首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aligning steel fibers is an effective way to improve the mechanical properties of steel fiber cementitious composites (SFRC). In this study, the magnetic field method was used to prepare the aligned hooked-end steel fiber cementitious composites (ASFRC) and the fracture behavior was investigated. In order to achieve the alignment of steel fibers, the key parameters including the rheology of the mixture and magnetic induction of electromagnetic field were theoretically analyzed. The results showed that, compared with SFRC, the cracking load and the ultimate load of ASFRC were increased about 24–55% and 51–86%, respectively, depending on the fiber addition content. In addition, the flexural tensile strength and residual flexural strength of ASFRC were found to increase up to 105% and 100%, respectively. The orientation of steel fibers also has a significant effect on energy consumption. The fracture energy of ASFRC was 56–70% greater than SFRC and the reinforcement effect of hooked-end steel fiber was higher than straight steel fiber. The fibers in the fracture surface showed that not only was the number of fibers of ASFRC higher than that of SFRC, but also the orientation efficiency factor of ASFRC was superior to SFRC, which explains the improvement of fracture behavior of ASFRC.  相似文献   

2.
Various types of fiber reinforced cementitious composites (FRCCs) were experimentally studied to evaluate their self-healing capabilities regarding their watertightness and mechanical properties. Cracks were induced in the FRCC specimens during a tensile loading test, and the specimens were then immersed in static water for self-healing. By water permeability and reloading tests, it was determined that the FRCCs containing synthetic fiber and cracks of width within a certain range (<0.1 mm) exhibited good self-healing capabilities regarding their watertightness. Particularly, the high polarity of the synthetic fiber (polyvinyl alcohol (PVA)) series and hybrid fiber reinforcing (polyethylene (PE) and steel code (SC)) series showed high recovery ratio. Moreover, these series also showed high potential of self-healing of mechanical properties. It was confirmed that recovery of mechanical property could be obtained only in case when crack width was sufficiently narrow, both the visible surface cracks and the very fine cracks around the bridging of the SC fibers. Recovery of the bond strength by filling of the very fine cracks around the bridging fibers enhanced the recovery of the mechanical property.  相似文献   

3.
Cementitious composites have good ductility and pseudo-crack control. However, in practical applications of these composites, the external load and environmental erosion eventually form a large crack in the matrix, resulting in matrix fracture. The fracture of cementitious composite materials causes not only structural insufficiency, but also economic losses associated with the maintenance and reinforcement of cementitious composite components. Therefore, it is necessary to study the fracture properties of cementitious composites for preventing the fracture of the matrix. In this paper, a multi-crack cracking model, fictitious crack model, crack band model, pseudo-strain hardening model, and double-K fracture model for cementitious composites are presented, and their advantages and disadvantages are analyzed. The multi-crack cracking model can determine the optimal mixing amount of fibers in the matrix. The fictitious crack model and crack band model are stress softening models describing the cohesion in the fracture process area. The pseudo-strain hardening model is mainly applied to ductile materials. The double-K fracture model mainly describes the fracture process of concrete. Additionally, the effects of polyvinyl alcohol (PVA) fibers and steel fibers (SFs) on the fracture properties of the matrix are analyzed. The fracture properties of cementitious composite can be greatly improved by adding 1.5–2% PVA fiber or 4% steel fiber (SF). The fracture property of cementitious composite can also be improved by adding 1.5% steel fiber and 1% PVA fiber. However, there are many problems to be solved for the application of cementitious composites in actual engineering. Therefore, further research is needed to solve the fracture problems frequently encountered in engineering.  相似文献   

4.
Fibers used as reinforcement can increase the mechanical characteristics of engineering cementitious composites (ECC), but their frost resistance has received less attention. The mechanical properties of various fiber cementitious materials under the dual factors of freeze-thaw action and fiber dose are yet to be determined. This study examines the performance change patterns of cementitious composites, which contain carbon fiber, glass fiber, and polyvinyl alcohol (PVA) fiber at 0%, 0.5%, and 1% volume admixture in freeze-thaw tests. Three fiber cement-based materials are selected to do the compression and bending testing, and ABAQUS finite element modeling is used to assess the performance of fiber cement-based composite materials. The microscopic observation results show that the dispersion of glass and PVA fibers is higher than that of carbon fibers. As a result, the mechanical characteristics of the fiber-doped cementitious composites increase dramatically after freeze-thaw with increasing dosage. The compression test results show the frost resistance of carbon fiber > PVA fiber > glass fiber. In addition, the bending test results show the frost resistance of carbon fiber > glass fiber > PVA fiber. The 3D surface plots of the strength changes are established to observe the mechanical property changes under the coupling effect of admixture and freeze-thaw times. ABAQUS modeling is used to predict the strength of the cementitious composites under various admixtures and freeze-thaw cycles. The bending strength numerical equation is presented, and the bending and compressive strengths of three different fiber-cement matrix materials are accurately predicted.  相似文献   

5.
Orthogonal experiments were designed for hybrid fiber rubber concrete (HFRC). The mechanical properties of HFRC were tested and compared with ordinary concrete. The effects of basalt fiber volume ratio (VBF), PVA fiber volume ratio (VPF) and rubber volume ratio (VR) on the compressive strength, splitting tensile strength and flexural strength of HFRC were analyzed. The results show that the strength of HFRC is the best when the volume ratio of basalt fiber is 0.3%, the volume ratio of PVA fiber is 0.2% and the volume ratio of rubber is 5%. Basalt fiber has the greatest influence on the strength of HFRC. The strength of HFRC mixed with hybrid fiber is greatly improved, which reflects the good fiber “positive hybrid effect”. With the increase of rubber volume ratio, the strength of HFRC decreases gradually. With the help of SEM and EDS, the toughening and cracking resistance mechanism of the fiber to HFRC was analyzed. Finally, the strength of HFRC was predicted by model.  相似文献   

6.
The thermal stabilization process of polyacrylonitrile (PAN) precursor fiber was the key step to prepare high-performance carbon fiber. During the thermal stabilization process, the aggregation structure and the reactivity of molecular chains have significant effects on the microstructures and mechanical properties of carbon fiber. In the present paper, the effects of the orientation structure of PAN precursor fiber on the thermal stabilization reaction and the mechanical properties of carbon fiber were experimentally studied. Using multi-dimensional structural and mechanical properties tests, such as XRD, DSC, 13C NMR and Instron machine testing, the crystalline and skeleton structure, exothermic behavior, and tensile properties of PAN precursor fiber with different orientations in the process of thermal stabilization were characterized to reveal the relationship between microstructure evolution and tensile properties. The results showed that the orientation structure of PAN precursor fiber had an obvious effect on the thermal stabilization process and the tensile stress–strain characteristic. When the heat treatment temperature was lower than 200 °C, the crystallinity and crystallite size of PAN fibers with higher orientation degrees increased significantly. After sufficient thermal stabilization, the original PAN precursor fiber with a higher orientation degree could form more aromatic lamellar structures and showed better regularity. Furthermore, the yield strength and initial modulus of the fibers with a higher orientation degree increased due to the formation of more aromatic rings. The maximum increase in the percentages of yield strength and tensile modulus of the PAN fibers were achieved when the heat-treated temperature was 200 °C, and the percentage values were 138.4% and 158.7% compared to the precursor without heat-treatment. In addition, the elongation at break of the fibers with a higher orientation degree was also relatively larger.  相似文献   

7.
This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.  相似文献   

8.
From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was available using a micro-capsule as a container. Knowing the direction of the stresses to which structure members are subjected, this research investigated the influence of aligning tubular healing fibers parallel to intended stress into a cementitious composite to increase the self-healing capability. For that, a healing agent was encapsulated into a tubular healing fiber made with polyvinylidene of fluoride resin (PVDF). Then, the healing fiber was combined with steel fibers to align both fibers together parallel to the direction of an intended splitting tensile stress when subjected to a magnetic field in a cylindrical cementitious composite. The alignment method and the key point through which the alignment of the healing fibers could efficiently improve autonomic self-healing were investigated. Since the magnetic field is known to be able to drag steel to an expected direction, steel fibers were combined with the healing fibers to form a hybrid fiber that aligned both fibers together. The required mixture workability was investigated to avoid the sinking of the healing fibers into the mixture. The healing efficiency, according to the orientation of the healing fibers in the composite matrix, was evaluated through a permeability test and a repetitive splitting tensile test. The aligned healing fibers performed better than the randomly distributed healing fibers. However, according to the healing efficiency with aligned healing fibers, it was deduced that the observed decreasing effect of the container’s alignment on the specimen’s mechanical properties was low enough to be neglected.  相似文献   

9.
In this study, four basalt rocks were selected to produce continuous fibers, the chemical composition of basalt rocks and the corresponding fibers were compared using the XRF, the results reveal that the content of the chemical component present in the basalt fibers is consistent with basalt rocks. The mass attenuation coefficient of different fibers was analyzed using the XCOM program, the results indicate that when the incident electron energy is 0.01~0.1 MeV, fiber mass attenuation coefficient is found to be positively correlated with the content of Wt (Fe2O3 + MnO + TiO2 + CaO + K2O). The structure and properties of the fibers irradiated by different absorption doses of gamma rays were studied using the SEM, EDX and FTIR, the results indicate that irradiation produces no effect on the basalt fiber structure, surface morphology, and contents of the surface elements, the mass loss rate of the fiber was much less than 1%, fiber tensile strength and elastic modulus increased 4.7–7.5% and 3.9–9.1%, respectively, but the elongation at break of fiber decreased 4.18–10.97%. Two selected basalt fiber cloths of thickness 0.12 and 0.28 mm were irradiated with gamma rays of energies of 100 and 120 keV to examine the shielding property of basalt fibers against the gamma rays, when the energy was 100 keV, the shielding ratios of the fiber cloths were 18.9% and 22.5%, respectively, but when the energy was 120 keV, the shielding ratios of the fiber cloths decreased significantly and were at 8.7% and 10.4%, respectively. When the irradiated electron energy is 100 keV, the shielding ratio for basalt fiber cloths measuring 0.12 and 0.28 mm can reach up to 38.9% and 46.3% of that of the 0.5-mm lead plate, respectively.  相似文献   

10.
In this paper, the mechanical properties of micropowder cement mortar and engineered cementitious composites (ECC), using different processing municipal solid waste incineration (MSWI) as a mineral admixture, were investigated. Through the direct ball milling method, ball milling heat treatment method, water washing ball milling method and water washing heat treatment ball milling method, the mechanical properties of MSWI bottom slag-regenerated micropowder cement mortar were tested. Compared with other groups, the flexural strength and compressive strength of the specimen prepared by the MSWI after washing and heating (750 °C, 5 h) were the highest, which reached 82.0% and 81.0% of the reference group, respectively. Based on this treatment, a uniaxial tensile test, three-point bending test and single fiber pull-out test were then carried out to explore the relevant ECC properties containing MSWI. The strain-hardening index PSH of ECC was determined by analyzing the fracture toughness and elastic modulus, fiber/matrix interface chemical bond and friction bond strength of ECC containing MSWI. The results showed that the PSH index of ECC was higher when the treated powder content was 2.2, the w/c ratio was 0.25 and the fiber volume content was 2.0%. This led to higher tensile ductility, which made it easier to achieve stable multi-slit cracking and strain-hardening behavior.  相似文献   

11.
The mechanical properties of alkali-activated slag fiber composites (ASFC) were investigated with varying volume fractions of PVA (Polyvinyl alcohol) fibers. Ground granulated blast furnace slag (GGBS) and alkali-activators were used as the main binders instead of cement, which emits a large amount of carbon dioxide during the manufacturing process. The measured slump flow of ASFC showed a high fluidity at a fiber content of 1.5 vol.% or less. The tensile, flexural, and shear strength of ASFC showed higher values as the amount of fiber increased. Compared to the existing high ductility fiber composites showing strain hardening behaviors with a fiber content of 2.0 vol.%, ASFC proved that it could exhibit high ductility characteristics due to multi-microcracks even at low fiber mixing rates of 1.0% and 1.25%. ASFC could be expected to lower the manufacturing cost with a low fiber content and provide improved workability with high fluidity. In addition, when manufacturing structural components using the developed ASFC, it is expected that the amount of fiber could be selected and used according to the required performance.  相似文献   

12.
It is now more popular to use basalt fibers in the engineering programs to reinforce the crack resistance of asphalt mixtures. However, research concerning the impact of the basalt fiber diameter on the macro performance of AC-13 mixtures is very limited. Therefore, in this paper, basalt fibers with three diameters, including 7, 13 and 25 μm, were selected to research the influences of fiber diameter on the crack resistance of asphalt mixtures. Different types of crack tests, such as the low temperature trabecular bending test (LTTB), the indirect tensile asphalt cracking test (IDEAL-CT), and the semi-circular bend test (SCB), were conducted to reveal the crack resistance of AC-13 mixtures. The entire cracking process was recorded through the digital image correlation (DIC) technique, and the displacement cloud pictures, strain, average crack propagation rate (V) and fracture toughness (FT) indicators were used to evaluate the crack inhibition action of the fiber diameter on the mixture. The results showed that the incorporation of basalt fiber substantially improved the crack resistance, slowed down the increase of the displacement, and delayed the fracture time. Basalt fiber with a diameter of 7 μm presented the best enhancement capability on the crack resistance of the AC-13 mixture. The flexibility index (FI) of the SCB test showed a good correlation with V and FT values of DIC test results, respectively. These findings provide theoretical advice for the popularization and engineering application of basalt fibers in asphalt pavement.  相似文献   

13.
In this study, the semicircle three-point bending tests of ordinary asphalt concrete and basalt fiber asphalt concrete were carried out and acoustic emission parameters were collected during the test. The differences of the characteristics of acoustic emission parameters between basalt fiber asphalt concrete and ordinary asphalt concrete were analyzed, and the damage stages were divided based on the variation of acoustic emission parameters; Rise Angle and Average Frequency were introduced to study the cracking mode and crack resistance mechanism of asphalt concrete with basalt fiber. The results show that the acoustic emission parameters can well represent the toughening and crack resistance effect of basalt fiber in asphalt concrete, and the damage stages can be divided into three stages: microcrack initiation stage, fracture stage, and residual stage. The duration of the fracture stage and the load resistance time of the specimen were greatly prolonged. The proportion of shear events in the whole failure process increased greatly after the basalt fibers were added, especially in the fracture stage, which reduced the tensile failure tendency of the specimens, and thus improved the bending and tensile performance of the specimens and played a toughening and crack resistance role in the fracture stage.  相似文献   

14.
Engineered cementitious composites (ECC) used as runway pavement material may suffer different strain rate loads such as aircraft taxiing, earthquakes, crash impacts, or blasts. In this paper, the dynamic tensile behaviors of the steel grid-polyvinyl alcohol (PVA) fiber and KEVLAR fiber-reinforced ECC were investigated by dynamic tensile tests at medium strain rates. The mixture was designed with different volume fractions of fibers and layer numbers of steel grids to explore the reinforcement effectiveness on the dynamic performance of the ECC. The volume fractions of these two types of fibers were 0%, 0.5%, 1%, 1.5%, and 2% of the ECC matrix, respectively. The layer numbers of the steel grid were 0, 1, and 2. The dynamic tensile behaviors of the PVA fiber and the KEVLAR fiber-reinforced ECC were also compared. The experimental results indicate that under dynamic tensile loads, the PVA-ECC reveals a ductile and multi-cracking failure behavior, and the KEVLAR-ECC displays a brittle failure behavior. The addition of the PVA fiber and the KEVLAR fiber can improve the tensile peak stress of the ECC matrix. For the specimens A0.5, A1, A1.5, and A2.0, the peak stress increases by 84.3%, 149.4%, 209.6%, and 237.3%, respectively, compared to the matrix specimen. For the specimens K0.5, K1, K1.5, and K2, the peak stress increases by about 72.3%, 147.0%, 195.2%, and 263.9%, respectively, compared to the matrix specimen. The optimum fiber volume content is 1.5% for the PVA-ECC and the KEVLAR-ECC. The KEVLAR-ECC can supply a higher tensile strength than the PVA-ECC, but the PVA-ECC reveals more prominent deformation capacity and energy dissipation performance than the KEVLAR-ECC. Embedding steel grid can improve the tensile peak stress and the energy dissipation of the ECC matrix. For the strain rate of 10−3 s−1, the peak stress of the A0.5S1 and A0.5S2 specimens increases by about 49.1% and 105.7% compared to the A0.5 specimen, and the peak stress of the K0.5S1 and K0.5S2 specimens increases by about 61.5% and 95.8%, respectively, compared to the K0.5 specimen.  相似文献   

15.
Essentially, every failure of a short fiber reinforced composite (SFRC) under tension is induced from a matrix failure, the prediction of which is of fundamental importance. This can be achieved only when the homogenized stresses of the matrix are converted into true values in terms of stress concentration factors (SCFs) of the matrix in an SFRC. Such an SCF cannot be determined in the classical way. In this paper, a closed-form formula for the longitudinal tensile SCF in the SFRC is derived from the matrix stresses determined through an elastic approach. The other directional SCFs in an SFRC are the same as those in a continuous fiber composite already available. A bridging model was used to calculate the homogenized stresses explicitly, and a failure prediction of the SFRC with arbitrary fiber aspect ratio and fiber content was made using only the original constituent strength data. Results showed that the volume fraction, the aspect ratio, and the orientation of the fiber all have significant effect on the tensile strength of an SFRC. In a certain range, the tensile strength of an SFRC increases with the increase in fiber aspect ratio and fiber volume content, and the strength of the oriented short fiber is higher than that of the random short fiber arrangement. Good correlations between the predicted and the available measured strengths for a number of SFRCs show the capability of the present method.  相似文献   

16.
Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.  相似文献   

17.
Basalt/glass fiber polypropylene hybrid composites were developed as subjects of investigation, with the aim to characterize their properties. An injection molding machine was used to produce the test samples. The following three different tests, at various specimen temperatures, were conducted: tensile test, three-point flexural test, and Charpy impact test. To determine fatigue behavior, the samples were uniaxially loaded and unloaded. Mechanical hysteresis loops were recorded and the dissipation energy of each loop was calculated. To determine the adhesion and dispersion between the fibers and the matrix, the fractured surfaces of the various specimens, after the tensile test, were investigated using a scanning electron microscope. The results show that the production of a composite with both basalt and glass fibers, in a polypropylene matrix with maleic anhydride-grafted polypropylene, can be successfully achieved. The addition of the two types of fibers increased the tensile strength by 306% and the tensile modulus by 333% for a composition, with 20% by weight, of fibers. The material properties were estimated with the help of a simulation software, and validated with a FEA. A satisfactory correlation between the simulation and measurement data was achieved. The error lays in a range of 2% between the maximum stress values. At a lower strain (up to 0.02), the stress values are very well matched.  相似文献   

18.
This study aims to solve the problems of the high cost, heavy pollution and poor performance of traditional engineered cementitious composites (ECC) by adding modified Polyvinyl chloride (PVC) aggregate, Polypropylene (PP)–Polyvinyl alcohol (PVA) hybrid fiber and large amount of fly ash. The PVC aggregate is modified by pre-coating silica fume with a PP fiber volume content of 0.5%, PVA fiber volume contents of 1%, 1.5%, and 2%, PVC aggregate contents of 10%, 20%, and 30%, and fly ash volume content of 69%. Different properties and microstructures were studied by carrying out cube compression tests, splitting tensile tests, water absorption tests, drop hammer impact tests, scanning electron microscopy and nuclear magnetic resonance tests. According to the test results, under the same content of PVC aggregate, the use of modified PVC aggregate can, not only effectively avoid the decrease in strength and increase of water absorption, but also improve brittleness and impact failure energy. Regardless of the kind and content of fiber, the compressive strength and brittleness will decrease, while the splitting tensile strength, water absorption, and impact failure energy will increase. After adding 0.5% PP and 1.5% PVA fiber, the performance is ordinary and a negative mixing effect occurs. As more modified PVC aggregate is added, the strength of the ECC concrete with PP–PVA hybrid fiber and modified PVC aggregate added slowly decrease, while the water absorption and impact failure energy increase. Based on a comprehensive analysis of the test data, the reinforcement method of adding 1.5% PVA-0.5% PP hybrid fiber-30% modified PVC aggregate is superior to adding 1.5% PVA fiber, but slightly inferior to adding 2% PVA fiber. This study argues that the reinforcement method is of great significance for the promotion and application of ECC.  相似文献   

19.
Recently, the application of plant fibers to improve the cementitious mix performance has attracted interest in the field of road materials owing to advantages of environmental protection and cost-effectiveness. As a planting crop, corn exhibits the advantages of being a more abundant resource with a wider distribution than those of other plant fibers. In this study, the effect of corn straw fiber on the properties of cement-stabilized macadam (5% cement) was investigated with the fiber length and content as variables. The test results revealed that the addition of a small amount of fiber marginally affects the compression density of cement-stabilized macadam. At a fiber length of 10 mm and a fiber content of 1%, the maximum increase in the compressive strength was 18.8%, and the maximum increase in the splitting strength was 35.4%. Moreover, at a fiber length of 15 mm and a fiber content of 1%, the shrinkage coefficient was reduced by 29%, and the crack resistance of cement-stabilized macadam was enhanced. In addition, the dry–wet cycle durability of cement-stabilized macadam was improved.  相似文献   

20.
The paper reports experimental research regarding the mechanical characteristics of concrete reinforced with natural cellulosic fibers like jute, sisal, sugarcane, and coconut. Each type of natural fiber, with an average of 30 mm length, was mixed with a concrete matrix in varying proportions of 0.5% to 3% mass. The tensile and compressive strength of the developed concrete samples with cellulosic fiber reinforcement gradually increased with the increasing proportion of natural cellulosic fibers up to 2%. A further increase in fiber loading fraction results in deterioration of the mechanical properties. By using jute and sisal fiber reinforcement, about 11.6% to 20.2% improvement in tensile and compressive strength, respectively, was observed compared to plain concrete, just by adding 2% of fibers in the concrete mix. Bending strength increased for the natural fiber-based concrete with up to 1.5% fiber loading. However, a decrease in bending strength was observed beyond 1.5% loading due to cracks at fiber−concrete interface. The impact performance showed gradual improvement with natural fiber loading of up to 2%. The water absorption capacity of natural cellulosic fiber reinforced concrete decreased substantially; however, it increased with the loading percent of fibers. The natural fiber reinforced concrete can be commercially used for interior or exterior pavements and flooring slabs as a sustainable construction material for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号