首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ticks and Tick》2022,13(2):101886
The geographic range of the blacklegged tick, Ixodes scapularis, and its associated human pathogens have expanded substantially over the past 20 years putting an increasing number of persons at risk for tick-borne diseases, particularly in the upper midwestern and northeastern United States. Prevention and diagnosis of tick-borne diseases rely on an accurate understanding by the public and health care providers of when and where persons may be exposed to infected ticks. While tracking changes in the distribution of ticks and tick-borne pathogens provides fundamental information on risk for tick-borne diseases, metrics that incorporate prevalence of infection in ticks better characterize acarological risk. However, assessments of infection prevalence are more labor intensive and costly than simple measurements of tick or pathogen presence. Our objective was to examine whether data derived from repeated sampling at longitudinal sites substantially influences public health recommendations for Lyme disease and anaplasmosis prevention, or if more constrained sampling is sufficient. Here, we summarize inter-annual variability in prevalence of the agents of Lyme disease (Borrelia burgdorferi s.s.) and anaplasmosis (Anaplasma phagocytophilum) in host-seeking I. scapularis nymphs and adults at 28 longitudinal sampling sites in the Upper Midwestern US (Michigan, Minnesota, and Wisconsin). Infection prevalence was highly variable among sites and among years within sites. We conclude that monitoring infection prevalence in ticks aids in describing coarse acarological risk trends, but setting a fixed prevalence threshold for prevention or diagnostic decisions is not feasible given the observed variability and lack of temporal trends. Reducing repeated sampling of the same sites had minimal impact on regional (Upper Midwest) estimates of average infection prevalence; this information should be useful in allocating scarce public health resources for tick and tick-borne pathogen surveillance, prevention, and control activities.  相似文献   

2.
《Ticks and Tick》2023,14(5):102202
Human Lyme disease–primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America–is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014–2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.  相似文献   

3.
《Ticks and Tick》2020,11(6):101504
Tickborne diseases are an increasing public health concern in the United States, where the majority of notifiable cases are caused by pathogens vectored by Ixodes ticks. To better monitor changes in acarological risk of human encounters with these ticks and their associated pathogens, the Centers for Disease Control and Prevention (CDC) recently established a national tick and tickborne pathogen surveillance program. Here, we describe and evaluate a new Multiplex PCR Amplicon Sequencing (MPAS) assay for potential use in surveillance programs targeting two common human-biting vector ticks, Ixodes scapularis and Ixodes pacificus. The ability of the MPAS assay to detect five Ixodes-associated human pathogens (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti) was compared to that of a previously published and routinely used probe-based (TaqMan) PCR testing algorithm for pathogen detection in Ixodes ticks. Assay performance comparisons included a set of 175 host-seeking Ixodes nymphs collected in Connecticut as well as DNA from our pathogen reference collection. The MPAS assay and the CDC standard TaqMan PCR pathogen testing algorithm were found to have equivalent detection sensitivity for Ixodes-associated human pathogens. However, the MPAS assay was able to detect a broader range of tick-associated microorganisms, more effectively detected co-infections of multiple pathogens in a single tick (including different species within the Borrelia burgdorferi sensu lato complex), and required a smaller volume of test sample (thus preserving more sample for future testing).  相似文献   

4.
《Ticks and Tick》2022,13(6):102036
Ticks pose an emerging threat of infectious pathogen transmission in the United States in part due to expanding suitable habitat ranges in the wake of climate change. Active and passive tick surveillance can inform maps of tick distributions to warn the public of their risk of exposure to ticks. In Colorado, widespread active surveillance programs have difficulty due to the state's diverse terrain. However, combining multiple citizen science techniques can create a more accurate representation of tick distribution than any passive surveillance dataset alone. Our study uses county-level tick distribution data from Northern Arizona University, the Colorado Department of Public Health and the Environment, and veterinary surveillance in addition to literature data to assess the distribution of the Rocky Mountain wood tick, Dermacentor andersoni, and the American dog tick, Dermacentor variabilis. We found that D. andersoni for the most part inhabits counties at higher elevations than D. variabilis in Colorado.  相似文献   

5.
《Ticks and Tick》2020,11(1):101271
Ixodes scapularis is the primary vector of Lyme disease spirochetes in eastern and central North America, and local densities of this tick can affect human disease risk. We sampled larvae and nymphs from sites in Massachusetts and Wisconsin, USA, using flag/drag devices and by collecting ticks from hosts, and measured environmental variables to evaluate the environmental factors that affect local distribution and abundance of I. scapularis. Our sites were all forested areas with known I. scapularis populations. Environmental variables included those associated with weather (e.g., temperature and relative humidity), vegetation characteristics (at canopy, shrub, and ground levels), and host abundance (small and medium-sized mammals and reptiles). The numbers of larvae on animals at a given site and season showed a logarithmic relationship to the numbers in flag/drag samples, suggesting limitation in the numbers on host animals. The numbers of nymphs on animals showed no relationship to the numbers in flag/drag samples. These results suggest that only a small proportion of larvae and nymphs found hosts because in neither stage did the numbers of host-seeking ticks decline with increased numbers on hosts. Canopy cover was predictive of larval and nymphal numbers in flag/drag samples, but not of numbers on hosts. Numbers of small and medium-sized mammal hosts the previous year were generally not predictive of the current year’s tick numbers, except that mouse abundance predicted log numbers of nymphs on all hosts the following year. Some measures of larval abundance were predictive of nymphal numbers the following year. The mean number of larvae per mouse was well predicted by measures of overall larval abundance (based on flag/drag samples and samples from all hosts), and some environmental factors contributed significantly to the model. In contrast, the mean numbers of nymphs per mouse were not well predicted by environmental variables, only by overall nymphal abundance on hosts. Therefore, larvae respond differently than nymphs to environmental factors. Furthermore, flag/drag samples provide different information about nymphal numbers than do samples from hosts. Flag/drag samples can provide information about human risk of acquiring nymph-borne pathogens because they provide information on the densities of ticks that might encounter humans, but to understand the epizootiology of tick-borne agents both flag/drag and host infestation data are needed.  相似文献   

6.
Understanding the role that nymphal and female ticks, Ixodes scapularis, have in the epidemiology of Lyme disease is essential to the development of successful prevention programs. In this study, the authors sought to evaluate the seasonal and annual relations between tick densities and patients > or = 16 years of age diagnosed with erythema migrans (EM), the rash associated with early Lyme disease. Ticks were collected weekly by drag sampling throughout most of the year from 1991 to 1996 in Westchester County, New York. The number of EM cases was based on patients diagnosed at the Westchester County Medical Center using Centers for Disease Control and Prevention (CDC) criteria. No patients with EM were diagnosed from January through April, when only adult ticks were active. Correlation analysis between monthly tick densities and EM incidence was significant for nymphs (r = 0.87, p < 0.01), but not for adult ticks (r = -0.57, p > 0.05). There was a strong, although not significant, correlation between peak annual number of patients with EM and peak nymphal tick abundance (r = 0.76, p = 0.08). These data indicate that bites from adult I. scapularis only rarely result in Lyme disease, and that annual nymphal tick abundance determines exposure. This suggests that annual fluctuations in Lyme disease case numbers are largely due to natural changes in tick abundance and, therefore, that control of nymphal I. scapularis should be a major component of Lyme disease prevention efforts.  相似文献   

7.
《Ticks and Tick》2020,11(5):101464
Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m² collection site, one of four 50 m² fields was sampled per visit on a rotational basis, resulting in 100 m² sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. inopinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were significantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m² on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m² in 2017 and 11 ticks/100 m² in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m² in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and saturation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.  相似文献   

8.

Background

Northward expansion of the tick Ixodes scapularis is driving Lyme disease (LD) emergence in Canada. Information on mechanisms involved is needed to enhance surveillance and identify where LD risk is emerging.

Objectives

We used passive and active surveillance and phylogeographic analysis of Borrelia burgdorferi to investigate LD risk emergence in Quebec.

Methods

In active surveillance, we collected ticks from the environment and from captured rodents. B. burgdorferi transmission was detected by serological analysis of rodents and by polymerase chain reaction assays of ticks. Spatiotemporal trends in passive surveillance data assisted interpretation of active surveillance. Multilocus sequence typing (MLST) of B. burgdorferi in ticks identified likely source locations of B. burgdorferi.

Results

In active surveillance, we found I. scapularis at 55% of sites, and we were more likely to find them at sites with a warmer climate. B. burgdorferi was identified at 13 I. scapularis–positive sites, but infection prevalence in ticks and animal hosts was low. Low infection prevalence in ticks submitted in passive surveillance after 2004—from the tick-positive regions identified in active surveillance—coincided with an exponential increase in tick submissions during this time. MLST analysis suggested recent introduction of B. burgdorferi from the northeastern United States.

Conclusions

These data are consistent with I. scapularis ticks dispersed from the United States by migratory birds, founding populations where the climate is warmest, and then establishment of B. burgdorferi from the United States several years after I. scapularis have established. These observations provide vital information for public health to minimize the impact of LD in Canada.  相似文献   

9.
《Ticks and Tick》2023,14(5):102207
The Centers for Disease Control and Prevention's national tick and tick-borne pathogen surveillance program collects information to better understand the regional distribution, prevalence, and exposure risk of host-seeking medically important ticks in the United States. A recently developed next generation sequencing (NGS) targeted multiplex PCR amplicon sequencing (MPAS) assay has enhanced the detection capabilities for Ixodes-associated human pathogens found in Ixodes scapularis and Ixodes pacificus ticks compared to the routinely used real-time PCR assay. To operationalize the MPAS assay for the large number of tick surveillance submissions processed each year, a reproducible high throughput bioinformatics pipeline is needed. We describe the development and validation of the MPAS pipeline, a bioinformatics pipeline that identifies and summarizes amplicon sequences produced by the MPAS assay. This pipeline is portable and reproducible across different computing environments, and flexible by allowing modifications to input parameters, assay primer and reference sequences. The automation of the summary report, BLAST report, and phylogenetic analysis reduces the amount of time needed for downstream analysis. To validate this pipeline, we compared the analysis of a MPAS assay dataset consisting of 175 I. scapularis nymphs with the MPAS pipeline and previously published results analyzed with a CLC Genomic Workbench workflow. The MPAS pipeline identified the same number of positive ticks for Anaplasma phagocytophilum and Babesia species as the original analysis, but the MPAS pipeline provided enhanced sequencing resolution of Borrelia burgdorferi sensu lato co-infected samples. The reproducibility, flexibility, analysis automation, and improved sequence resolution of the MPAS pipeline make it well suited for a high throughput tick pathogen surveillance program.  相似文献   

10.
《Ticks and Tick》2022,13(5):101975
Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) are regarded as potentially emerging tick-borne pathogens and may change in abundance in response to global climate change. However, continuous monitoring on their prevalence in questing ticks is only available for the northern German city of Hanover. In the presented follow-up of this long-term study, 2100 questing ticks of the Ixodes ricinus/Ixodes inopinatus-complex collected from April to October 2020 at ten different recreation sites in Hanover were individually analysed for Rickettsia and A. phagocytophilum infection by quantitative real-time PCR. Together with previous results from years 2005, 2010 and 2015, the current study allows to assess potential changes in tick infection rates with Rickettsiales over a 15-year monitoring period. In 2020, 3.0% (63/2100) of ticks were infected with A. phagocytophilum, 36.0% (756/2100) with Rickettsia spp. and 1.2% (26/2100) with both pathogens. Regarding the different developmental tick stages, nymphs showed a significantly lower A. phagocytophilum prevalence of 0.5% (5/1050) than adult ticks (5.5% [58/1050]) as well as compared to females (5.4% [38/700]) and males (5.7% [20/350]). For Rickettsia spp., nymphs also showed a lower prevalence of 33.2% (349/1050) with a significant difference to adult ticks (38.8% [407/1050]) and female ticks (40.7% [285/700]), while males had a Rickettsia infection rate of 34.9% (122/350). Comparison with previous years indicated a stable A. phagocytophilum prevalence over the 15-year monitoring period. In contrast, fluctuating Rickettsia prevalences were observed, with a peak in 2015 in all developmental stages, but similar infection rates in 2005 and 2020. Therefore, epidemiological changes in response to climate change are not (yet) evident. Nevertheless, the long-term monitoring study will be continued in the future, as climatic impacts on tick and reservoir host populations may have a delayed effect on pathogen prevalence and, consequently, transmission to humans and domestic animals.  相似文献   

11.
《Ticks and Tick》2020,11(4):101453
The lone star tick (Amblyomma americanum) is the most common and abundant human-biting tick in the southeastern United States where spotted fever rickettsioses frequently occur. However, the role of this tick in transmitting and maintaining pathogenic and non-pathogenic spotted fever group rickettsiae (SFGR) remains poorly defined. This is partially due to the high prevalence and abundance of Rickettsia amblyommatis in most populations of A. americanum. Many molecular assays commonly employed to detect rickettsiae use PCR primers that target highly conserved regions in the SFGR so low abundance rickettsia may not be detected when R. amblyommatis is present. It is costly and inefficient to test for low abundance rickettsial agents with multiple individual specific assays even when they are multiplexed, as most samples will be negative. Real time PCR assays may also be hampered by inadequate limits of detection (LODs) for low abundance agents. We exploited the absence of an otherwise relatively SFGR-conserved genome region in R. amblyommatis to design a hemi-nested PCR-assay which has a sensitivity of 10 copies in detecting the presence of most SFGR, but not R. amblyommatis in DNA of infected lone star ticks. This deletion is conserved in 21 isolates of R. amblyommatis obtained from multiple states. We demonstrated the assay’s utility by detecting a pathogenic SFGR, Rickettsia parkeri, in 15/50 (30 %) of field collected A. americanum ticks that were previously screened with conventional assays and found to be positive for R. amblyommatis. These co-infected ticks included 1 questing female, 6 questing nymphs, and 8 attached males. The high prevalence of R. parkeri among host-attached ticks may be due to several variables and does not necessarily reflect the risk of disease transmission from attached ticks to vertebrate hosts. This novel assay can provide accurate estimates of the prevalence of less common SFGR in A. americanum and thus improve our understanding of the role of this tick in the maintenance and transmission of the SFGR commonly responsible for human rickettsioses.  相似文献   

12.
In the far-western United States, the nymphal stage of the western black-legged tick, Ixodes pacificus, has been implicated as the primary vector to humans of Borrelia burgdorferi sensu stricto (hereinafter referred to as B. burgdorferi), the causative agent of Lyme borreliosis in North America. In the present study, we sought to determine if infection prevalence with B. burgdorferi in I. pacificus nymphs and the density of infected nymphs differ between dense-woodland types within Mendocino County, California, and to develop and evaluate a spatially-explicit model for density of infected nymphs in dense woodlands within this high-incidence area for Lyme borreliosis. In total, 4.9% (264) of 5431 I. pacificus nymphs tested for the presence of B. burgdorferi were infected. Among the 78 sampling sites, infection prevalence ranged from 0% to 22% and density of infected nymphs from 0 to 2.04 per 100 m2. Infection prevalence was highest in woodlands dominated by hardwoods (6.2%) and lowest for redwood (1.9%) and coastal pine (0%). Density of infected nymphs also was higher in hardwood-dominated woodlands than in conifer-dominated ones that included redwood or pine. Our spatial risk model, which yielded an overall accuracy of 85%, indicated that warmer areas with less variation between maximum and minimum monthly water vapor in the air were more likely to include woodlands with elevated acarological risk of exposure to infected nymphs. We found that 37% of dense woodlands in the county were predicted to pose an elevated risk of exposure to infected nymphs, and that 94% of the dense-woodland areas that were predicted to harbor elevated densities of infected nymphs were located on privately-owned land.  相似文献   

13.
《Ticks and Tick》2020,11(3):101359
Use of emerging technology allowing for identification of genetic material from pathogens and endosymbionts in ticks collected from humans, domestic animals, wildlife, or the environment has resulted in an avalanche of new data on tick-microorganism associations. This rapidly growing stream of new information is a tremendous resource but also presents challenges, including how detection of pathogen genetic material in ticks should best be interpreted. There is a tendency in the more recent published literature to incorrectly use the term “vector” based on detection of pathogen genetic material from tick species not experimentally confirmed to serve as vectors of the pathogen in question. To serve as a vector of a horizontally maintained pathogen, such as a Borrelia burgdorferi sensu lato (s.l.) Lyme borreliosis spirochete, the tick species in question must be capable of acquiring the pathogen while feeding in the larval or nymphal stage on an infectious host, maintaining it transstadially through the molt, and then transmitting the pathogen to a naïve host while feeding in the subsequent nymphal or adult stage. This review examines the experimental evidence for and against species of hard (ixodid) ticks from different genera to serve as vectors of B. burgdorferi s.l. spirochetes. Of the 18 Ixodes species ticks evaluated to date, 13 were experimentally confirmed as vectors of B. burgdorferi s.l. spirochetes. These studies focused primarily on the three major Lyme borreliosis agents: Borrelia burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. In striking contrast, none of 8 tick species from other genera (1 Amblyomma species, 5 Dermacentor species, and 2 Haemaphysalis species) evaluated to date were unequivocally experimentally confirmed as vectors of B. burgdorferi s.l. spirochetes. The strength of the evidence for or against each tick species to serve as a vector of B. burgdorferi s.l. spirochetes is discussed together with key knowledge gaps and research challenges.  相似文献   

14.
《Ticks and Tick》2020,11(1):101311
The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis, was detected in New Jersey in the eastern United States in August of 2017 and by November of 2018 this tick had been recorded from 45 counties across 9 states, primarily along the Eastern Seaboard. The establishment of H. longicornis in the United States has raised the questions of how commonly it will bite humans and which native pathogens may naturally infect this tick. There also is a need for experimental vector competence studies with native pathogens to determine if H. longicornis can acquire a given pathogen while feeding, pass it transstadially, and then transmit the pathogen in the next life stage. In this experimental study, we evaluated the vector competence of a population of H. longicornis originating from the United States (New York) for a native isolate (B31) of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). In agreement with a previous experimental study on the vector competence of H. longicornis for Borrelia garinii, we found that uninfected H. longicornis larvae could acquire B. burgdorferi s.s. while feeding on infected Mus musculus mice (infection prevalence >50% in freshly fed larvae) but that the infection was lost during the molt to the nymphal stage. None of 520 tested molted nymphs were found to be infected, indicating that transstadial passage of B. burgdorferi s.s. is absent or rare in H. longicornis; and based on the potential error associated with the number of nymphs testing negative in this study, we estimate that the upper 95% limit for infection prevalence was 0.73%. An Ixodes scapularis process control showed both effective acquisition of B. burgdorferi s.s. from infected mice by uninfected larvae and transstadial passage to the nymphal stage (infection prevalence of 80–82% for both freshly fed larvae and molted nymphs). We also observed that although H. longicornis larvae could be compelled to feed on mice by placing the ticks within feeding capsules, attachment and feeding success was minimal (<0.5%) when larvae were placed freely on the fur of the mice. We conclude that H. longicornis is unlikely to contribute more than minimally, if at all, to transmission of Lyme disease spirochetes in the United States.  相似文献   

15.
《Ticks and Tick》2023,14(2):102091
Nymphs of the hard tick Amblyomma americanum (L.) are an important life stage in the maintenance and transmission of tick-borne pathogens. As pathogen composition can vary across developmental cohorts, it is essential to understand the demographic structure of the questing population. Amblyomma americanum nymphs often display a second peak in activity during late summer, but it is unknown whether this peak represents older overwintered ticks or younger newly molted ticks. The objective of this study was to examine the heme concentration in field-captured A. americanum nymphs to determine if the questing population consists of one physiological cohort or multiple cohorts in a season. Ticks were collected from March to August in an old field of primarily non-native grasses, and heme concentration was used to assess physiological age. LOESS modeling depicted that heme concentration in the population declined from March to early July but increased in later sampling sessions. As ticks cannot replenish declining heme stores without a blood meal, a late-summer spike in heme concentration demonstrates that newly molted nymphs are entering the active population. The vector potential of these newly emerging nymphs may differ from those collected earlier in the year as pathogen diversity depends on reservoir host dynamics and timing of larval feeding.  相似文献   

16.
Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain two important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n = 185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of borreliae than adult ticks from the same generational cohort. In contrast to the results of preceding studies carried out at the same site, none of the nymphal or adult ticks was PCR-positive for A. phagocytophilum. This suggests that the distribution of this rickettsia is highly focal or variable from year-to-year within this particular woodland.  相似文献   

17.
《Ticks and Tick》2020,11(4):101439
Introduced wildlife may be important alternative hosts for generalist ticks that cause health issues for humans and companion animals in urban areas, but to date are rarely considered as part of the tick-host community compared to native wildlife. In Australia, European rabbits, Oryctolagus cuniculus, are a widespread and abundant invasive species common to a range of human-modified ecosystems. To understand the potential role of rabbits in the life cycle of Australian ticks, we investigated the seasonal abundance of all tick life stages (larva, nymph, and adult) on rabbits collected from pest control programs in two urban forest remnants in Sydney, Australia. We also recorded whether larvae, nymphs, and adults were attached to the head, body, or limbs of rabbits to reveal patterns of tick attachment. Of the 2426 Ixodes ticks collected from 42 rabbits, larvae were by far the most abundant life stage (2360), peaking in abundance in autumn, while small numbers of nymphs (62) and adults (4) were present in winter and summer respectively. Larvae were found all over the body, whereas adults and nymphs were predominantly attached to the head, suggesting that the mature life stages use the host landscape differently, or that adults or nymphs may be groomed off the body. The most abundant tick species, as determined by morphology and DNA sequencing, was Ixodes holocyclus, a generalist tick responsible for significant human and companion animal health concerns in Australia. Our findings highlight the importance of understanding the role of introduced wildlife in tick dynamics particularly in novel ecosystems where non-native hosts may be more abundant than native hosts.  相似文献   

18.
《Ticks and Tick》2022,13(4):101960
African tick bite fever (ATBF) is one of the most important rickettsial infections in international travellers to sub-Saharan Africa. The heterogeneity of Rickettsia africae infection rates among tick vector species has been studied. However, this information has not been systematised to allow for comparative estimates. Quantifying the trends and heterogeneity in R. africae infection rates among the different tick vector species is paramount in understanding the role in transmission to humans. A systematic search was conducted in PubMed, Web of Knowledge, Google Scholar, and SCOPUS from 2005 to 2020. The selection criteria included all studies in sub-Saharan Africa reporting R. africae infection rates in tick adults, nymphs, and larvae. A quality effects model was used in the meta-analysis due to the observed heterogeneity with an assessment of publication bias using funnel plots. The prevalence estimates were conducted by geographic region and tick genus from 32 studies reporting R. africae infection rates in ticks from sub-Saharan Africa. A total of 12,301 ticks comprising of adults (96.19%, n=11, 832), nymphs (3.6%, n=443) and larvae (0.2%, n=26) and 1214 pooled samples were evaluated for R. africae infection. The overall prevalence of R. africae was higher in Amblyomma spp. (48%, 95% CI: 26-70%) compared to Rhipicephalus spp. (1%, 95% CI: 0-5%), Hyalomma spp. (1%, 95% CI: 0-3%) and other tick genera (1%, 95% CI: 0-4%) throughout all regions. The highest prevalence in Amblyomma spp. was recorded in western Africa (53%, 95% CI: 14-90%) and in Rhipicephalus spp. in southern Africa (2%, 95% CI: 0-5%). Cattle were the most frequently sampled hosts across all tick vectors (62.98%, n=5492), followed by goats (19.07%, n= 1663) and sheep (9.1%, n= 793). To our knowledge, this is the first systematic and quantitative analysis of R. africae infection in tick vectors collected from mammalian hosts in sub-Saharan Africa. The results highlight a marked heterogeneity between species in different regions of sub-Saharan Africa and provide initial estimates of infection rates.  相似文献   

19.
《Ticks and Tick》2022,13(5):101988
Understanding the factors which influence host-seeking behavior of ticks is essential to determine the risk they pose as a vector of pathogens. While many studies have evaluated the impact of environmental variables on tick behavior, few have examined how seasonal changes in physiological status may further modify patterns of activity. In this study, we measured differences in questing behavior of mid spring- and early summer-caught Amblyomma americanum nymphs held under standardized laboratory conditions. As both groups represent the same cohort of overwintered nymphs, we hypothesized that age-related changes in the older summer ticks may influence questing behavior. In each season, we collected nymphs from field and forest habitats in northeast Missouri, after which we placed each nymph individually in a desiccating vertical questing apparatus with a hydrating microenvironment at the base. On the day following collection, we recorded the height of each nymph in the apparatus bi-hourly from 04:00 to 22:00 and calculated the vertical displacement between consecutive observations. Despite displaying no differences in mean questing height throughout the experiment, active ticks collected in the summer group (n = 89) travelled greater cumulative distances between desiccating and hydrating microenvironments than those collected in the spring (n = 119). This suggests that questing efficiency decreases in summer nymphs to accommodate increased time allocation towards rehydration. While we observed no direct association between body size and distance travelled, body size of the nymphal population also decreased significantly from spring to summer. Overall, our results demonstrate that there are seasonal changes in how A. americanum responds to environmental conditions. To more accurately predict host-seeking behavior of ticks across seasons, models should incorporate physiological parameters of the active ticks in a given population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号