首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Background: Results of a Scandinavian genome scan in type 1 diabetes mellitus (T1D) have recently been reported. Among the novel, not previously reported chromosomal regions showing linkage to T1D was a region on chromosome 21.

Objective: To fine map this region on chromosome 21.

Methods and results: The linked region was initially narrowed by linkage analysis typing microsatellite markers. Linkage was significantly increased, with a peak NPL score of 3.61 (p = 0.0002), suggesting the presence of one or several T1D linked genes in the region. The support interval for linkage of 6.3 Mb was then studied by linkage disequilibrium (LD) mapping with gene based single nucleotide polymorphisms (SNPs). Thirty two candidate genes were identified in this narrowed region, and LD mapping was carried out with SNPs in coding regions (cSNPs) of all these genes. However, none of the SNPs showed association to T1D in the complete material, whereas some evidence for association to T1D of variants of the TTC3, OLIG2, KCNE1, and CBR1 genes was observed in conditioned analyses. The disease related LD was further assessed by a haplotype based association study, in which several haplotypes showed distorted transmission to diabetic offspring, substantiating a possible T1D association of the region.

Conclusions: Although a single gene variant responsible for the observed linkage could not be identified, there was evidence for several combinations of markers, and for association of markers in conditioned analyses, supporting the existence of T1D susceptibility genes in the region.

  相似文献   

2.
BACKGROUND: Genome-wide linkage scans to identify asthma susceptibility loci have revealed many linked regions, including a broad region on chromosome 5p. OBJECTIVE: To identify a 5p-linked asthma or bronchial hyperresponsiveness (BHR) locus. METHODS: We performed fine mapping and positional candidate studies of this region in the Hutterites and an outbred case-control sample from Germany by genotyping 89 single nucleotide polymorphisms (SNPs) in 22 genes. SNP and haplotype analyses were performed. RESULTS: Three genes in a distal region (zinc finger RNA binding protein [ZFR], natriuretic peptide receptor C, and a disintegrin and metalloproteinase domain with thrombospondin type 1 motif [ADAMTS12]) were associated with BHR, whereas 4 genes in a proximal region (prolactin receptor, IL-7 receptor [IL7R], leukemia inhibitory factor receptor [LIFR], and prostaglandin E4 receptor [PTGER4]) were associated with asthma symptoms in the Hutterites. Furthermore, nearly the entire original linkage signal in the Hutterites was generated by individuals who had the risk-associated alleles in ZFR3, natriuretic peptide receptor C, ADAMTS12, LIFR, and PTGER4. Variation in ADAMTS12, IL7R, and PTGER4 were also associated with asthma in the outbred Germans, and the frequencies of long-range haplotypes composed of SNPs at ZFR, ADAMTS12, IL7R, LIFR, and PTGER4 were significantly different between both the German and Hutterite cases and controls. There is little linkage disequilbrium between alleles in these 2 regions in either population. CONCLUSION: These results suggest that a broad region on 5p, separated by >9 Mb, harbors at least 2 and possibly 5 asthma or BHR susceptibility loci. These findings are consistent with the hypothesis that regions providing evidence for linkage in multiple populations may, in fact, house more than 1 susceptibility locus, as appears to be the case for the linked region on 5p. CLINICAL IMPLICATIONS: Identifying asthma or BHR genes could lead to novel therapeutic approaches.  相似文献   

3.
Advances in the search for psoriasis susceptibility genes   总被引:5,自引:0,他引:5  
Psoriasis (PS) is a common skin disorder affecting approximately 2% of the Caucasian population. Despite the established influence of several environmental factors, epidemiological data and twin studies have long demonstrated a genetic basis for psoriasis susceptibility. Moreover an association between PS and HLA-Cw6 has been reported in different ethnic groups. In recent years, the availability of statistical methods for complex disease linkage analysis has prompted many researchers to carry out genome-wide scans. Their results have been conflicting and linkage replication has seldom been documented. However, a few chromosome regions have been confirmed in independent studies. In particular, compelling evidence supports the existence of a susceptibility locus within the HLA region. Moreover, loci on chromosomes 17q and 1q have been reported in at least two independent genome scans. Several groups have undertaken the refinement of regions identified during genome scans, using linkage disequilibrium data. This approach has allowed the fine mapping of the 6p21 locus, now restricted to a 60-kb genomic segment. As critical regions get smaller, candidate gene analysis becomes an attractive approach. So far, three genes have been extensively investigated: S100A7 on chromosome 1q and CDSN and HCR on chromosome 6p21. Even though several SNPs have been identified within these genes, none of them seems to meet the requirement needed to prove an involvement in PS pathogenesis. These criteria include association replication in different populations and functional studies of SNP biological significance. Thus, only a collaborative and multidisciplinary approach will allow the identification of PS susceptibility genes.  相似文献   

4.
We have validated the association of two genes on chromosome 20q13.31-33 with tuberculosis susceptibility. A previous genome-wide linkage study performed by Cooke et al identified the genes melanocortin-3-receptor (MC3R) and cathepsin Z (CTSZ) as possible candidates in tuberculosis susceptibility. MC3R has been implicated in obesity studies and is known to play a role in many biological systems including the regulation of energy homeostasis and fat metabolism. CTSZ has been detected in immune cells, such as macrophages and monocytes, and it is hypothesized that the protein may play a role in the immune response. In our South African population a case-control study confirmed the previously reported association with a single-nucleotide polymorphism (SNP) in CTSZ and found an association in MC3R with a SNP not previously implicated in tuberculosis susceptibility. Six SNPs in MC3R and eight in CTSZ were genotyped and haplotypes were inferred. SNP rs6127698 in the promoter region of MC3R (cases = 498; controls = 506) and rs34069356 in the 3'UTR of CTSZ (cases = 396; controls = 298) both showed significant association with tuberculosis susceptibility (P = 0.0004 and < 0.0001, respectively), indicating that pathways involving these proteins, not previously researched in this disease, could yield novel therapies for tuberculosis.  相似文献   

5.
We previously identified bipolar disorder (BD) susceptibility loci on 8q24, 14q32, and 2q12‐14 in a genome‐wide nonparametric linkage screen in a Latino cohort. We now perform a fine mapping analysis using a dense map of additional SNPs to identify BD susceptibility genes within these regions. One thousand nine hundred and thirty‐eight individuals with Latino ancestry (880 individuals with BD Type I or Schizoaffective, Bipolar Type) from 416 Latino pedigrees from the United States, Mexico, Costa Rica, and Guatemala were genotyped with 3,074 SNPs to provide dense coverage of the 8q24 (11.5 cM), 14q32 (7.5 cM), and 2q12‐14 (6.5 cM) chromosomal loci. Single‐marker association tests in the presence of linkage were performed using the LAMP software. The top linkage peak (rs7834818; LOD = 5.08, p = 3.30E ? 5) and associated single marker (rs2280915, p = 2.70E ? 12) were located within FBXO32 on 8q24. On chromosome 2, the top linkage peak (rs6750326; LOD = 5.06, p = 3.50E ? 5) and associated single marker (rs11887088, p = 2.90E ? 6) were located in intragenic regions near ACTR3 and DPP10. None of the additional markers in the region around chromosome 14q32 met significance levels for linkage or association. We identified six SNPs on 2q12‐q14 and one SNP in FBXO32 on 8q24 that were significantly associated with BD in this Latino cohort.  相似文献   

6.
Pre-eclampsia/eclampsia (PE/E) is a common, serious medical disorder of human pregnancy. Familial association of PE/E has been recognized for decades, but the genetics are complex and poorly understood. In an attempt to identify PE/E susceptibility genes, we embarked on a positional cloning strategy using 34 Australian and New Zealand PE/E pedigrees. An initial 10-cM resolution genome scan revealed a putative susceptibility locus spanning a broad region on chromosome 2 that overlaps an independently determined linkage signal seen in Icelandic PE pedigrees. Subsequent fine mapping using 25 additional short tandem repeat (STR) markers in this region and non-parametric multipoint linkage analysis did not change the overall position. Under a strict diagnosis of PE, we obtained significant evidence of linkage on 2q with a peak log-of-odds ratio score (LOD) of 3.43 near marker D2S151 at 155 cM. To prioritize positional candidate genes at the 2q locus for detailed analysis, we applied an objective prioritization strategy that integrates quantitative bioinformatics, assessment of differential gene expression and association analysis of single-nucleotide polymorphisms (SNPs). Highest priority was assigned to the activin receptor gene ACVR2. This gene also showed >10-fold differential gene expression in human decidual tissue from normotensive and PE individuals. We genotyped five known SNPs in this gene in our pedigrees and performed tests for association and linkage disequilibrium. One SNP (rs1424954) showed strong preliminary evidence of association with PE (P = 0.007), whereas two others (rs1364658 and rs1895694) exhibited nominal evidence (P < 0.05). Haplotype analysis revealed no additional association information. There was evidence of weak linkage disequilibrium among these SNPs. The highest observed LD occurred between the two strongest associated SNPs, suggesting that the observed signals may be the signature of an observed functional variant.  相似文献   

7.
《Mucosal immunology》2008,1(2):131-138
Association mapping and candidate gene studies within inflammatory bowel diseases (IBD) linkage regions, as well as genome-wide association studies in Crohn's disease (CD) have led to the discovery of multiple risk genes, but these explain only a fraction of the genetic susceptibility observed in IBD. We have thus been pursuing a region on chromosome 3p21–22 showing linkage to CD and ulcerative colitis (UC) using a gene-centric association mapping approach. We identified 12 functional candidate genes by searching for literature cocitations with relevant keywords and for gene expression patterns consistent with immune/intestinal function. We then performed an association study composed of a screening phase, where tagging single nucleotide polymorphisms (SNPs) were evaluated in 1,020 IBD patients, and an independent replication phase in 745 IBD patients. These analyses identified and replicated significant association with IBD for four SNPs within a 1.2 Mb linkage disequilibrium region. We then identified a non-synonymous coding variant (rs3197999, R689C) in the macrophage-stimulating 1 (MST1) gene (P-value 3.62 × 10–6) that accounts for the association signal, and shows association with both CD and UC. MST1 encodes macrophage-stimulating protein (MSP), a protein regulating the innate immune responses to bacterial ligands. R689C is predicted to interfere with MSP binding to its receptor, suggesting a role for this gene in the pathogenesis of IBD.  相似文献   

8.
BACKGROUND: Several genome scans have reported linkage of markers on chromosome 7p with asthma and related phenotypes in different populations. A fine mapping in Finnish and French-Canadian populations has associated the GPR154 gene (also known as G-protein-coupled receptor for asthma susceptibility, GPRA) with elevated IgE or asthma. OBJECTIVE: To confirm chromosome 7p linkage and candidate gene association in Italian families with atopic asthma. METHODS: In a two-phase approach, we first performed a linkage analysis of chromosome 7, and then a family-based association study on the GPR154 gene for allergic asthma phenotypes in the Italian population. RESULTS: The screening of 117 families with 19 microsatellite markers showed potential linkage for elevated IgE (P<0.002 at 22 cM from p-ter), asthma (P<0.005 at 44 cM), or atopy (P<0.005 at 54 cM). In the second phase of the present study, candidate gene GPR154, which is located in the phase one-linked region, was investigated in 211 families with seven single nucleotide polymorphisms (SNPs) that tag most haplotype variability, by the pedigree disequilibrium test. Elevated IgE levels were associated with two GPR154 gene SNPs (SNP 546333, P=0.0046; rs740 347, P=0.006), and with haplotypes in the global test (P=0.013). Haplotype analysis performed in nuclear families having at least 1 asthmatic parent showed a significant association with asthma (P=0.0173), atopy (P=0.0058), SPT (P=0.0025), and bronchial hyper reactivity (P=0.0163). CONCLUSION: These results support a susceptibility locus for asthma and related phenotypes on chromosome 7, and are in agreement with recent reports suggesting that a common susceptibility factor for atopic manifestations in asthma is likely conferred by the locus containing the GPR154 gene.  相似文献   

9.
10.
Genome-wide linkage and association studies have uncovered variants associated with sarcoidosis, a multiorgan granulomatous inflammatory disease. African ancestry may influence disease pathogenesis, as African-Americans are more commonly affected by sarcoidosis. Therefore, we conducted the first sarcoidosis genome-wide ancestry scan using a map of 1384 highly ancestry-informative single-nucleotide polymorphisms genotyped on 1357 sarcoidosis cases and 703 unaffected controls self-identified as African-American. The most significant ancestry association was at marker rs11966463 on chromosome 6p22.3 (ancestry association risk ratio (aRR)=1.90; P=0.0002). When we restricted the analysis to biopsy-confirmed cases, the aRR for this marker increased to 2.01; P=0.00007. Among the eight other markers that demonstrated suggestive ancestry associations with sarcoidosis were rs1462906 on chromosome 8p12, which had the most significant association with European ancestry (aRR=0.65; P=0.002), and markers on chromosomes 5p13 (aRR=1.46; P=0.005) and 5q31 (aRR=0.67; P=0.005), which correspond to regions we previously identified through sib-pair linkage analyses. Overall, the most significant ancestry association for Scadding stage IV cases was to marker rs7919137 on chromosome 10p11.22 (aRR=0.27; P=2 × 10(-5)), a region not associated with disease susceptibility. In summary, through admixture mapping of sarcoidosis we have confirmed previous genetic linkages and identified several novel putative candidate loci for sarcoidosis.  相似文献   

11.
The objective of this research was to develop a procedure to identify candidate genes under linkage peaks confirmed in a follow-up of candidate regions of interests (CRIs) identified in our original genome scan in the NIMH Alzheimer's diseases (AD) Initiative families (Blacker et al. [1]). There were six CRIs identified that met the threshold of multipoint lod score (MLS) of >or= 2.0 from the original scan. The most significant peak (MLS = 7.7) was at 19q13, which was attributed to APOE. The remaining CRIs with 'suggestive' evidence for linkage were identified at 9q22, 6q27, 14q22, 11q25, and 3p26. We have followed up and narrowed the 9q22 CRI signal using simple tandem repeat (STR) markers (Perry et al. [2]). In this confirmatory project, we have followed up the 6q27, 14q22, 11q25, and 3p26 CRIs with a total of 24 additional flanking STRs, reducing the mean interval marker distance (MID) in each CRI, and substantially increase in the information content (IC). The linkage signals at 6q27, 14q22 and 11q25 remain 'suggestive', indicating that these CRIs are promising and worthy of detailed fine mapping and assessment of candidate genes associated with AD. We have developed a bioinformatics approach for identifying candidate genes in these confirmed regions based on the Gene Ontology terms that are annotated and enriched among the systematic meta-analyzed genes, confirmed by at least three case-control samples, and cataloged in the "AlzGene database" as potential Alzheimer disease susceptibility genes (http://www.alzgene.org).  相似文献   

12.
Crohn disease (CD) is a chronic relapsing inflammatory condition of the gastrointestinal tract. Recently, polymorphisms in NOD2 (CARD15), a gene mapping to the chromosome 16 IBD1 susceptibility locus, have been associated with susceptibility to CD. One group identified the gene by using classic positional cloning methods. Here, we report linkage and fine mapping analyses using 27 microsatellite markers encompassing the IBD1 susceptibility locus in 131 CD affected sibling pairs, and a simplex family cohort. No evidence for linkage was observed, and microsatellite markers close to NOD2 did not show association. However, significant association was confirmed in 294 CD trios for the NOD2 variants Arg702Trp and Leu1007fsinsC. Our fine mapping study of the IBD1 locus did not enable us to identify NOD2 as a CD gene, despite the presence of association with disease-causing alleles. This study illustrates the difficulties facing microsatellite linkage and linkage disequilibrium mapping methods for identifying disease genes in complex traits.  相似文献   

13.
Genomewide scans of bipolar disorder (BP) have not produced consistent linkage findings. Follow‐up studies using enlarged samples and enhanced marker density can bolster or refute claims of linkage and pave the way to gene discovery. We conducted linkage and association analyses, using a ~3‐cM density map of 10 candidate regions, in a large BP pedigree sample (865 individuals from 56 pedigrees). The candidate regions were identified in a previous 10‐cM genome‐wide scan using a subset of this sample (373 individuals from 40 pedigrees). The present sample consists of the expanded original pedigrees (“core” pedigrees) and 16 additional pedigrees. We obtained experiment‐wide significant linkage on chromosome 7q34 (LOD score 3.53, P < 0.001), substantially stronger than that observed in the genome‐wide scan. Support for linkage was sustained on chromosomes 2p13, 4q31, 8q13, 13q32, 14q21, and 17q11, though at a more modest level. Family‐based association analysis was consistent with the linkage results at all regions with linkage evidence, except 4q an 8q, but the results fell short of statistical significance. Three of the previously implicated regions—9q31, 10q21 and 10q24—showed substantial reduction in evidence of linkage. Our results strongly support 7q34 as a region harboring susceptibility locus for BP. Somewhat lesser, yet notable support was obtained for 2p13, 4q31, 8q13, 13q32, 14q21, and 17q11. These regions could be considered prime candidates for future gene finding efforts. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Background:  Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. Identification of genetic risk factors for asthma has been complicated due to genetic heterogeneity and influence from environmental risk factors. Despite the fact that multiple genetic linkage studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample.
Methods:  We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22.3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families.
Results:  Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5q15-q23.2 and 6p24.3-p22.3.
Conclusions:  The replication results provide evidence for chromosome Xp21 to harbour a susceptibility gene for asthma in the Danish population. To our knowledge, the study is the first to replicate evidence for linkage to chromosome X. A susceptibility gene for asthma on chromosome X could potentially explain observed gender differences in asthma prevalence.  相似文献   

15.
BACKGROUND AND METHODS: Numerous genetic studies have mapped asthma susceptibility genes to a region on chromosome 5q31-33 in several populations. This region contains a cluster of cytokines and other immune-related genes important in immune response. In the present study, to determine the genetic variations and patterns of linkage disequilibrium (LD), we resequenced all the exons and promoter regions of the 29 asthma candidate genes in the chromosome 5q31-33 region. RESULTS: We identified a total of 314 genetic variants, including 289 single nucleotide polymorphisms (SNPs), 22 insertion/deletion polymorphisms and 3 microsatellites. Standardized variance data for allele frequency revealed substantial differences in SNP allele frequencies among different ethnic groups. Interestingly, significant ethnic differences were observed mainly in intron SNPs. LD block analysis using 174 common SNPs with a frequency of >10% disclosed strong LD within most candidate genes. No significant LD was observed across genes, except for one LD block (CD14-IK block). Gene-based haplotype analyses showed that 1-5 haplotype-tagging SNPs may be used to define the six or fewer common haplotypes with a frequency of >5%, regardless of the number of SNPs. CONCLUSION: Overall, our results provide useful information for the identification of immune-mediated disease genes in the chromosome 5q31-33 region, as well as valuable evidence for gene-based haplotype analysis in disease association studies.  相似文献   

16.
Linkage analysis of candidate regions for coeliac disease genes   总被引:5,自引:0,他引:5  
A strong HLA association is seen in coeliac disease [specifically to the DQ(alpha1*0501,beta1*0201 heterodimer], but this cannot entirely account for the increased risk seen in relatives of affected cases. One or more genes at HLA-unlinked loci also predispose to coeliac disease and are probably stronger determinants of disease susceptibility than HLA. A recent study has proposed a number of candidate regions on chromosomes 6p23 (distinct from HLA), 6p12, 3q27, 5q33.3, 7q31.3, 11p11, 15q26, 19p13.3, 19q13.1, 19q13.4 and 22cen for the location of a non-HLA linked susceptibility gene. We have examined these regions in 28 coeliac disease families by linkage analysis. There was excess sharing of chromosome 6p markers, but no support for a predisposition locus telomeric to HLA. No significant evidence in favour of linkage to coeliac disease was obtained for chromosomes 3q27, 5q33.3, 7q31.3, 11p11, 19p13.3, 19q13.1, 19q13.4 or 22cen. There was, however, excess sharing close to D15S642. The maximum non-parametric linkage score was 1.99 (P = 0.03). Although the evidence for linkage of coeliac disease to chromosome 15q26 is not strong, the well established association between coeliac disease and insulin dependent diabetes mellitus, together with the mapping of an IDDM susceptibility locus (IDDM3) to chromosome 15q26, provide indirect support for this as a candidate locus conferring susceptibility to coeliac disease in some families.   相似文献   

17.
Tuberculosis (TB) is a serious infectious disease that kills approximately two million people per year, particularly in low‐ and middle‐income countries. Numerous genetic epidemiology studies have been conducted of many ethnic groups worldwide and have highlighted the critical impact of the genetic environment on TB distribution. Many candidate genes associated with resistance or susceptibility to TB have been identified. In Morocco, where TB is still a major public health problem, various observations of clinical, microbiological and incidence distribution are heavily affected by genetic background and external environment. Morocco has almost the same clinical profile as do other North African countries, mainly the increase in more extrapulmonary than pulmonary forms of the diseases, when compared to European, Asian or American populations. In addition, a linkage analysis study that examined Moroccan TB patients identified a unique chromosome region that had a strong association with the risk of contracting TB. Other genes in the Moroccan population that were found to be associated seem to be involved predominantly in modulating the innate immunity. In this review, we appraise the major candidate genes that have been reported in Moroccan immunogenetic studies and discuss their updated role in TB, particularly during the first phase of the immune response to Mycobacterium tuberculosis (Mtb) infection.  相似文献   

18.
Current topics in human SLE genetics   总被引:2,自引:0,他引:2  
Susceptibility to systemic lupus erythematosus (SLE) depends on genetic and environmental factors. Genome scan studies have identified eight chromosomal regions with significant linkage to SLE that are confirmed by individual cohorts, suggesting that susceptibility genes may be identified within each of these loci. Linkage studies and single nucleotide polymorphisms (SNPs) have led to the identification of positional candidate genes, and their functional allelic variants have demonstrated molecular pathogenesis of the disease. The discovery of positional candidate genes that are associated with various autoimmune diseases signifies a common pathway in the mechanism of these diseases. Copy polymorphisms in susceptibility genes provide evidence in how genetic plasticity affects complex phenotypes as seen in SLE.  相似文献   

19.
Tuberculosis (TB) is the second commonest cause of death from infectious disease after HIV/AIDS worldwide. Association studies have revealed that host genetic factors, such as human leukocyte antigen and solute carrier family 11 member A1 (NRAMP1), play roles in susceptibility to TB. To identify host genetic factors involved in the susceptibility to TB in Japanese, we performed a gene-based association analysis of 21 candidate genes on 87 TB patients and 265 controls using marker single nucleotide polymorphisms (SNPs). For the genes with two or more marker SNPs exhibiting significant allele association, we subsequently analysed the association between adjacent coding SNPs (cSNPs) and TB. Among a total of 118 marker SNPs, 3 of IL1B and 2 of IL12RB1 showed association with TB. Non-synomymous cSNPs were not identified in IL1B. Association studies on four non-synomymous cSNPs of IL12RB1 (641A/G, 1094T/C, 1132C/G, 1573G/A) in linkage disequilibrium showed that three of them (641A/G, 1094T/C, 1132C/G) were significantly associated with the development of TB. Haplotype analysis on the four cSNPs demonstrated that frequency of ATGG haplotype was significantly lower in TB patients than in controls. When TB patients were divided into two subgroups according to the severity of lung disease, advanced subgroup showed a prominent association with 641A/G, 1094T/C and 1132C/G SNPs. These data suggested that genetic variants of IL12RB1, at least in part, confer genetic susceptibility to TB, and are associated with the progression of the disease, in Japanese.  相似文献   

20.
In the past decade, we and others have consistently reported linkage to a schizophrenia (SZ) susceptibility region on chromosome 8p21. Most recently, in the largest SZ linkage sample to date, a multi‐site international collaboration performed a SNP‐based linkage scan (~6,000 SNPs; 831 pedigrees; 121 from Johns Hopkins (JHU)), that showed the strongest evidence for linkage in a 1 Mb region of chr 8p21 from rs1561817 to rs9797 (Zmax = 3.22, P = 0.0004) [Holmans et al. 2009. Mol Psychiatry]. We have investigated this 8p21 peak region further in two ways: first by linkage and family‐based association in 106 8p‐linked European‐Caucasian (EUC) JHU pedigrees using 1,402 SNPs across a 4.4 Mb region surrounding the peak; second, by an independent case‐control association study in the genetically more homogeneous Ashkenazim (AJ) (709 cases, 1,547 controls) using 970 SNPs in a further narrowed 2.8 Mb region. Family‐based association analyses in EUC pedigrees and case‐control analyses in AJ samples reveal significant associations for SNPs in and around DPYSL2 and ADRA1A, candidate genes previously associated with SZ in our work and others. Further, several independent gene expression studies have shown that DPYSL2 is differentially expressed in SZ brains [Beasley et al. 2006. Proteomics 6(11):3414–3425; Edgar et al. 2000. Mol Psychiatry 5(1):85–90; Johnston‐Wilson et al. 2000. Mol Psychiatry 5(2):142–149] or in response to psychosis‐inducing pharmaceuticals [Iwazaki et al. 2007. Proteomics 7(7):1131–1139; Paulson et al. 2004. Proteomics 4(3):819–825]. Taken together, this work further supports DPYSL2 and the surrounding genomic region as a susceptibility locus for SZ. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号