首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的探讨氯沙坦对自发性高血压大鼠(SHR)心室肌细胞编码瞬间外向钾电流(Ito)、延迟整流性钾电流(Ik)、内向整流钾电流(Ik1)关键钾通道α和β亚基[Ito(Kv4.2、KChIP2)、IK(ERG、KvLQT1)、IK1(Kir2.1)]mRNA和蛋白水平的变化,研究氯沙坦抗室性心律失常效应的分子基础。方法SHR随机分成2组:对照组(n=12)和氯沙坦组[10mg/(kg.d),n=12,灌胃]。年龄、体质量匹配的WKY(n=12)作为对照。用药8周后采用膜片钳技术记录离体心脏、酶分解所得左室心肌细胞动作电位、Ito、Ik1、Ik,并采用逆转录聚合酶链反应(RT-PCR)及免疫印迹(Westernblot)方法测定Kv4.2、KChIP2、ERG、KvLQT1、Kir2.1的mRNA及蛋白水平。结果氯沙坦组心肌动作电位50%及90%复极化时程[(16.8±3.8)、(68.5±13.2)ms]短于对照组[(24.6±4.6)、(73.3±15.5)ms,均P<0.01]。氯沙坦组的Ito电流密度(从+40到+70mV)高于对照组(P<0.01)。氯沙坦组Kv4.2、Kir2.1mRNA及蛋白水平高于对照...  相似文献   

2.
目的探讨糖尿病对大鼠心室肌细胞动作电位(AP)和瞬时外向钾电流(Ito)的影响。方法通过链脲佐菌素诱导糖尿病大鼠模型,双酶法急性分离出对照组和糖尿病组心室肌细胞,全细胞膜片钳技术分别观察心肌细胞AP和Ito电流密度变化以及Ito动力学改变。结果与对照组比较,糖尿病组心肌细胞AP形态明显增宽,AP复极20%、50%和90%的时程均明显延长(64.3±7.5 ms vs 29.7±9.2 ms;174.3±6.8 ms vs 98.9±4.2 ms;276.7±8.3 ms vs 173.7±7.2 ms,P均<0.01,n=12);在钳制电位为+50mV时,与对照组比较,糖尿病组心肌细胞Ito的电流密度显著降低(11.51±1.37 pA/pF vs 17.43±1.98 pA/pF,P<0.05,n=12);与对照组比较,糖尿病组心肌细胞Ito的I-V曲线明显下移;失活曲线显著左移(P<0.01,n=12);失活恢复曲线明显减慢。结论糖尿病引起了心肌细胞AP时程延长,Ito幅度降低,并使Ito的失活加快以及失活后恢复减慢。  相似文献   

3.
目的:探讨自发性高血压大鼠(SHR)心肌细胞L型钙电流(ICa-L)和L型钙通道a1C亚基(CaL.α1C)信使核糖核酸(mRNA)及蛋白的变化,并观察氯沙坦对这些变化的影响以期评估氯沙坦的抗心律失常作用及其分子机制.方法:将SHR按随机数字表法分成以下三组(每组n=10):氯沙坦组、依那普利组和安慰剂组,另选同龄Wistar大鼠作为空白对照(对照组,n=10).8周后采用膜片钳技术记录左心室心肌ICa-L,并采用逆转录-聚合酶链反应及蛋白质印迹方法测定CaL-α1C的mRNA及蛋白水平.结果:氯沙坦组左心室细胞的50%动作电位持续时间、90%动作电位持续时间比安慰剂组、依那普利组缩短(P均<0.01).氯沙坦组的ICa-L峰值及电流密度比安慰剂组及依那普利组降低(P均<0.05).氯沙坦组ICa-L的τ值比安慰剂组及依那普利组升高(P均<0.01).氯沙坦组的CaL-α1C mRNA及蛋白表达水平比安慰剂组及依那普利组降低(P均<0.05).上述比较差异均有统计学意义.结论:氯沙坦能缩短单个心肌细胞动作电位时程,延迟L型钙通道失活再激活的恢复时间,通过下调CaL-α1CmRNA及其蛋白水平而发挥作用.  相似文献   

4.
目的 心房颤动(房颤)是最为常见的快速性心律失常之一.钾通道相关蛋白2(K+channel interacting protein 2,KChIP2)是心肌细胞瞬时外向钾通道的重要辅助亚单位,在,Ito发挥正常功能中起着重要的作用.报告采用实时荧光定量聚合酶链反应(PCR)技术通过对房颤时KChIP2和Kv4.3基因mRNA水平进行定量研究,探讨KChIP2在房颤中的作用和对于瞬时外向钾通道的可能调控机制.方法 (1)30例风湿性心脏病患者分为两组:窦性心律组(窦律组)13例,持续性房颤组(房颤组)17例,取其常规切除的右心耳组织作为研究对象;(2)提取心房肌组织总RNA,通过RT-PCR和TA克隆技术构建含有目的 基因片段的质粒标准品;(3)以GAPDH为内参照基因,采用SYBR Green I法实时荧光定量PCR技术检测持续性房颤和窦律患者KChIP2和Kv4.3基因mRNA水平.结果 (1)标准曲线和熔解曲线:标准曲线线性关系良好,相关系数R2>0.99.熔解曲线呈明显单峰状,退火温度与预测值基本一致;(2)窦律组和房颤组KChIP2/GAPDH比值分别为0.2200±0.0388、0.1468±0.0452,房颤组KChIP2基因mRNA水平低于窦律组,P<0.01;窦律组和房颤组Kv4.3/GAPDH比值分别为0.5257±0.1427、0.3946±0.1826,房颤组Kv4.3基因mRNA水平低于窦律组,P<0.05.结论 与窦律患者相比,房颤患者KChIP2基因和Kv4.3基因明显下调,KChIP2和Kv4.3基因下调是房颤时Ito电流下调的分子基础.  相似文献   

5.
目的 研究糖尿病对大鼠心室肌细胞瞬间外向钾流(Ito)的影响及其分子机制,探讨糖尿病引起的心脏损害与心律失常的关系.方法 取体质量150~200 g的雄性Sprague-Dawley大鼠,单次腹腔注射链脲菌素(STZ,65 mg/kg,pH=4.5)建立糖尿病大鼠模型,采用酶解法获得单个心室肌细胞,应用膜片钳全细胞方法记录Ito;并用反转录聚合酶链式反应技术进一步半定量编码该电流通道α亚单位基因(Kv4.2、Kv4.3和Kv1.4)mR-NA的表达水平.结果 与对照组比较, 70 mV时,糖尿病大鼠心室肌细胞Ito密度显著降低[对照组:(30.6±3.8)比糖尿病组:(18.9±3.3)pA/pF,P<0.01);半定量分析法显示糖尿病大鼠心室肌细胞Ito通道α亚单位编码基因Kv4.2、Kv4.3 mRNA表达水平分别下调56.9%和46.6%;而Kv1.4 mRNA表达则上调约48.0%,3组基因表达水平的改变差异均有统计学意义(P<0.05).结论 糖尿病大鼠心室肌细胞Ito密度显著降低主要与编码该通道α亚单位的基因表达下调有关.  相似文献   

6.
目的 观察兔慢性心力衰竭(CHF)心房肌细胞复极离子通道电流的变化及孔道蛋白mRNA的改变,探讨心力衰竭房性心律失常的可能机制.方法 使用结扎左室支建市兔心衰模型;用全细胞膜片钳记录兔心房肌细胞L钙通道电流(ICa-L)、瞬时外向钾电流(Ito)的变化;用定量PCR方法测定兔心房肌细胞L型钙通道α1、Kv4.3、钠钙交换蛋白的mRNA表达.结果 心衰组和假手术组兔心房肌细胞ICa-L峰电流密度分别为(-4.79±0.80)pA/pF和(-7.19±1.82)pA/pF(P<0.01),其α1 mRNA表达分别为1.10±0.27(×10-1)和1.73+0.33(×10'-1>)(P<0.01).心衰组与假手术组心房肌细胞的Lto峰电流密度分别为(15.60±1.60)pA/pF和(28.70±2.71)pA/pF(P<0.01),其Kv4.3 mRNA分别为3.13±0.36(×10)和6.30±0.61(×10)(P<0.01);心衰组与假手术组心房肌细胞钠钙交换蛋白mRNA的含最分别为2.76±0.60(×10)和1.02±0.14(×10)(P<0.01).结论 兔慢性心力衰竭心房肌细胞ICa-L、Ito电流密度下调,孔道亚单位α1、Kv4.3 mRNA表达减少可能是其机制之一,同时钠钙交换蛋白mRNA的含量增加,可能是导致房性心律失常的原因.  相似文献   

7.
目的为探讨心力衰竭(简称心衰)兔左室短暂外向钾电流(Ito)下调的分子基础。方法采用结扎家兔冠状动脉左前降支的方法制备缺血性心衰模型。应用膜片钳全细胞记录方法记录左室心肌细胞Ito,描记电流-电压(I-V)曲线;应用半定量-聚合酶链式反应(RT-PCR)法检测电压依赖性Kv1.4和Kv4.3钾通道α亚单位mRNA表达,并以图象分析系统对其进行半定量分析。结果心衰组家兔左室心肌细胞Ito密度较对照组显著降低,I-V曲线明显下移;指令电压为+70mV时,心衰组Ito密度(9.73±0.94pA/pF,n=5)显著低于对照组(14.35±1.16pA/pF,n=4)(P<0.01)。Kv1.4和Kv4.3钾通道α亚单位mRNA表达心衰组(分别为0.66±0.05,0.21±0.02,n=5)也较对照组(分别为0.95±0.07,0.531±0.04,n=5)显著降低(P均<0.01)。结论心衰家兔左室Ito电流密度下调可能受转录水平调节。  相似文献   

8.
目的 探讨厄贝沙坦对自发性高血压大鼠(SHR)心肌组织Janus激酶-信号转导蛋白和转录激活蛋白(JAK-STAT)信号转导通路及细胞凋亡的影响. 方法 30周龄WKY大鼠13只,设为WKY对照组;30周龄SHR 26只,随机分为SHR对照组和厄贝沙坦组.反转录-聚合酶链反应(RT-PCR)法检测血管紧张素Ⅱ1型(AT1)与2型(AT2)受体mRNA在心肌中的表达,免疫组化法检测心肌组织STAT1、STAT3表达,TUNEL细胞凋亡显色法进行细胞凋亡检测. 结果 (1)厄贝沙坦组与SHR对照组比较,AT1 mRNA表达水平显著降低(0.72±0.55对1.08±0.13,P<0.01),AT2 mRNA表达水平显著增高(0.30±0.32对0.25±0.35,P<0.01);(2)与SHR对照组比较,厄贝沙坦能降低STAT1表达(7.27±0.53对13.16±0.35,P<0.01),升高STAT3表达(5.41±0.37对4.82±0.34,P<0.01);(3)厄贝沙坦组心肌细胞凋亡率显著低于SHR对照组(P<0.01). 结论厄贝沙坦能调节心肌组织JAK-STAT信号转导通路,抑制细胞凋亡,从而发挥其心脏保护作用.  相似文献   

9.
目的研究在高血压背景下大电导钙激活钾(BK)通道的功能改变及其机制。方法用酶解消化方法分离12~16周龄自发性高血压大鼠(SHR)和WKY大鼠冠状动脉平滑肌细胞(CASMCS),采用膜片钳全细胞模式记录SHR和WKY大鼠CASMCSBK电流,SHR和WKY大鼠BKα亚基和β1亚基mRNA水平用实时定量取聚合酶链式反应和凝胶电泳测定,蛋白水平表达用免疫组化的方法测定。结果 SHR大鼠CASMCS(n=6)BK电流密度比WKY(n=7)高2.03±0.62(P0.01);在mRNA水平,BKβ1亚基表达SHR组明显高于WKY组5.534±1.03倍(n=4,P0.05),BKα亚基表达则无明显差异(1.266±0.12,n=4,P0.05);BKβ1亚基和α亚基的表达SHR大鼠高于WKY大鼠。结论 SHR大鼠CASMCSBK电流密度比WKY大鼠增大,在mRNA和蛋白水平上BKβ1亚基表达也比WKY大鼠增强,这种变化可能是机体在高血压时自我调节的结果 。  相似文献   

10.
目的:探究牵张刺激对乳大鼠心房肌细胞瞬时外向钾电流(Ito)和动作电位时程(APD)的影响。方法:1d龄SD乳鼠,采用胰酶消化法分离获得心房肌细胞。于细胞牵引装置培养24h分组:对照组:不予牵张刺激;牵张组:牵张增加12%硅胶膜面积24h。采用膜片钳全细胞记录方法记录两组细胞膜Ito和APD的变化。结果:在+20~+60mV刺激电压水平,牵张组Ito电流密度与对照组相比明显降低[(1.6±0.4)pA/pF∶(12.1±2.9)pA/pF,P0.01,n=9];牵张组动作电位复极50%(APD50)、复极90%(APD90)均明显缩短[(10.5±1.4)ms∶(15.5±2.4)ms,(30.0±2.8)ms∶(56.3±3.6)ms;均P0.01,n=9]。结论:牵张刺激可降低乳鼠心房肌细胞Ito电流密度,缩短APD,这可能是压力负荷增大致心房电重构的基础之一。  相似文献   

11.
OBJECTIVE: A reduction of the Ca(2+)-independent transient outward potassium current (I(to)) in epicardial but not in endocardial myocytes of the left ventricle has been observed in cardiac hypertrophy and is thought to contribute to the electrical vulnerability associated with this pathology. METHODS: In the present study we investigated the molecular mechanisms underlying regional alterations in I(to) in hypertrophied hearts of spontaneously hypertensive rats (SHR) using the whole-cell patch-clamp technique, quantitative RT-PCR and heterologous expression of underlying ion channel subunits. RESULTS: I(to) was significantly smaller in epicardial myocytes of SHR than in Wistar-Kyoto (WKY) controls (11.1+/-0.9 pA/pF, n=20 vs. 16.8+/-1.7 pA/pF, n=20, p<0.01), but not different in endocardial myocytes from both groups. Quantitative RT-PCR analysis of the genes encoding I(to) revealed significantly lower levels of Kv4.2 and Kv4.3 mRNA in the epicardial region of SHR rats compared to WKY rats. In contrast, mRNA expression levels of all three splice variants of the beta-subunit KChIP2 were significantly higher in both endo- and epicardial myocytes from SHR than from WKY rats. In parallel, inactivation of I(to), which is negatively modulated by KChIP2, was slowed down in SHR while recovery from inactivation remained unchanged. Heterologous co-expression of increasing amounts of KChIP2b together with a fixed amount of Kv4.2 in Xenopus laevis oocytes revealed a hyperbolic relation of recovery from inactivation and inactivation time constant, demonstrating that KChIP2 preferentially affects inactivation, if its expression level is high. CONCLUSION: These results suggest that downregulation of I(to) in the left ventricle of SHR is mediated by a reduced expression of Kv4.2 and Kv4.3 (but not of KChIP2), whereas the slower inactivation of I(to) can be explained by increased expression levels of KChIP2 in SHR.  相似文献   

12.
目的研究c-JNK信号通路在糖尿病(DM)大鼠左室心肌细胞电压门控钾通道(Kv)重构中的作用和内在调控机制。方法将50只健康SD大鼠随机分为DM组[n=25,采用链尿佐菌素(STZ)诱导成模]和对照组(sham)(n=25)。应用全细胞膜片钳方法记录DM组与sham组大鼠心室肌瞬时外向钾电流(Ito);使用非放射性JNK激酶分析kit进行c-Jun活性测定。应用JNK抑制剂SP600125(10M)对DM大鼠心肌细胞进行体外孵育,观察孵育前后心肌细胞Ito的变化。用硫氧还蛋白还原酶(TrxR)抑制剂金诺芬(AF)对经JNK抑制剂SP600125孵育的大鼠心肌细胞进行处理,观察处理前后心肌细胞Ito的变化。应用抗Kv4.2抗体对Kv4.2的含量进行检测,检测结果使用UVP生物成像系统进行分析。结果DM组心肌JNK活性显著升高超过1倍,而Ito显著降低[Sham组:(31.2±3.4)pA/pF,n=16;DM组:(15.4±3.1)pA/pF,n=17;P<0.05]。DM大鼠心室肌细胞经JNK抑制剂SP600125(10 M)处理4 h后,Ito电流密度可恢复至Sham组水平[DM+SP600125组:(31.9±3.8)pA/pF,n=18;Sham组:(31.2±3.4)pA/pF,n=16;P<0.05];且sham组经SP600125处理后的最大Ito电流强度[(29.8±3.4)pA/pF,n=9]和未经处理的sham组无统计学差异。DM心肌经膜渗透性蛋白抑制剂JNKI-1(10 M)处理后,Ito密度也有显著增加,而sham组经相同处理后无改变。TrxR抑制剂AF显著抑制了SP600125对DM大鼠心肌Ito电流的增大作用[DM+AF+SP600125:(15.5±3.2)pA/pF,n=17],而AF对sham组Ito无明显影响。JNK抑制剂SP600125治疗后DM大鼠心肌的Kv4.2蛋白表达量显著增大,尽管未完全恢复到sham组心肌水平,但与先前在DM大鼠心肌所观察到的Ito电流改变一致。而JNK抑制并没有明显改变sham组心肌的Kv4.2蛋白表达量。结论DM大鼠心肌钾通道重构是氧化还原敏感的,可能通过持续性激活c-JNK信号通路促进Ito重构。在DM心肌中,JNK活性显著增高,Kv通道的电流密度降低;抑制JNK信号通路后可显著改善Kv通道重构,这一过程可能被硫氧还原蛋白系统所调控。  相似文献   

13.
Hypertrophied myocardium is associated with reductions in the transient outward K(+) current (Ito) and expression of pore-forming Kv4.2/4.3 and auxiliary KChIP2 subunits. Here we show that KChIP2 mRNA and protein levels are dramatically decreased to 10% to 30% of control levels in the left ventricle of aorta-constricted rats in vivo and phenylephrine (PE)-treated myocytes in vitro. PE also markedly decreases Ito density. Inhibition of protein kinase Cs (PKCs) does not affect the PE-induced reduction in KChIP2 mRNA level, whereas activation of PKC with phorbol ester (phorbol myristate [PMA]) causes a marked reduction in KChIP2 mRNA level. Pharmacological inhibition of MEKs or overexpression of a dominant-negative MEK1 increases the basal KChIP2 mRNA expression and blocks the PMA-induced decrease in auxiliary subunit mRNA level. In addition, a constitutively active MEK1 decreases the basal KChIP2 mRNA level, and PMA causes no further reduction in auxiliary subunit mRNA level in active MEK1-expressing cells. Furthermore, pharmacological inhibition of JNKs or overexpression of a dominant-negative JNK1 prevents the PE-induced, but not PMA-induced, reduction in KChIP2 mRNA expression. These results suggest that downregulation of KChIP2 expression significantly contributes to the hypertrophy-associated reduction in Ito density. They also indicate that the expression of KChIP2 mRNA is controlled by the 2 branches of mitogen-activated protein kinase pathways: JNKs play a predominant role in mediating the PE-induced reduction, whereas the MEK-ERK pathway influences the basal expression and mediates the PKC-mediated downregulation.  相似文献   

14.
目的研究哇巴因对大鼠心肌重构的作用。方法雄性Sprague-Dawly(SD)大鼠22只随机分为哇巴因组(n=12)及对照组(n=10),经腹腔注射哇巴因[20μg/(kg·d)]和生理盐水[1mL/(kg·d)]8周构建动物模型。第6周,根据收缩压情况,将哇巴因组分为哇巴因敏感鼠(收缩压升高,n=10)和哇巴因抵抗鼠(收缩压没有明显升高,n=2)。电镜下观察3组心肌的超微结构变化,同时实时定量PCR检测其电压门控性K+通道4.2(Kv4.2)表达水平的变化;通过膜片钳方法研究哇巴因对大鼠心室肌细胞动作电位及瞬间外向钾电流(Ito)的影响。结果从第6周起,与对照组比较,10只哇巴因敏感鼠收缩压明显升高[(138.2±8.0)比(120.1±5.2)mmHg,P<0.01];2只哇巴因抵抗鼠收缩压无明显变化[(126.7±11.4)比(125.4±6.9)mmHg,P>0.05]。哇巴因敏感鼠电镜观察其左心室心尖部中层心肌组织可见线粒体肿胀等超微结构改变。哇巴因抵抗鼠心肌细胞超微结构较对照组差异无统计学意义。RT-PCR提示3组大鼠心肌Kv4.2表达差异无统计学意义。膜片钳结果提示哇巴因敏感鼠心室肌细胞动作电位时程延长,Ito密度下调,引起心肌电重构。结论哇巴因引起大鼠血压升高的同时引起心肌结构重构及电重构。  相似文献   

15.
Kv4 channels are differentially expressed across the mouse left ventricular free wall. Accordingly, the transient outward K+ current (Ito), which is produced by Kv4 channels, is greater in left ventricular epicardial (EPI) than in endocardial (ENDO) cells. However, the mechanisms underlying heterogeneous Kv4 expression in the heart are unclear. Here, we tested the hypothesis that differential [Ca2+]i and calcineurin/NFATc3 signaling in EPI and ENDO cells contributes to the gradient of Ito function in the mouse left ventricle. In support of this hypothesis, we found that [Ca2+]i, calcineurin, and NFAT activity were greater in ENDO than in EPI myocytes. However, the amplitude of Ito was the same in ENDO and EPI cells when [Ca2+]i, calcineurin, and NFAT activity were equalized. Consistent with this, we observed complete loss of Ito and Kv4 heterogeneity in NFATc3-null mice. Interestingly, Kv4.3, Kv4.2, and KChIP2 genes had different apparent thresholds for NFATc3-dependent suppression and were ordered as Kv4.3 approximately KChIP2>Kv4.2. Based on these data, we conclude that calcineurin and NFATc3 constitute a Ca(2+)-driven signaling module that contributes to the nonuniform distribution of Kv4 expression, and hence Ito function, in the mouse left ventricle.  相似文献   

16.
Biophysical and genetic evidence suggests that Kv4-KChIP2 heteromeric ion channels are the molecular correlate of the dominating fast component of the cardiac transient outward K+ current (Itof). Since Itof is one of the essential currents contributing to the shape of the cardiac action potential in the rat, ferret, dog, and human heart, an important implication of this concept is that all ventricular cardiac myocytes from these species express members of the Kv4 and the KChIP2 gene family. To test this prediction, we developed a modified protocol for the collection and subsequent multiplex single-cell RT-PCR amplification of RNA from individual cardiomyocytes isolated from defined regions of the rat left ventricle. All cardiomyocytes investigated (n=61) were positive for alpha-MHC and Kv4.2 expression. KChIP2 mRNA could also be detected in the vast majority (approximately 87%) of cardiomyocytes. Nearly all of these myocytes co-expressed all three cardiac splice variants of KChIP2. In a small but distinct fraction of myocytes (13%), however, we failed to detect KChIP2 mRNA. The detection thresholds were similar for all target genes and approached a sensitivity of a few molecules of RNA per cell. Our findings support the hypothesis that Itof is mediated by Kv4-KChIP2 heteromeric ion channels in the great majority of cardiac myocytes. A small subpopulation of cardiomyocytes, however, appears to express KChIP2 mRNA at insignificant levels and may therefore use other accessory subunits to generate Itof.  相似文献   

17.
The Ca(2+)-independent, voltage-gated transient outward current (I(to)) displays a marked increase during development of cardiomyocytes. However, the molecular mechanism remained unclear. In rat adult ventricular myocytes, I(to) can be divided into a fast (I(to,f)) and a slow (I(to,s)) component by recovery process from inactivation. Voltage-gated K(+) channel-interacting proteins 2 (KChIP2) has recently been shown to modify membrane expressions and current densities of I(to,f). Here we examined the developmental change of I(to) and the putative molecular correlates of I(to,f) (Kv4.2 and Kv4.3) and KChIP2 in rat ventricular myocytes. Even in rat embryonic day 12 (E12) myocytes, we detected I(to). However, I(to) in E12 was solely composed of I(to,s). In postnatal day 10 (P10), we recorded much increased I(to) composed of two components (I(to,f) and I(to,s)), and I(to,f) was dominant. Thus, the developmental increase of I(to) from E12 to P10 can be explained by the dramatic appearance of I(to,f). Real-time RT-PCR revealed that Kv4.2 and Kv4.3 mRNA levels were slightly changed. By contrast, KChIP2 mRNA level increased from E12 to P10 by 731-fold. Therefore, the huge increase of KChIP2 expression was likely to be the cause of the great increase of I(to,f). In order to confirm that KChIP2 is crucial to induce I(to,f), we used adenoviral gene transfer technique. When KChIP2 was over-expressed in E12 myocytes, a great amplitude of I(to,f) appeared. Immunocytochemical experiments also demonstrated that KChIP2 enhanced the trafficking of Kv4.2 channels to cell surface. These results indicate that KChIP2 plays an important role in the generation of functional I(to,f) channels during development.  相似文献   

18.
目的:通过研究自发性高血压大鼠(SHR)外周血淋巴细胞电压依赖性钾通道1.3(Kv1.3)mRNA表达的变化,为SHR淋巴细胞激活提供证据。方法:使用密度离心法采集10只SHR和10只正常Wistar大鼠外周血淋巴细胞,运用实时荧光定量聚合酶链式反应(PCR)技术检测外周血淋巴细胞Kv1.3 mRNA表达水平。结果:(1)与对照组相比,SHR组Kv1.3 mRNA表达水平明显升高[(0.0023±0.0005)Kv1.3/β-actin mRNA∶(0.013±0.017)Kv1.3/β-actin mRNA,P0.05];(2)SHR收缩压和淋巴细胞Kv1.3 mRNA表达呈正相关(r=0.830,P=0.003)。结论:SHR淋巴细胞Kv1.3 mRNA表达增高,提示钾通道可能在高血压病淋巴细胞激活中起着重要的调控作用,推测淋巴细胞钾通道增多可能与高血压的发生、发展密切相关。  相似文献   

19.
The transient outward potassium current (Ito) in cardiac myocytes is mainly mediated by members of the Kv4 subfamily of voltage-gated potassium channels. Several in vitro studies have shown that angiotensin II (Ang II), which plays an important role in the development of cardiac hypertrophy, rapidly downregulates Kv4.3 mRNA expression. However, it is not clear whether Ang II regulates Itoin vivo and whether this regulation may depend on alterations in Kv4.3 gene expression. To address this question, we determined the effects of acute (24 h) and chronic (14 days) exogenous infusions of Ang II on Ito and the expression of its channel subunits in the mouse left ventricle. Ang II rapidly increased blood pressure and reduced Kv4.2 but not Kv4.3 mRNA levels in the absence of cardiac hypertrophy. In response to chronically elevated Ang II levels cardiac hypertrophy developed, which was associated with a downregulation of Kv4.2 and Kv4.3 mRNA levels, and an upregulation of Kv1.4 mRNA levels. In contrast, neither KChIP2 mRNA levels nor amplitude or macroscopic inactivation kinetics of Ito were affected by the acute or chronic Ang II treatments. Consistent with the unchanged Ito amplitude, Kv4.2, Kv4.3, and KChIP protein expression levels were similar after chronic Ang II and sham treatment. Our findings demonstrate that elevations of Ang II concentrations that induce hypertension and cardiac hypertrophy do not alter the amplitude of Ito in the mouse left ventricle. Furthermore, they suggest that functional expression of cardiac Ito in mice is stabilized by KChIP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号