首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing over 200,000 deaths a year. NoV is nonenveloped, with a single-stranded RNA genome, and is primarily transmitted person to person. The viral RNA-dependent RNA polymerase (RdRp) is critical for the production of genomic and subgenomic RNA and is therefore a prime target for antiviral therapies. Using high-throughput screening, nearly 20,000 “lead-like” compounds were tested for inhibitory activity against the NoV genogroup II, genotype 4 (GII.4) RdRp. The four most potent hits demonstrated half-maximal inhibitory concentrations (IC50s) between 5.0 μM and 9.8 μM against the target RdRp. Compounds NIC02 and NIC04 revealed a mixed mode of inhibition, while NIC10 and NIC12 were uncompetitive RdRp inhibitors. When examined using enzymes from related viruses, NIC02 demonstrated broad inhibitory activity while NIC04 was the most specific GII.4 RdRp inhibitor. The antiviral activity was examined using available NoV cell culture models; the GI.1 replicon and the infectious GV.1 murine norovirus (MNV). NIC02 and NIC04 inhibited the replication of the GI.1 replicon, with 50% effective concentrations (EC50s) of 30.1 μM and 71.1 μM, respectively, while NIC10 and NIC12 had no observable effect on the NoV GI.1 replicon. In the MNV model, NIC02 reduced plaque numbers, size, and viral RNA levels in a dose-dependent manner (EC50s between 2.3 μM and 4.8 μM). The remaining three compounds also reduced MNV replication, although with higher EC50s, ranging from 32 μM to 38 μM. In summary, we have identified novel nonnucleoside inhibitor scaffolds that will provide a starting framework for the development and future optimization of targeted antivirals against NoV.  相似文献   

2.
In the present study, GRL008, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), and darunavir (DRV), both of which contain a P2-bis-tetrahydrofuranyl urethane (bis-THF) moiety, were found to exert potent antiviral activity (50% effective concentrations [EC50s], 0.029 and 0.002 μM, respectively) against a multidrug-resistant clinical isolate of HIV-1 (HIVA02) compared to ritonavir (RTV; EC50, >1.0 μM) and tipranavir (TPV; EC50, 0.364 μM). Additionally, GRL008 showed potent antiviral activity against an HIV-1 variant selected in the presence of DRV over 20 passages (HIVDRVRP20), with a 2.6-fold increase in its EC50 (0.097 μM) compared to its corresponding EC50 (0.038 μM) against wild-type HIV-1NL4-3 (HIVWT). Based on X-ray crystallographic analysis, both GRL008 and DRV showed strong hydrogen bonds (H-bonds) with the backbone-amide nitrogen/carbonyl oxygen atoms of conserved active-site amino acids G27, D29, D30, and D30′ of HIVA02 protease (PRA02) and wild-type PR in their corresponding crystal structures, while TPV lacked H-bonds with G27 and D30′ due to an absence of polar groups. The P2′ thiazolyl moiety of RTV showed two conformations in the crystal structure of the PRA02-RTV complex, one of which showed loss of contacts in the S2′ binding pocket of PRA02, supporting RTV''s compromised antiviral activity (EC50, >1 μM). Thus, the conserved H-bonding network of P2-bis-THF-containing GRL008 with the backbone of G27, D29, D30, and D30′ most likely contributes to its persistently greater antiviral activity against HIVWT, HIVA02, and HIVDRVRP20.  相似文献   

3.
We report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3 variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2ROD variant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles.  相似文献   

4.
We designed, synthesized, and identified two novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-04810 and GRL-05010, containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, bis-tetrahydrofuranylurethane (bis-THF), and a difluoride moiety, both of which are active against the laboratory strain HIV-1LAI (50% effective concentrations [EC50s], 0.0008 and 0.003 μM, respectively) with minimal cytotoxicity (50% cytotoxic concentrations [CC50s], 17.5 and 37.0 μM, respectively, in CD4+ MT-2 cells). The two compounds were active against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to various antiviral regimens. GRL-04810 and GRL-05010 also blocked the infectivity and replication of each of the HIV-1NL4-3 variants selected by up to 5 μM lopinavir (EC50s, 0.03 and 0.03 μM, respectively) and atazanavir (EC50s, 0.02 and 0.04 μM, respectively). Moreover, they were active against darunavir (DRV)-resistant variants (EC50 in 0.03 to 0.034 μM range for GRL-04810 and 0.026 to 0.043 μM for GRL-05010), while DRV had EC50s between 0.02 and 0.174 μM. GRL-04810 had a favorable lipophilicity profile as determined with the partition (log P) and distribution (log D) coefficients of −0.14 and −0.29, respectively. The in vitro blood-brain barrier (BBB) permeability assay revealed that GRL-04810 and GRL-05010 may have a greater advantage in terms of crossing the BBB than the currently available PIs, with apparent penetration indexes of 47.8 × 10−6 and 61.8 × 10−6 cm/s, respectively. The present data demonstrate that GRL-04810 and GRL-05010 exert efficient activity against a wide spectrum of HIV-1 variants in vitro and suggest that two fluorine atoms added to their bis-THF moieties may well enhance their penetration across the BBB.  相似文献   

5.
Dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a well-validated antifolate drug target in certain pathogenic apicomplexans, but not in the genus Babesia, including Babesia gibsoni. Therefore, we isolated, cloned, and expressed the wild-type B. gibsoni dhfr-ts gene in Escherichia coli and evaluated the inhibitory effect of antifolates on its enzyme activity, as well as on in vitro parasite growth. The full-length gene consists of a 1,548-bp open reading frame encoding a 58.8-kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. Each domain contained active-site amino acid residues responsible for the enzymatic activity. The expressed soluble recombinant DHFR-TS protein was approximately 57 kDa after glutathione S-transferase (GST) cleavage, similar to an approximately 58-kDa native enzyme identified from the parasite merozoite. The non-GST fusion recombinant DHFR enzyme revealed Km values of 4.70 ± 0.059 (mean ± standard error of the mean) and 9.75 ± 1.64 μM for dihydrofolic acid (DHF) and NADPH, respectively. Methotrexate was a more-potent inhibitor of the enzymatic activity (50% inhibition concentration [IC50] = 68.6 ± 5.20 nM) than pyrimethamine (IC50 = 55.0 ± 2.08 μM) and trimethoprim (IC50 = 50 ± 12.5 μM). Moreover, the antifolates' inhibitory effects on DHFR enzyme activity paralleled their inhibition of the parasite growth in vitro, indicating that the B. gibsoni DHFR could be a model for studying antifolate compounds as potential drug candidates. Therefore, the B. gibsoni DHFR-TS is a molecular antifolate drug target.  相似文献   

6.
Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 μM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.  相似文献   

7.
The cellular entry of HIV-1 into CD4+ T cells requires ordered interactions of HIV-1 envelope glycoprotein with C-X-C chemokine receptor type 4 (CXCR4) receptors. However, such interactions, which should be critical for rational structure-based discovery of new CXCR4 inhibitors, remain poorly understood. Here we first determined the effects of amino acid substitutions in CXCR4 on HIV-1NL4-3 glycoprotein-elicited fusion events using site-directed mutagenesis-based fusion assays and identified 11 potentially key amino acid substitutions, including D97A and E288A, which caused >30% reductions in fusion. We subsequently carried out a computational search of a screening library containing ∼604,000 compounds, in order to identify potential CXCR4 inhibitors. The computational search used the shape of IT1t, a known CXCR4 inhibitor, as a reference and employed various algorithms, including shape similarity, isomer generation, and docking against a CXCR4 crystal structure. Sixteen small molecules were identified for biological assays based on their high shape similarity to IT1t, and their putative binding modes formed hydrogen bond interactions with the amino acids identified above. Three compounds with piperidinylethanamine cores showed activity and were resynthesized. One molecule, designated CX6, was shown to significantly inhibit fusion elicited by X4 HIV-1NL4-3 glycoprotein (50% inhibitory concentration [IC50], 1.9 μM), to inhibit Ca2+ flux elicited by stromal cell-derived factor 1α (SDF-1α) (IC50, 92 nM), and to exert anti-HIV-1 activity (IC50, 1.5 μM). Structural modeling demonstrated that CX6 bound to CXCR4 through hydrogen bond interactions with Asp97 and Glu288. Our study suggests that targeting CXCR4 residues important for fusion elicited by HIV-1 envelope glycoprotein should be a useful and feasible approach to identifying novel CXCR4 inhibitors, and it provides important insights into the mechanism by which small-molecule CXCR4 inhibitors exert their anti-HIV-1 activities.  相似文献   

8.
The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 μg/ml and a MIC90 of 0.031 μg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 μg/ml and 1 μg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 μg/ml to 0.031 μg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 μg/ml to 0.25 μg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 μg/ml to 2 μg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis.  相似文献   

9.
As a class, nucleotide inhibitors (NIs) of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase offer advantages over other direct-acting antivirals, including properties, such as pangenotype activity, a high barrier to resistance, and reduced potential for drug-drug interactions. We studied the in vitro pharmacology of a novel C-nucleoside adenosine analog monophosphate prodrug, GS-6620. It was found to be a potent and selective HCV inhibitor against HCV replicons of genotypes 1 to 6 and against an infectious genotype 2a virus (50% effective concentration [EC50], 0.048 to 0.68 μM). GS-6620 showed limited activities against other viruses, maintaining only some of its activity against the closely related bovine viral diarrhea virus (EC50, 1.5 μM). The active 5′-triphosphate metabolite of GS-6620 is a chain terminator of viral RNA synthesis and a competitive inhibitor of NS5B-catalyzed ATP incorporation, with Ki/Km values of 0.23 and 0.18 for HCV NS5B genotypes 1b and 2a, respectively. With its unique dual substitutions of 1′-CN and 2′-C-Me on the ribose ring, the active triphosphate metabolite was found to have enhanced selectivity for the HCV NS5B polymerase over host RNA polymerases. GS-6620 demonstrated a high barrier to resistance in vitro. Prolonged passaging resulted in the selection of the S282T mutation in NS5B that was found to be resistant in both cellular and enzymatic assays (>30-fold). Consistent with its in vitro profile, GS-6620 exhibited the potential for potent anti-HCV activity in a proof-of-concept clinical trial, but its utility was limited by the requirement of high dose levels and pharmacokinetic and pharmacodynamic variability.  相似文献   

10.
GSK1322322, a novel peptide deformylase inhibitor currently in development as an oral and intravenous agent for the treatment of hospitalized community-acquired bacterial pneumonia, showed poor in vitro activity against a panel of 50 Legionella pneumophila strains, with MICs ranging from 1 to 16 μg/ml and an MIC90 of 16 μg/ml, but very potent intracellular activity, with the minimum extracellular concentrations capable of inhibiting intracellular proliferation (MIECs) ranging from 0.12 to 2 μg/ml and 98% of the strains being inhibited by concentrations of ≤1 μg/ml.  相似文献   

11.
V-073, an enterovirus capsid inhibitor, was evaluated for its spectrum of antipoliovirus activity. V-073 inhibited all 45 polioviruses tested in a virus-induced cytopathic effect protection assay, with 50% effective concentration (EC50) values ranging from 0.003 to 0.126 μM. Ninety percent of the polioviruses tested were inhibited at EC50s of ≤0.076 μM (MIC90 = 32 ng/ml). V-073 is a promising antiviral candidate for the posteradication management of poliovirus incidents.  相似文献   

12.
Solithromycin, a fourth-generation macrolide (a fluoroketolide with enhanced activity against macrolide-resistant bacteria due to interaction with three ribosomal sites) and the first fluoroketolide, was tested against a 2014 collection of 6,115 isolates, including Streptococcus pneumoniae (1,713 isolates), Haemophilus influenzae (1,308), Moraxella catarrhalis (577), Staphylococcus aureus (1,024), and beta-hemolytic streptococci (1,493), by reference broth microdilution methods. The geographic samples included 2,748 isolates from the United States, 2,536 from Europe, 386 from Latin America, and 445 from the Asia-Pacific region. Solithromycin was observed to be very active against S. pneumoniae (MIC50/90, 0.008/0.12 μg/ml), demonstrating 2-fold greater activity than telithromycin (MIC50/90, 0.015/0.25 μg/ml) and 16- to >256-fold greater activity than azithromycin (MIC50/90, 0.12/>32 μg/ml), with all strains being inhibited at a solithromycin MIC of ≤1 μg/ml. Against H. influenzae, solithromycin showed potency identical to that of telithromycin (MIC50/90, 1/2 μg/ml), and both of these compounds were 2-fold less active than azithromycin (MIC50/90, 0.5/1 μg/ml). All but one of the M. catarrhalis isolates were inhibited by solithromycin at ≤0.25 μg/ml. Solithromycin inhibited 85.3% of S. aureus isolates at ≤1 μg/ml, and its activity was lower against methicillin-resistant (MIC50/90, 0.06/>32 μg/ml) than against methicillin-susceptible (MIC50/90, 0.06/0.06 μg/ml) isolates. Little variation in solithromycin activity was observed by geographic region for the species tested. Solithromycin was very active against beta-hemolytic streptococci (MIC50/90, 0.015/0.03 μg/ml), and all isolates were inhibited at MIC values of ≤0.5 μg/ml. In conclusion, solithromycin demonstrated potent activity against global and contemporary (2014) pathogens that represent the major causes of community-acquired bacterial pneumonia. These data support the continued clinical development of solithromycin for the treatment of this important indication.  相似文献   

13.
AN3365 (MIC50/90, 0.5/1 μg/ml) was active against Enterobacteriaceae, including a subset of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains (MIC50/90, 1/2 μg/ml). AN3365 inhibited 98.0 and 92.2% of wild-type (MIC50/90, 2/8 μg/ml) and carbapenem-resistant (MIC50/90, 4/8 μg/ml) Pseudomonas aeruginosa strains, respectively, at ≤8 μg/ml. AN3365 also demonstrated activity against wild-type Acinetobacter baumannii (MIC50/90, 2/8 μg/ml) and Stenotrophomonas maltophilia (MIC50/90, 2/4 μg/ml), while it was less active against multidrug-resistant A. baumannii (MIC50/90, 8/16 μg/ml) and Burkholderia cepacia (MIC50/90, 8/32 μg/ml).  相似文献   

14.
PD 404,182 (PD) is a synthetic compound that was found to compromise HIV integrity via interaction with a nonenvelope protein viral structural component (A. M. Chamoun et al., Antimicrob. Agents Chemother. 56:672–681, 2012). The present study evaluates the potential of PD as an anti-HIV microbicide and establishes PD''s virucidal activity toward another pathogen, herpes simplex virus (HSV). We show that the anti-HIV-1 50% inhibitory concentration (IC50) of PD, when diluted in seminal plasma, is ∼1 μM, similar to the IC50 determined in cell culture growth medium, and that PD retains full anti-HIV-1 activity after incubation in cervical fluid at 37°C for at least 24 h. In addition, PD is nontoxic toward vaginal commensal Lactobacillus species (50% cytotoxic concentration [CC50], >300 μM), freshly activated human peripheral blood mononuclear cells (CC50, ∼200 μM), and primary CD4+ T cells, macrophages, and dendritic cells (CC50, >300 μM). PD also exhibited high stability in pH-adjusted Dulbecco''s phosphate-buffered saline with little to no activity loss after 8 weeks at pH 4 and 42°C, indicating suitability for formulation for transportation and storage in developing countries. Finally, for the first time, we show that PD inactivates herpes simplex virus 1 (HSV-1) and HSV-2 at submicromolar concentrations. Due to the prevalence of HSV infection, the ability of PD to inactivate HSV may provide an additional incentive for use as a microbicide. The ability of PD to inactivate both HIV-1 and HSV, combined with its low toxicity and high stability, warrants additional studies for the evaluation of PD''s microbicidal candidacy in animals and humans.  相似文献   

15.
Raltegravir (RAL) is a human immunodeficiency virus type 1 (HIV-1) integrase inhibitor approved to treat HIV infection in adults in combination with other antiretrovirals. The potential of RAL to cause transporter-related drug-drug interactions (DDIs) as an inhibitor has not been well described to date. In this study, a series of in vitro experiments were conducted to assess the inhibitory effects of RAL on major human drug transporters known to be involved in clinically relevant drug interactions, including hepatic and renal uptake transporters and efflux transporters. For hepatic uptake transporters, RAL showed no inhibition of organic anion-transporting polypeptide 1B1 (OATP1B1), weak inhibition of OATP1B3 (40% inhibition at 100 μM), and no inhibition of organic cation transporter 1 (OCT1). Studies of renal uptake transporters showed that RAL inhibited organic anion transporters 1 and 3 (OAT1 and OAT3) with 50% inhibitory concentrations (IC50s) (108 μM and 18.8 μM, respectively) well above the maximum concentration of drug in plasma (Cmax) at the clinical 400-mg dose and did not inhibit organic cation transporter 2 (OCT2). As for efflux transporters, RAL did not inhibit breast cancer resistance protein (BCRP) and showed weak inhibition of multidrug and toxin extrusion protein 1 (MATE1) (52% inhibition at 100 μM) and MATE2-K (29% inhibition at 100 μM). These studies indicate that at clinically relevant exposures, RAL does not inhibit or only weakly inhibits hepatic uptake transporters OATP1B1, OATP1B3, and OCT1, renal uptake transporters OCT2, OAT1, and OAT3, as well as efflux transporters BCRP, MATE1, and MATE2-K. The propensity for RAL to cause DDIs via inhibition of these transporters is therefore considered low.  相似文献   

16.
Dalbavancin, a novel lipoglycopeptide, was approved for use in 2014 by regulatory agencies in the United States and Europe for the treatment of skin and skin structure infections. The activity of dalbavancin was also widely assessed by determination of its activity against Streptococcus pneumoniae clinical isolates collected from patients on six continents monitored during two time intervals (2011 to 2013 and 2014). A total of 18,186 pneumococcal isolates were obtained from 49 nations and submitted to a monitoring laboratory as part of the SENTRY Antimicrobial Surveillance Program for reference susceptibility testing. The potency of dalbavancin against S. pneumoniae was consistent across the years that it was monitored, with the MIC50 and MIC90 being 0.015 and 0.03 μg/ml, respectively, and all isolates were inhibited by ≤0.12 μg/ml. The activity of dalbavancin was not adversely influenced by nonsusceptibility to β-lactams (ceftriaxone or penicillin), macrolides, clindamycin, fluoroquinolones, or tetracyclines or multidrug resistance (MDR). Regional variations in dalbavancin activity were not detected, but S. pneumoniae strains isolated in the Asia-Pacific region were more likely to be nonsusceptible to penicillin and ceftriaxone as well as to be MDR than strains isolated in North or South America and Europe. Direct comparisons of potency illustrated that dalbavancin (MIC50 and MIC90, 0.015 and 0.03 μg/ml, respectively) was 16-fold or more active than vancomycin (MIC50, 0.25 μg/ml), linezolid (MIC50, 1 μg/ml), levofloxacin (MIC50, 1 μg/ml), ceftriaxone (MIC90, 1 μg/ml), and penicillin (MIC90, 2 μg/ml). In conclusion, dalbavancin had potent and consistent activity against this contemporary (2011 to 2014) collection of S. pneumoniae isolates.  相似文献   

17.
18.
Ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) inhibited 99.9% (20,698/20,709) of Enterobacteriaceae isolates at ≤8 μg/ml. This compound was active against resistant subsets, including ceftazidime-nonsusceptible Enterobacter cloacae (MIC50/90, 0.25/0.5 μg/ml) and extended-spectrum β-lactamase (ESBL) phenotype isolates. An ESBL phenotype was noted among 12.4% (1,696/13,692 isolates from targeted species) of the isolates, including 776 Escherichia coli (12.0% for this species; MIC50/90, 0.12/0.25 μg/ml), 721 Klebsiella pneumoniae (16.3%; MIC50/90, 0.12/0.25 μg/ml), 119 Klebsiella oxytoca (10.3%; MIC50/90, 0.06/0.25 μg/ml), and 80 Proteus mirabilis (4.9%; MIC50/90, 0.06/0.12 μg/ml) isolates. The most common enzymes detected among ESBL phenotype isolates from 2013 (n = 743) screened using a microarray-based assay were CTX-M-15-like (n = 307), KPC (n = 120), SHV ESBLs (n = 118), and CTX-M-14-like (n = 110). KPC producers were highly resistant to comparators, and ceftazidime-avibactam (MIC50/90, 0.5/2 μg/ml) and tigecycline (MIC50/90, 0.5/1 μg/ml; 98.3% susceptible) were the most active agents against these strains. Meropenem (MIC50/90, ≤0.06/≤0.06 μg/ml) and ceftazidime-avibactam (MIC50/90, 0.12/0.25 μg/ml) were active against CTX-M-producing isolates. Other enzymes were also observed, and ceftazidime-avibactam displayed good activity against the isolates producing less common enzymes. Among 11 isolates displaying ceftazidime-avibactam MIC values of >8 μg/ml, three were K. pneumoniae strains producing metallo-β-lactamases (all ceftazidime-avibactam MICs, >32 μg/ml), with two NDM-1 producers and one K. pneumoniae strain carrying the blaKPC-2 and blaVIM-4 genes. Therapeutic options for isolates producing β-lactamases may be limited, and ceftazidime-avibactam, which displayed good activity against strains, including those producing KPC enzymes, merits further study in infections where such organisms occur.  相似文献   

19.
Telavancin had MIC50 and MIC90 values of 0.03 and 0.06 μg/ml (100.0% susceptible), respectively, against methicillin-resistant and -susceptible Staphylococcus aureus. Telavancin was active against vancomycin-susceptible Enterococcus faecalis (MIC50/90, 0.12/0.12 μg/ml; 100% susceptible) and Enterococcus faecium (MIC50/90, 0.03/0.06 μg/ml), while higher MIC values were obtained against vancomycin-resistant E. faecium (MIC50/90, 1/2 μg/ml) and E. faecalis (MIC50/90, >2/>2 μg/ml). Streptococci showed telavancin modal MIC results of ≤0.015 μg/ml, except against Streptococcus agalactiae (i.e., 0.03 μg/ml). This study reestablishes the telavancin spectrum of activity against isolates recovered from the United States (2011-2012) using the revised broth microdilution method.  相似文献   

20.
Ceftobiprole medocaril is a newly approved drug in Europe for the treatment of hospital-acquired pneumonia (HAP) (excluding patients with ventilator-associated pneumonia but including ventilated HAP patients) and community-acquired pneumonia in adults. The aim of this study was to evaluate the in vitro antimicrobial activity of ceftobiprole against prevalent Gram-positive and -negative pathogens isolated in Europe, Turkey, and Israel during 2005 through 2010. A total of 60,084 consecutive, nonduplicate isolates from a wide variety of infections were collected from 33 medical centers. Species identification was confirmed, and all isolates were susceptibility tested using reference broth microdilution methods. Ceftobiprole had high activity against methicillin-susceptible Staphylococcus aureus (MSSA) (100.0% susceptible), methicillin-susceptible coagulase-negative staphylococci (CoNS), beta-hemolytic streptococci, and Streptococcus pneumoniae (99.3% susceptible), with MIC90 values of 0.25, 0.12, ≤0.06, and 0.5 μg/ml, respectively. Ceftobiprole was active against methicillin-resistant S. aureus (MRSA) (98.3% susceptible) and methicillin-resistant CoNS, having a MIC90 of 2 μg/ml. Ceftobiprole was active against Enterococcus faecalis (MIC50/90, 0.5/4 μg/ml) but not against most Enterococcus faecium isolates. Ceftobiprole was very potent against the majority of Enterobacteriaceae (87.3% susceptible), with >80% inhibited at ≤0.12 μg/ml. The potency of ceftobiprole against Pseudomonas aeruginosa (MIC50/90, 2/>8 μg/ml; 64.6% at MIC values of ≤4 μg/ml) was similar to that of ceftazidime (MIC50/90, 2/>16 μg/ml; 75.4% susceptible), but limited activity was observed against Acinetobacter spp. and Stenotrophomonas maltophilia. High activity was also observed against all Haemophilus influenzae (MIC90, ≤0.06 μg/ml) and Moraxella catarrhalis (MIC50/90, ≤0.06/0.25 μg/ml) isolates. Ceftobiprole demonstrated a wide spectrum of antimicrobial activity against this very large longitudinal sample of contemporary pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号