首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The serotonin (5HT) transporter (5HTT) removes 5HT from the synaptic cleft and is thus critical to the control of serotonergic neurotransmission. Mice with a targeted inactivation of the 5HTT represent a novel and unique tool to study serotonergic system functioning. Because the release of 5HT is regulated by adenosine, we investigated 5HTT-deficient mice for possible adaptive changes of adenosine A1 and A2A receptors. A1 and A2A receptors were studied by means of quantitative autoradiography using the radioligands [3H]8-cyclopentyl-1,3-dipropylxanthine and [3H]CGS 21680, respectively. A comparison of 5HTT knockout versus control mice revealed upregulation of A1 receptors in the dorsal raphe nucleus (DRN, +21%), but not in any of the serotonergic projection areas, and downregulation of A2A receptors in basal ganglia. The adaptive changes of A1 and A2A receptors in 5HTT-deficient mice are likely to represent a compensatory neuroprotective effect mediated by the adenosinergic modulatory system. For comparison, these receptors were also studied in monoamine oxidase A (MAOA) knockout mice and in 5HTT/MAOA double knockout mice. 5HTT/MAOA double knockout mice showed adaptive changes of adenosine A1 and A2A receptors similar to 5HTT knockout mice, while investigation of MAOA-deficient mice revealed an upregulation of A2A receptors, which may relate to a role of both MAOA and adenosine A2A receptors in anxiety.  相似文献   

2.
Summary 8-Cyclopentyl-1,3-dipropylxanthine (PD 116,948) is a very potent, very A1-selective adenosine antagonist, with a K i of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes and 340 nM in 3H-NECA binding to A2 receptors in rat striatal membranes. Its 740-fold A1-selectivity is the highest reported for an adenosine antagonist. 3H-PD 116,948 (117 Ci/mmol) was prepared by reduction of the diallyl analog. 3H-PD 116,948 bound to a single site in rat whole brain membranes, with a B max of 46 pmol/g wet weight and K d of 0.42 nM. Nonspecific binding was extremely low, amounting to about 3% of total binding under standard conditions and less than 1 % when higher tissue concentrations were used. Affinities of compounds for inhibition of 3H-PD 116,948 binding were highly consistent with an A1 adenosine receptor. Antagonists were equally potent in 3H-PD 116,948 binding and in 3H-CHA binding, while agonists were consistently about 12-fold more potent in 3H-CHA binding. Hill coefficients were 1.0 for antagonists and about 0.65 for agonists. 3H-PD 116,948 should be a useful antagonist ligand for adenosine A1 receptors. Send offprint request toR. F. Bruns at above address  相似文献   

3.
The effects of adenosine, 5'-(N-ethyl)carboxamidoadenosine (NECA), 2-chloroadenosine (2-CA), No-cyclohexyladenosine (CHA) and N6(R-2-phenylisopropyl)-adenosine (R-PIA) on the tone of phenylephrine-constricted guinea-pig isolated aorta have been examined. For aortic relaxation the analogues exhibited the following rank order of potency: NECA > adenosine > 2-CA > R-PIA > CHA. This is consistent with previous reports that relaxation of this tissue is mediated by the adenosine A2 receptor. An unexpected finding was that R-PIA, 2-CA and CHA all induced contractions at concentrations lower than were required for relaxation, giving a biphasic dose-response curve. Neither NECA nor adenosine contracted the aorta. This is consistent with activation of vascular A1 receptors. An A1-selective concentration of the antagonist l,3-dipropyl-8-cyclopentyl xanthine abolished the contraction elicited by R-PIA in the guinea-pig aorta. This further suggests that the contraction is mediated by a1 receptors.  相似文献   

4.
The neuromodulator adenosine, acting through activation of four defined metabotropic receptors called A1, A2A, A2B and A3, has been proposed as an endogenous anticonvulsant. Here, the consequences of deleting the adenosine A2A receptor have been examined in different experimental models of epilepsy. A2AR KO mice were not protected against seizures originating from brainstem structures, namely electroshock-induced seizures. The intensities of seizures induced by pentylenetetrazol or pilocarpine, as well as the percentages of convulsing mice, were significantly reduced in A2A receptor knockout (A2AR KO) animals. A2AR KO mice exhibited reduced pentylenetetrazol-induced kindled seizures, demonstrating an important role of the A2A receptor in the acquisition of kindling. These data suggest that adenosine stimulating A2A receptors modulates excitatory neurotransmission and exacerbates limbic seizures. It is therefore suggested that adenosine A2A receptor antagonists might offer protection from some epileptic syndromes.  相似文献   

5.
Studies of endogenous cannabinoid agonists, such as 2-arachidonylglycerol (2-AG), have revealed their potential to exert modulatory actions on other receptor systems in addition to their ability to activate cannabinoid receptors. This study investigated the effect of cannabinoid ligands on the human adenosine A3 (hA3R) receptor. The endocannabinoid 2-AG was able to inhibit agonist ([125I]N6-(4-amino-3-iodobenzyl) adenosine-5′-(N-methyluronamide) - [125I] AB MECA) binding at the hA3R. This inhibition occurred over a narrow range of ligand concentration and was characterized by high Hill coefficients suggesting a non-competitive interaction. Furthermore, in the presence of 2-AG, the rate of [125I] AB MECA dissociation was increased, consistent with an action as a negative allosteric modulator of the hA3R. Moreover, by measuring intracellular cAMP levels, we demonstrate that 2-AG decreases both the potency of an agonist at the hA3R and the basal signalling of this receptor. Since the hA3R has been shown to be expressed in astrocytes and microglia, these findings may be particularly relevant in certain pathological states such as cerebral ischemia where levels of 2-AG and anandamide are raised.  相似文献   

6.
In guinea pig main pulmonary artery precontracted with noradrenaline, adenosine exerted an initial phasic contraction followed by a tonic contraction and a slow relaxation. After selective blockade by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX: 10 nM) of A1 receptors, adenosine only elicited a rapid relaxation. This initial response was characterized by use of adenosine (AR) and its analogues N6-cyclopentyl-adenosine (CPA), R-N6-phenyllsopropyladeno-sine (R-PIA), 2-chloroadenosine (CADO), 5-N-ethyl-carboxamidoadenosine(NECA), N6-2-(4-aminophenyl) ethyl adenosine (APNEA) and 2-p-((carboxyethyl)phenethylamino)-5-carboxamidoadenosine (CGS 21 680). The order of potency of the adenosine analogues for purine-induced phasic contraction was CPA > R-PIA > NECA = APNEA > AR > CGS 21 680 suggesting the involvement of activation of A1 type adenosine receptors in the contraction phase. DPCPX antagonized the CPA-induced contraction with a pA2 = 9.27 ± 0.26, but the Schild plot slope parameter was significantly lower than unity (0.58 ± 0.09). In contrast, in electrically driven guinea pig atrial myocardium (a tissue reported to possess A1 receptors), the DPCPX-CPA antagonism was purely competitive (pA2 = 8.95 ± 0.06; slope = 0.93 ± 0.06). In the presence of 300 nM DPCPX, the rank order of potency for the purine-induced fast relaxation was NECA > CADO = AR > CGS 21 680 = R-PIA > CPA. The NECA- and adenosine-induced relaxation was influenced neither by 300 nM CP 66 713 (an antagonist at A2a receptors), nor by endothelial removal and inhibition of nitric oxide synthase (100 M NG-nitro-L-arginine: L-NOARG). The adenosine-induced relaxation was antagonized by 8-phenyltheophylline (8-PT), a potent A1/A2 antagonist. However, the rapid relaxation elicited by adenosine in the presence of 8-PT, was reversed and contraction developed. It is concluded that adenosine causes contraction via dual action on A1 adenosine receptors and on xanthine-resistant sites. Our experiments with APNEA (a prototypic A3 receptor agonist) did not support the suggestion that A3 receptors are implicated in the xanthine-resistant component of adenosine-induced contraction, as DPCPX (300 nM) completely abolished and even reversed the APNEA-induced contraction. In addition, cromolyn (a mast cell stabilizing agent) did not influence the xanthine-resistant contraction induced by adenosine in the presence of DPCPX, 8-PT and dipyridamole (an adenosine uptake inhibitor). On the basis of the rank order of agonist potency, the receptors involved in the adenosine-induced rapid relaxation most likely is of the A2b subtype. The opposing action of the xanthine-resistant contraction, however, did not allow a definitive pharmacological characterization of the receptor mediating relaxation.  相似文献   

7.
Addiction is a brain chronic relapsing disorder associated with emotional distress. The serotonergic system and especially the 5-HT1A receptor crucially regulate emotional behaviors both in humans and rodents. Using [35S]GTPγS autoradiography in mice, we show that 5-HT1A receptor function is enhanced by chronic morphine treatment in the medial prefrontal cortex, and decreased in dorsal raphe nucleus one week later, two regions involved in emotional processing. These molecular adaptations could contribute to the development of emotional disorders experienced by former opiate addicts.  相似文献   

8.
The antagonism or genetic deletion of adenosine A2A receptors has been shown to exacerbate tissue damage in acute lung injury. Caffeine, a widely consumed behavioral drug, acts as a non-selective antagonist of A2A receptor and also has additional pharmacological effects. Thus, the protective vs. deleterious effects of caffeine in acute lung injury should be evaluated. In a murine oleic acid-induced model of acute lung injury, we found that chronic caffeine treatment by drinking water (0.1 g/l or 0.25 g/l for 2 weeks before acute lung injury) or acute caffeine treatment at high dose (i.p. 50 mg/kg, injection, 30 min before acute lung injury) significantly attenuated the lung edema, hemorrhage, neutrophil recruitment as well as the inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) expressions in both of the wild type (WT) and A2A receptor knockout (KO) mice. This profile was accompanied by increased cAMP levels and up-regulation of A2B receptor mRNAs in the lungs. In contrast, acute caffeine treatment at low dose (i.p. 5 mg/kg or 15 mg/kg, injection, 30 min before acute lung injury) enhanced the inflammation and lung damage in WT mice with decreasing cAMP but not in A2A receptor KO mice. These results indicate that caffeine either enhances lung damage by antagonizing A2A receptor or exerts protection against lung damage via A2A receptor-independent mechanisms, depending on the timing of exposure (chronic vs. acute) and dose of administration (low vs. high). These findings provide new insight of caffeine in acute lung injury and highlight the potential benefit and strategy of caffeine intake or administration for preventing acute lung injury.  相似文献   

9.
Modulation of glutamatergic neurotransmission by metabotropic glutamate2/3 (mGlu2/3) receptor agonists effectively treats seemingly diverse neuropsychiatric illness such as generalized anxiety disorder and schizophrenia. Activation of adenosine A1 heteroceptors, like mGlu2 autoreceptors, decreases glutamate release in the medial prefrontal cortex (mPFC) and other limbic brain regions. Previously, we have reported electrophysiological, neurochemical and behavioral evidence for interactions between the 5-hydroxytryptamine2A (5-HT2A) and mGlu2/3 receptors in the mPFC. The present studies were designed to investigate the effects in rats of adenosine A1 receptor activation/blockade on a behavior modulated by 5-HT2A receptor activation/blockade in the mPFC: head shakes induced in the rat by phenethylamine hallucinogens. An adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA) suppressed head shakes induced by activation of 5-HT2A receptors with the phenethylamine hallucinogen (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). An adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), enhanced DOI-induced head shakes and blocked the suppressant action of an adenosine A1 receptor agonist on DOI-induced head shakes. Thus, the pattern of activity for an agonist and antagonist at the adenosine A1 receptor with respect to modulating DOI-induced head shakes is similar to the pattern observed with mGlu2/3 receptor agonists and antagonists. These novel observations with an adenosine A1 receptor agonist suggest that this pharmacological action could contribute to antipsychotic effects in addition to thymoleptic effects.  相似文献   

10.
Murine macrophage-derived tumor necrosis factor alpha (TNF-α) gene expression has been shown to be dramatically induced by bacterial lipopolysaccharide, and to be dependent upon nuclear factor-κB (NF-κB) binding sites in its promoter for the lipopolysaccharide induction. Murine J774.1 macrophage cells were found to predominately express the adenosine A3 receptor RNA relative to adenosine A1 receptor or adenosine A2 receptor RNA. Adenosine receptor agonists, in a dose-dependent manner characteristic of the adenosine A3 receptor, blocked the endotoxin induction of the TNF-α gene and TNF-α protein expression in the J774.1 macrophage cell line. The adenosine A3 receptor antagonist BW-1433 dose-dependently reversed this adenosine inhibitory effect on TNF-α gene expression. Thus, the binding of adenosine receptor agonists to the adenosine A3 receptor interrupts the endotoxin CD14 receptor signal transduction pathway and blocks induction of cytokine TNF-α, revealing a novel cross-talk between the murine adenosine A3 receptor and the endotoxin CD14 receptor in J774.1 macrophages.  相似文献   

11.
The role of the adenosine A2A receptor in the hypnotic effects of ethanol was assessed in mice. The duration of the loss of righting reflex following acute ethanol administration was shorter for A2A receptor-deficient mice (A2AR KO) than for wild-type mice (A2AR WT), whereas the fall in body temperature was not different between the two phenotypes. In contrast, the duration of the loss of righting reflex was increased in A2AR KO mice versus controls after administration of pentobarbital. Dipyridamole, an inhibitor of adenosine uptake, increased the sleep time observed following administration of ethanol in CD1 mice and in A2AR WT but not in A2AR KO mice. SCH 58261, a selective A2A receptor antagonist, unlike DPCPX, a selective A1 receptor antagonist, shortened the duration of the loss of righting reflex induced by ethanol, thus mimicking the lack of receptor in deficient mice. Finally, the non-selective adenosine receptor antagonist caffeine (25 mg/kg) reduced ethanol-induced hypnotic effects. These results indicate that the activation of A2A receptors that follows an increase in extracellular adenosine levels caused by the administration of high doses of ethanol plays a role in its hypnotic effects. Thus, A2A receptor antagonists may be useful therapeutic agents for alleviating ethylic coma.  相似文献   

12.
G protein-coupled A2B adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A2BAR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A2BAR. In cAMP accumulation assays, both 5′-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5′-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A2BAR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A2BAR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative ‘operational model’ characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N6-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A2BAR antagonist in MIN-6 mouse pancreatic β cells expressing low A2BAR levels, induced insulin release. This is the first relatively systematic study of structure–efficacy relationships of this emerging drug target.  相似文献   

13.
Rationale There is no consensus on the contribution of adenosine A1 and A2A receptor blockade to motor-activating effects of caffeine.Objective Our aim was to use a detailed and continuous observational method to compare the motor effects induced by caffeine with those induced by selective A1 and A2A receptor antagonists.Methods The behavioral repertoire induced by systemic administration of caffeine (3, 10, and 30 mg/kg), A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.2, 4.8 and 7.2 mg/kg), and A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3; 1, 3, and 10 mg/kg) was analyzed. The effects of pretreatment with the selective A1 receptor agonist N 6-cyclopentyladenosine (CPA; 0.1 mg/g) and the selective A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxyamidoadenosine (CGS 21680; 0.2 mg/kg) on the pattern of motor activation induced by caffeine, CPT, or MSX-3 were also examined.Results The pattern of behavioral activation induced by caffeine was better mimicked by CPT than by MSX-3. Coadministration of CPT and MSX-3 gave different results depending on the dose and the type of behavioral response. CPA was more effective at decreasing the activating effects of caffeine and CPT than those of CGS 21680. On the other hand, CGS 21680 was more effective at decreasing the activating effects of MSX-3 than those of caffeine or CPT. Factor analysis revealed a complex three-dimensional behavioral profile for caffeine that was similar to the profile for CPT and was different from the profile for MSX-3.Conclusions The results indicate a predominant role for A1 receptors in the motor-activating effects of acutely administered caffeine.  相似文献   

14.
Involvement of the amygdala in the memory-enhancing effects of clenbuterol   总被引:1,自引:0,他引:1  
CGS 15943A is the first reported nonxanthine adenosine antagonist and it shows high affinity towards A1 and A2 receptors. The present data show that CGS 15943A increased in a dose-dependent manner locomotor activity of mice confronted with a free exploratory test without markedly modifying rears or, at low or medium doses, novelty seeking responses. In the light/dark choice procedure, which is especially appropriate for revealing anxiolytic and anxiogenic drug-effects, CGS 15943A decreased the time spent by mice in the lit box and increased the number of transitions. By contrast, the highly selective adenosine A1 receptor, DPCPX, did not significantly modify the behavior of mice except at high doses, which decreased it in the free exploratory test. It is suggested that the present findings confirm the hypothesis that the behavioral effects of adenosine antagonists are linked to their actions at adenosine A2 receptors.  相似文献   

15.
  1. The effects of adenosine receptor agonists upon phenylephrine-stimulated contractility and [3H]-cyclic adenosine monophosphate ([3H]-cyclic AMP) accumulation in the cauda epididymis of the guinea-pig were investigated. The α1-adrenoceptor agonist, phenylephrine elicited concentration dependent contractile responses from preparations of epididymis. In the absence or presence of the L-type Ca2+ channel blocker, nifedipine (10 μM) the non-selective adenosine receptor agonist, 5′-N-ethylcarboxamido-adenosine (NECA, 1 μM) shifted phenylephrine concentration-response curves to the left (4 and 5 fold respectively). Following the incubation of preparations with pertussis toxin (200 ng ml−1 24 h) NECA shifted phenylephrine concentration-response curves to the right (5.7±0.9 fold).
  2. In the presence of phenylephrine (1 μM), NECA and the A1 adenosine receptor selective agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) elicited concentration-responses dependent contractions from preparations of epididymis (pEC50 values 8.18±0.19, 7.79±0.29 and 8.15±0.43 respectively). The A3 adenosine receptor agonists N6-iodobenzyl-5′-N-methyl-carboxamido adenosine (IBMECA) and N6-2-(4-aminophenyl) ethyladenosine (APNEA) mimicked this effect (but only at concentrations greater than 10 μM). In the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 30 nM) CPA concentration-response curves were shifted, in parallel to the right (apparent pKB 8.75±0.88) and the maximal response to NECA was reduced.
  3. In the presence of DPCPX (100 nM) the adenosine agonist NECA and the A2A adenosine receptor selective agonist, CGS 21680 (2-p-(2-carboxyethyl)-phenethylamino-N-ethylcarboxamido adenosine), but not CPA, inhibited phenylephrine (20 μM) stimulated contractions (pIC50 7.15±0.48). This effect of NECA was blocked by xanthine amine congener (XAC, 1 μM) and the A2A adenosine receptor-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM).
  4. (S)-ENBA (in the absence and presence of ZM 241385, 100 nM), but not NECA or CPA inhibited the forskolin (30 μM)-stimulated accumulation of [3H]-cyclic AMP in preparations of the epididymis of the guinea-pig (by 17±6% of control). In the presence of DPCPX (100 nM) NECA and CGS 21680, but not (S)-ENBA, increased the accumulation of [3H]-cyclic AMP in preparations of epididymis (pEC50 values 5.35±0.35 and 6.42±0.40 respectively), the NECA-induced elevation of [3H]-cyclic AMP was antagonised by XAC (apparent pKB 6.88±0.88) and also by the A2A adenosine receptor antagonist, ZM 241385 (apparent pKB 8.60± 0.76).
  5. These studies are consistent with the action of stable adenosine analogues at post-junctional A1 and A2 adenosine receptors in the epididymis of the guinea-pig. A1 Adenosine receptors potentiate α1-adrenoceptor contractility, an effect blocked by pertussis toxin, but which may not be dependent upon an inhibition of adenylyl cyclase. The epididymis of the guinea-pig also contains A2 adenosine receptors, possibly of the A2A subtype, which both inhibit contractility and also stimulate adenylyl cyclase.
  相似文献   

16.
The adenosine receptor agonist 2-[p-(2-carboxyethyl)phenylethylamino]-5-N-ethylcarboxamidoadenosine (CGS 21680) is generally considered to be a selective adenosine A2A receptor ligand. However, the compound has previously been shown to exhibit binding characteristics that are not compatible with adenosine A2A receptor binding, at least in brain regions other than the striatum. We have examined binding of [3H]CGS 21680 and of antagonist radioligands with high selectivity for adenosine A1 or A2A receptors to hippocampus and striatum of mice lacking either adenosine A1 (A1R(–/–)) or A2A (A2AR(–/–)) receptors. Both receptor autoradiography and membrane binding techniques were used for this purpose and gave similar results. There were no significant changes in the binding of the A1 receptor antagonist [3H]DPCPX in mice lacking A2A receptors, or in the binding of the A2A receptor antagonists [3H]SCH 58261 and [3H]ZM 241385 in mice lacking A1 receptors. Furthermore, [3H]CGS 21680 binding in striatum was abolished in the A2AR(–/–), and essentially unaffected in striatum from mice lacking A1 receptors. In hippocampus, however, binding of [3H]CGS 21680 remained in the A2AR(–/–), whereas binding was virtually abolished in the A1R(–/–). There were no adaptive alterations in A2A receptor expression in this region in A1R(–/–) mice. Thus, most of the [3H]CGS 21680 binding in hippocampus is dependent on the presence of adenosine A1 receptors, but not on A2A receptors, indicating a novel binding site or novel binding mode.  相似文献   

17.
Cardiotoxicity associated with doxorubicin (DOX) treatment limits the therapeutic efficiency of this drug against cancer. 2-Chloro-N(6)-(3-iodobenzyl)adenosine-5′-N-methyluronamide (Cl-IB-MECA), a selective agonist of A3 adenosine receptor (A3R), reduces DOX toxicity in newborn rat cultured cardiomyocytes. The study's aim was to determine whether the protection demonstrated by Cl-IB-MECA attenuates cardiac depression in vivo. In addition, we wished to examine whether this protective pathway affects the sarcoplasmic reticulum (SR) calcium uptake and release, as well as intramitochondrial Ca2+ accumulation induced by DOX.Rats were injected every alternate day (6 times) with (1) saline, (2) 2.5 mg/kg i.p. DOX, (3) 33 μg/kg i.v. Cl-IB-MECA, (4) DOX + Cl-IB-MECA. Left ventricular functions were assessed by invasive (pressure) and non-invasive (echocardiography) techniques at the end of the injection period and 4 weeks later. Cytosolic and intramitochondrial calcium levels were measured with indo-1 and rhod-2 probes. SR Ca2+ content was determined by exposing cultured rat cardiomyocytes to caffeine.Echocardiography data demonstrate left ventricular wall thinning (23%), an increase in the end systolic dimension (170%) and decreased fractional shortening (35 ± 5% vs. 54 ± 5%, p < 0.01) in DOX-treated animals, compared to the control group. DOX increased Ca2+ levels in the cytosol and in mitochondria by diminishing the SR Ca2+ uptake. Pretreatment with Cl-IB-MECA attenuated left ventricular dysfunction, improved SR calcium storage capacity and prevented mitochondrial Ca2+ overload.We conclude that the adenosine A3 receptor agonist is effective in vivo against DOX cardiotoxicity via the restoration of Ca2+ homeostasis and prevention of mitochondrial damage that occurs as a result of Ca2+ overload.  相似文献   

18.
Summary We investigated the negative chronotropic and vasodilating properties of new selective A1 and A2 adenosine agonists such as 2-chloro-N6-cyclopentyladenosine (CCPA) and 2-hexynyl-5-N-ethyl-carboxamidoadenosine (2-hexynyl-NECA) as compared with reference adenosine analogues. The potency of these compounds on heart rate was assessed in the rat atrial preparation and their activity on the vascular tone was determined in both rat aorta and bovine coronary artery. CCPA was found to be the most potent At agonist of those currently available in producing negative chronotropic effects (EC50 = 8.2 nM). The A1 antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX) blocked CCPA activity in a dose-dependent manner. There was also a significant correlation between its biological effect and the affinity for A1 receptors as measured in the rat brain by [3H]-N6-cyclohexyladenosine (3[H]-CHA) binding. The A2 selective agonist 2-hexynyl-NECA showed vasodilating properties comparable with those observed with the reference compounds, CGS 21680 and NECA. EC50 values were 596 and 569 nM in rat aorta and bovine coronary artery, respectively. Moreover, the rank order of potency was similar in the two vascular districts examined, suggesting that the rat aorta is a useful model for studying the effects of adenosine derivatives on vascular tone. In addition, the potency of the compounds in inducing vasodilation was found to be correlated with their affinity for A2 receptors as measured in the rat striatum by 3[H]-CGS 21680 binding.These data further support that A1 receptors are involved in depressing cardiac activity and A2 receptors in inducing vasorelaxation.Correspondence to A. Conti at the above address  相似文献   

19.
Ischemic stroke is a complex systemic disease characterized by high morbidity, disability, and mortality. The activation of the presynaptic adenosine A2A and A1 receptors modifies a variety of brain insults from excitotoxicity to stroke. Therefore, the discovery of dual A2A/A1 adenosine receptor (AR)-targeting therapeutic compounds could be a strategy for the treatment of ischemic stroke. Inspired by two clinical phase III drugs, ASP-5854 (dual A2A/A1 AR antagonist) and preladenant (selective A2A AR antagonist), and using the hybrid medicinal strategy, we characterized novel pyridone-substituted triazolopyrimidine scaffolds as dual A2A/A1 AR antagonists. Among them, compound 1a exerted excellent A2A/A1 AR binding affinity (Ki = 5.58/24.2 nM), an antagonistic effect (IC50 = 5.72/25.9 nM), and good metabolic stability in human liver microsomes, rat liver microsomes, and dog liver microsomes. Importantly, compound 1a demonstrated a dose–effect relationship in the oxygen-glucose deprivation/reperfusion (OGD/R)-treated HT22 cell model. These findings support the development of dual A2A/A1 AR antagonists as a potential treatment for ischemic stroke.  相似文献   

20.
The cerebral cortex receives a dense serotonergic innervation originating predominantly from the dorsal raphe nucleus. This innervation regulates cortical functioning by activating multiple serotonin receptors that are differentially expressed by pyramidal cells and interneurons. Electrophysiological studies in the prefrontal cortex indicate that receptors of the 5-HT1A and 5-HT2A subtypes are the main serotonin receptors regulating membrane excitability in pyramidal cells. Most pyramidal cells in layer V coexpress 5-HT1A and 5-HT2A receptors that together regulate how these neurons encode excitatory input into neuronal firing. In contrast, a subset of large pyramidal cells of deep layer V appears to express exclusively 5-HT2A receptors that depolarize and excite these cells. Serotonin also depolarizes and excites at least two classes of GABAergic interneurons by acting on 5-HT3 and 5-HT2A receptors. The differential expression of serotonin receptors in different pyramidal cells and interneurons is consistent with a growing appreciation of the anatomical, molecular and functional heterogeneity of pyramidal cells and interneurons of the cerebral cortex. These findings begin to lay the ground for a cellular-level understanding of the serotonergic regulation of the prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号