigated samples were characterized by the dominant ionic type of conductivity over a wide range of pO2 (1 × 10–18 ≤ pO2 ≤ 0.21 atm) and T < 800 °C. The sample with the composition of x = 0.03 had the highest oxygen-ion conductivity (10−3 S·cm−1 at 600 °C). The investigation of chemical stability of ceramics in the melt of LiCl with 2.5 mas.% Li2O showed that the sample did not react with the melt during the exposed time of one week at the temperature of 650 °C. This result makes it possible to use these materials as oxygen activity sensors in halide melts.  相似文献   

17.
In this paper, Ag-TiO2 photocatalysts with different Ag contents (1 mol%–5 mol%) were prepared and applied to cement mortar. The photocatalytic performance of Ag-TiO2 and photocatalytic cement mortar under UV light and simulated solar light was evaluated. The results showed that Ag loading on the surface of TiO2 could reduce its band gap width and increase its absorbance in the visible region, and 2% Ag-TiO2 had the highest photocatalytic activity under UV light, the degradation rate of methyl orange (MO) was 95.5% at 30 min, and the first-order reaction constant k was 0.0980 min−1, which was 61.7% higher than that of TiO2, and 5% Ag-TiO2 had the highest photocatalytic activity under solar light, the degradation rate of methylene blue (MB) was 69.8% at 40 min, and the first-order reaction constant k was 0.0294 min−1, which was 90.9% higher than that of TiO2. The photocatalytic mortar prepared by the spraying method has high photocatalytic performance, The MO degradation rate of sample S2 under UV light was 87.5% after 120 min, MB degradation rate of sample S5 under solar light was 75.4% after 120 min. The photocatalytic reaction conforms to the zero-order reaction kinetics, which was 1.5 times–3.3 times higher than that of the mixed samples and has no effect on the mechanical properties of mortar.  相似文献   

18.
X-ray diffraction (XRD) analysis showed that metal oxide peaks appear at 2θ = 47.7°, 54.5°, and 56.3°, corresponding to Yb2O3 (440), Co2O3 (422), and Co2O3 (511). It was found that oxide formation plays an important role in magnetic, electrical, and surface energy. For magnetic and electrical measurements, the highest alternating current magnetic susceptibility (χac) and the lowest resistivity (×10−2 Ω·cm) were 0.213 and 0.42, respectively, and at 50 nm, it annealed at 300 °C due to weak oxide formation. For mechanical measurement, the highest value of hardness was 15.93 GPa at 200 °C in a 50 nm thick film. When the thickness increased from 10 to 50 nm, the hardness and Young’s modulus of the Co60Fe20Yb20 film also showed a saturation trend. After annealing at 300 °C, Co60Fe20Yb20 films of 40 nm thickness showed the highest surface energy. Higher surface energy indicated stronger adhesion, allowing for the formation of multilayer thin films. The optimal condition was found to be 50 nm with annealing at 300 °C due to high χac, strong adhesion, high nano-mechanical properties, and low resistivity.  相似文献   

19.
The titanium oxo complexes are widely studied, due to their potential applications in photocatalytic processes, environmental protection, and also in the biomedical field. The presented results concern the oxo complex synthesized in the reaction of titanium(IV) isobutoxide and acetylsalicylic acid (Hasp), in a 4:1 molar ratio. The structure of isolated crystals was solved using the single-crystal X-ray diffraction method. The analysis of these data proves that [Ti4O2(OiBu)10(asp)2]·H2O (1) complex is formed. Moreover, the molecular structure of (1) was characterized using vibrational spectroscopic techniques (IR and Raman), 13C NMR, and UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS). The photocatalytic activity of the synthesized complex was determined with the use of composite foils produced by the dispersion of (1) micrograins, as the inorganic blocks, in a polycaprolactone (PCL) matrix (PCL + (1)). The introduction of (1) micrograins to the PCL matrix caused the absorption maximum shift up to 425–450 nm. The studied PCL + (1) composite samples reveal good activity toward photodecolorization of methylene blue after visible light irradiation.  相似文献   

20.
Compounds of rare earth zirconates with pyrochlore structure are candidates for the application of thermal barrier coatings of next generation. In order to modify the mechanic properties and maintain the low thermal conductivity, other trivalent rare-earth element substitution is commonly used. Presently, investigation on the evaluation of the property of thermal expansion is attracting more attention. In this paper, a feature parameter of thermal expansion coefficient at high temperature (α) was proposed by combining Grüneisen’s equation and the Debye heat capacity model. Using α model, the thermal expansion property of different compounds can be easily figured out by first principles. Firstly, α of ZrO2, HfO2, were calculated, and results are in good agreement with the experimental data from the literature. Moreover, α of La2Zr2O7, Pr2Zr2O7, Gd2Zr2O7, and Dy2Zr2O7 were calculated, and results demonstrated that the model of α is a useful tool to predict the thermal expansion coefficient at high temperature. Finally, Gd2Zr2O7 with 4 different Yb dopant concentrations (Gd1-xYbx)2Zr2O7 (x = 0, 0.125, 0.3125, 0.5) were calculated. Comparing with the experimental data from the literature, the calculation results showed the same tendency with the increasing of Yb concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号