首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular sodium concentration ([Na+]i) and resting potential (Em) of cultured mouse glomus cells (clustered and isolated) were simultaneously measured with intracellular Na+-sensitive and conventional, KCl-filled, microelectrodes. Results obtained in clustered and isolated cells were similar. During normoxia (PO2 122 Torr), [Na+]i was 12–13 mM corresponding to a Na+ equilibrium potential (ENa) of about 58 mV. Em was about −42 mV. Hypoxia, induced by Na2S2O4 1 mM (PO2 10 Torr), depolarized the cells by about 20 mV, [Na+]i increased by 21 mM and ENa dropped to about 35 mV. One millimolar of CoCl2 depressed, or blocked, the effects of Na2S2O4 on [Na+]i but did not affect hypoxic depolarization. Voltage-clamping at −70 mV, while delivering pulses of different amplitudes, produced only small (about 10 pA) and slow TTX-insensitive inward currents. Fast and large (TTX-sensitive) inward currents were not detected. The cell conductance (measured with voltage ramps) was less than 1 nS. It was not affected by hypoxia but was depressed by cobalt. Voltage ramps elicited small inward currents in control and hypoxic solutions that were much smaller than those induced by barium (presumably enhancing calcium currents). Also, normoxic and hypoxic currents had lower thresholds and their troughs were at more negative voltages than in the presence of Ba2+. All currents were blocked by 1 mM CoCl2 suggesting that, at this concentration, cobalt exerted a nonspecific effect on glomus membrane channels. Hypoxia induced a large [Na+]i increase (presumably through inflow), but very small voltage-gated inward currents. Thus, Na+ increases (inflow) probably occurred by disturbing a Na+/K+ exchange mechanism and not by activation of voltage-gated channels.  相似文献   

2.
A depolarization-induced, slowly decaying inward current was examined in slice-cultured CA3 pyramidal cells by voltage-clamp techniques and microfluorometric measurements of cytosolic free Ca2+ concentration ([Ca2+]i). Action potentials elicited by intracellular injection of short-lasting (50 – 100 ms) depolarizing current pulses were followed by a slowly decaying afterhyperpolarization (AHP). After switching to voltage-clamp mode, short-lasting (50 – 100 ms) depolarizing voltage jumps from –60 mV to between –30 and 0 mV induced a slowly decaying outward aftercurrent (IAHP) which was depressed by bath application of muscarine (0.5 μM). In the presence of muscarine, the same depolarizations induced a slowly decaying afterdepolarization (ADP) or inward aftercurrent (IADP)in voltage-clamp mode. This current was also induced in the presence of trans(±)-1-aminc-1,3-cyclopenta-nedicarboxylic acid (t-ACPD, 5 μM), an agonist of metabotropic glutamate receptors, but not in the presence of noradrenalin (5 μM), while both of these agonists depressed IAHP. IADP was depressed by reducing the external Ca2+ concentration from 3.8 to 0.5 mM, by external Co2+ (1 mM) and by external Cd2+ (10 – 100 μM). Combined voltage-clamp recordings and microfluorometric measurements of [Ca2+]i using the Ca2+ indicator fura-2 revealed that the amplitude of IADP was correlated with the amplitude of depolarization-induced Ca2+ influx, IADP was absent at membrane potentials < –90 mV, and reached maximal amplitudes at ~–55 mV. Raising the extracellular K+ concentration from 2.7 to 13.5 mM increased the amplitude of IADP and resulted in a positively directed shift of the apparent reversal potential of IADP. When the external Na+ concentration was reduced from 157 to 33 or 18 mM the current reversed at more negative potentials and was reduced to 40 and 21%, respectively, of control amplitude. Lowering the external Cl- concentration from 159 to 20 mM did not affect IADP. We conclude that IADP most likely represents a Ca2+-activated cation current, rather than a Ca2+ tail current, or an electrogenic Ca2+ extrusion current.  相似文献   

3.
We investigated the effects of oxygen (O2)/glucose deprivation on intracellular sodium concentration ([Na+]i) of cortical pyramidal cells in a slice preparation of rat frontal cortex. Intracellular recordings were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Deprivation of O2/glucose caused an initial membrane hyperpolarization that was followed by a slowly developing large depolarization. Levels of [Na+]i started to increase significantly during the phase of membrane hyperpolarization. Neither tetrodotoxin, a combination of ionotropic and metabotropic glutamate receptor antagonists (d -amino-phosphonovalerate, 6-cyano-7-nitroquinoxaline-2,3-dione plus S-methyl-4-carboxyphenylglycine) nor bepridil, an inhibitor of the Na+/Ca2+-exchanger, affected these responses to O2/glucose. The present results demonstrate that, in cortical neurons, O2/glucose deprivation induces an early rise in [Na+]i which cannot be ascribed to the activity of voltage gated Na+-channels, glutamate receptors or of the Na+/Ca2+-exchanger.  相似文献   

4.
Gap junctions between glial cells allow intercellular exchange of ions and small molecules. We have investigated the influence of gap junction coupling on regulation of intracellular Na+ concentration ([Na+]i) in cultured rat hippocampal astrocytes, using fluorescence ratio imaging with the Na+ indicator dye SBFI (sodium-binding benzofuran isophthalate). The [Na+]i in neighboring astrocytes was very similar (12.0 ± 3.3 mM) and did not fluctuate under resting conditions. During uncoupling of gap junctions with octanol (0.5 mM), baseline [Na+]i was unaltered in 24%, increased in 54%, and decreased in 22% of cells. Qualitatively similar results were obtained with two other uncoupling agents, heptanol and α-glycyrrhetinic acid (AGA). Octanol did not alter the recovery from intracellular Na+ load induced by removal of extracellular K+, indicating that octanol's effects on baseline [Na+]i were not due to inhibition of Na+, K+-ATPase activity. Under control conditions, increasing [K+]o from 3 to 8 mM caused similar decreases in [Na+]i in groups of astrocytes, presumably by stimulating Na+, K+-ATPase. During octanol application, [K+]o-induced [Na+]i decreases were amplified in cells with increased baseline [Na+]i, and reduced in cells with decreased baseline [Na+]i. This suggests that baseline [Na+]i in astrocytes “sets” the responsiveness of Na+, K+-ATPase to increases in [K+]o. Our results indicate that individual hippocampal astrocytes in culture rapidly develop different levels of baseline [Na+]i when they are isolated from one another by uncoupling agents. In astrocytes, therefore, an apparent function of coupling is the intercellular exchange of Na+ ions to equalize baseline [Na+]i, which serves to coordinate physiological responses that depend on the intracellular concentration of this ion. GLIA 20:299–307, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Arachidonic acid (AA) is a free fatty acid membrane‐permeable second messenger that is liberated from cell membranes via receptor‐ and Ca2+‐dependent events. We have shown previously that extremely low [AA]i (1 pm ) inhibits the postsynaptic voltage‐gated K+ current (IA) in hippocampal neurons. This inhibition is blocked by some antioxidants. The somatodendritic IA is mediated by Kv4.2 gene products, whereas presynaptic IA is mediated by Kv1.4 channel subunits. To address the interaction of AA with these α‐subunits we studied the modulation of A‐currents in human embryonic kidney 293 cells transfected with either Kv1.4 or Kv4.2 rat cDNA, using whole‐cell voltage‐clamp recording. For both currents 1 pm [AA]i inhibited the conductance by > 50%. In addition, AA shifted the voltage dependence of inactivation by ?9 (Kv1.4) and +6 mV (Kv4.2), respectively. Intracellular co‐application of Trolox C (10 μm ), an antioxidant vitamin E derivative, only slowed the effects of AA on amplitude. Notably, Trolox C shifted the voltage dependence of activation of Kv1.4‐mediated IA by ?32 mV. Extracellular Trolox for > 15 min inhibited the AA effects on IA amplitudes as well as the effect of intracellular Trolox on the voltage dependence of activation of Kv1.4‐mediated IA. Extracellular Trolox further shifted the voltage dependence of activation for Kv4.2 by +33 mV. In conclusion, the inhibition of maximal amplitude of Kv4.2 channels by AA can explain the inhibition of somatodendritic IA in hippocampal neurons, whereas the negative shift in the voltage dependence of inactivation apparently depends on other neuronal channel subunits. Both AA and Trolox potently modulate Kv1.4 and Kv4.2 channel α‐subunits, thereby presumably tuning presynaptic transmitter release and postsynaptic somatodendritic excitability in synaptic transmission and plasticity.  相似文献   

6.
Equimolar replacement of Na+ in medium with choline chloride or sucrose and experimental manipulations known to increase [Na+]i, such as ouabain addition and K+ deprivation from medium, caused a marked increase in in vitro DOPA synthesis in the median eminence of rat hypothalamic slices in a Ca2+-dependent manner. These results suggest that a Na+−Ca2+ exchange mechanism is closely involved in the regulation of dopamine biosynthesis in tuberoinfundibular neurons.  相似文献   

7.
Voltage-gated Na+ currents (INa) were analysed with the whole-cell patch-clamp technique in human neuroblastoma NB69 cells plated in serum-free “defined” medium (DM) or in “astroglial-conditioned” medium (CM). Cells survived in both media and expressed the microtubule associated protein 1A, indicating neuron-like differentiation. Two INa types with different time-, voltage-dependent properties and tetrodotoxin (TTX) sensitivities were expressed in DM and CM. The INa in DM-plated cells was present from day 4 and its surface density increased from 11 pA/pF (days 5–7) to 68 pA/pF (days 15–30). The underlying conductance (GNa) half-activated (V0A) at −24 mV. INa inactivation was fitted by single exponentials with 7.5 ms time constant (th) at the −35 mV half-inactivation voltage (V0I). INa was not affected by 10 nM, was reduced (65%) by 100 nM, and not completely abolished (92%) by 300 nM tetrodotoxin (TTX). The INa of CM-plated cells appeared at day 3–4 and its surface density increased from 14 pA/pF (days 3–6) to 28 pA/pF (days 11–14). The GNa V0A was −29 mV and inactivation was fitted by single exponentials with 2.6 ms th at the −58 mV V0I. This INa was reduced (55%) by 10 nM and totally abolished by 100 nM tetrodotoxin (TTX). In conclusion, NB69 cells displayed a slow, “TTX-resistant,” or a fast, “TTX-sensitive” INa in DM and CM, respectively, suggesting that the CM contained diffusible trophic factors of astroglial origin that induced the expression of a different Na+ channel type. About half of the CM- and DM-plated cells also displayed a persistent Na+ current (INaP). © 1997 Wiley-Liss Inc.  相似文献   

8.
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen–glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+–Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

9.
Zinc ion (Zn2 +), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn2 + concentrations ([Zn2 +]i) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn2 +]i and the effect of [Zn2 +]i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn2 + chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1 h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn2 +]i. PKA activators and NO generators directly increased [Zn2 +]i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10 kD were found to release Zn2 + following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn2 +]i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy.  相似文献   

10.
We evaluated voltage‐gated Na+ (INa) and inward rectifier K+ (IKir) currents and Na+ conductance (GNa) in patients with Type 1 hypokalemic (HOPP) and thyrotoxic periodic paralysis (TPP). We studied intercostal muscle fibers from five subjects with HOPP and one with TPP. TPP was studied when the patient was thyrotoxic (T‐toxic) and euthyroid. We measured: (1) IKir, (2) action potential thresholds, (3) INa, (4) GNa, (5) intracellular [Ca2+], and (6) histochemical fiber type. HOPP fibers had lower INa, GNa, and IKir and increased action potential thresholds. Paralytic attack frequency correlated with the action potential threshold, GNa and INa, but not with IKir. GNa, INa, and [Ca2+] varied with fiber type. HOPP fibers had increased [Ca2+]. The subject with TPP had values for GNa, INa, action potential threshold, IKir, and [Ca2+] that were similar to HOPP when T‐toxic and to controls when euthyroid. HOPP T‐toxic TPP fibers had altered GNa, INa, and IKir associated with elevation in [Ca2+]. Muscle Nerve, 2010  相似文献   

11.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

12.
The clearance of extracellular glutamate is mainly mediated by pH‐ and sodium‐dependent transport into astrocytes. During hepatic encephalopathy (HE), however, elevated extracellular glutamate concentrations are observed. The primary candidate responsible for the toxic effects observed during HE is ammonium (NH4+/NH3). Here, we examined the effects of NH4+/NH3 on steady‐state intracellular pH (pHi) and sodium concentration ([Na+]i) in cultured astrocytes in two different age groups. Moreover, we assessed the influence of NH4+/NH3 on glutamate transporter activity by measuring D ‐aspartate‐induced pHi and [Na+]i transients. In 20–34 days in vitro (DIV) astrocytes, NH4+/NH3 decreased steady‐state pHi by 0.19 pH units and increased [Na+]i by 21 mM. D ‐Aspartate‐induced pHi and [Na+]i transients were reduced by 80–90% in the presence of NH4+/NH3, indicating a dramatic reduction of glutamate uptake activity. In 9–16 DIV astrocytes, in contrast, pHi and [Na+]i were minimally affected by NH4+/NH3, and D ‐aspartate‐induced pHi and [Na+]i transients were reduced by only 30–40%. Next we determined the contribution of Na+, K+, Cl?‐cotransport (NKCC). Immunocytochemical stainings indicated an increased expression of NKCC1 in 20–34 DIV astrocytes. Moreover, inhibition of NKCC with bumetanide prevented NH4+/NH3‐evoked changes in steady‐state pHi and [Na+]i and attenuated the reduction of D ‐aspartate‐induced pHi and [Na+]i transients by NH4+/NH3 to 30% in 20–34 DIV astrocytes. Our results suggest that NH4+/NH3 decreases steady‐state pHi and increases steady‐state [Na+]i in astrocytes by an age‐dependent activation of NKCC. These NH4+/NH3‐evoked changes in the transmembrane pH and sodium gradients directly reduce glutamate transport activity, and may, thus, contribute to elevated extracellular glutamate levels observed during HE. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
In some cells, Ca2+ depletion induces an increase in intracellular Ca2+ ([Ca2+]i) after reperfusion with Ca2+-containing solution, but the mechanism for the reperfusion injury is not fully elucidated. Using an antisense strategy we studied the role of the Na+-Ca2+ exchanger in reperfusion injury in cultured rat astrocytes. When astrocytes were perfused in Ca2+-free medium for 15–60 min, a persistent increase in [Ca2+]i was observed immediately after reperfusion with Ca2+-containing medium, and the number of surviving cells decreased 3–5 days latter. The increase in [Ca2+]i was enhanced by low extracellular Na+ ([Na+]o) during reperfusion and blocked by the inhibitors of the Na+-Ca2+ exchanger amiloride and 3,4-dichlorobenzamil, but not by the Ca2+ channel antagonists nifedipine, Cd2+ and Ni2+. Treatment of astrocytes with antisense, but not sense, oligodeoxynucleotide to the Na+-Ca2+ exchanger decreased Na+–Ca2+ exchanger protein level and exchange activity. The antisense oligomer attenuated reperfusion-induced increase in [Ca2+]i and cell toxicity. The Na+-Ca2+ exchange inhibitors 3,4-dichlorobenzamil and ascorbic acid protected astrocytes from reperfusion injury partially, while the stimulators sodium nitroprusside and 8-bromo-cyclic GMP and low [Na+]o exacerbated the injury. Pretreatment of astrocytes with ouabain and monensin caused similar delayed glial cell death. These findings suggest that Ca2+ entry via the Na+–Ca2+ exchanger plays an important role in reperfusion-induced delayed glial cell death.  相似文献   

14.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

15.
Brief pressure injections of aqueous solutions of cAMP in identified neurons of Helix pomatia caused depolarizations which lasted for tens of seconds. In voltage-clamped neurons an inward current of similar duration was induced which saturated at 10 μA/cm2 cell surface. In the range of negative membrane potentials with little voltage-dependent activation, this current was not accompanied by a change in membrane conductance. The inward current was not produced by injection of ATP, ADP, adenosine, inosine or cGMP. cAMP derivatives produced longer-lasting effects. Prolongation of the inward current was also observed after inhibition of the phosphodiesterase by IBMX. Drugs which block active transport had no effect on the response to cAMP injection. The inward current depended on extracellular sodium, and was maximal when all other mono- and divalent cations were replaced by Na+. The cAMP-induced current was accompanied by a transient increase in [Na+]i, but there was no change in [Cl]i. Li+ could largely substitute for Na+; Ca2+ was less effective. Addition of Mg2+ or Ca2+ to solutions containing a high Na+-concentration inhibited the response. Internal acidification with HCl reversibly enhanced the inward current. These data indicate that the depolarizing effect of cAMP can be accounted for by an inward movement of Na-ions, and that the effect is augmented by H+-ions.  相似文献   

16.
Intracellular electrophysiological recordings in current- and voltage-clamp mode were obtained from dopaminergic neurons of the rat mesencephalon in an in vitro slice preparation. In current-clamp mode, a time-dependent anomalous rectification (TDR) of the membrane was observed in response to hyperpolarizing current pulses. In single-electrode voltage-clamp mode, a slowly developing inward current (lh) underlying the TDR was studied by hyperpolarizing voltage commands from a holding potential of -50 to -60 mV. lh started to be activated at -69 mV, was fully activated at -129 to -141 mV, with half-maximal activation at -87 mV, and showed no inactivation with time. The time course of development of Ih followed a single exponential, and its time constant was voltage-dependent. At -81 mV, lh activated with a time constant of 379 2 47.6 ms, whereas at -129 mV lh activated with a time constant of 65 ? 2.2 ms. Its estimated reversal potential was -35 ± 4 mV. Raising the extracellular concentration of K+ from 2.5 to 6.5 and to 12.5 mM increased the amplitude of lh while reducing the extracellular concentration of Na+ from 153.2 to 27.2 mM caused a reduction in amplitude of lh. Bath application of caesium (1–5 mM) reversibly reduced or blocked the TDR/lh. Perfusion of tetrodotoxin (0.5–1 μM), tetraethylammonium (10–20 mM) or barium (0.3–2 mM) did not significantly affect lh. lh was also present in cells impaled with CsCI-filled electrodes. When lh was substantially reduced by extracellular caesium (1 mM) the firing rate of the dopaminergic cells, which consisted of a spontaneous pacemaker discharge of action potentials, was not clearly changed. In addition, the holding current in voltage-clamp experiments at -50 to -60 mV was not affected by 1 mM caesium. We conclude that although the lh current is a typical feature of the dopaminergic neurons, it is neither a significant factor underlying the spontaneous pacemaker activity nor does it contribute substantially to the setting of the normal resting potential level of the membrane. On the other hand, since lh starts at voltages lower than or equal to -69 mV (below firing threshold), it may play a modulatory role in the cell's excitability by limiting the amplitude and duration of any prolonged hyperpolarizing events in the dopaminergic cells.  相似文献   

17.
Joel A. Black  Stephen G. Waxman 《Glia》2014,62(7):1162-1175
Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage‐gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB‐R7943, at a dose that blocks reverse mode of the Na+/Ca2+ exchanger (NCX), and by knockdown of Nav1.5 mRNA. We also show that astrocytes display a robust [Ca2+]i transient after mechanical injury and demonstrate that this [Ca2+]i response is also attenuated by TTX, KB‐R7943, and Nav1.5 mRNA knockdown. Our results suggest that Nav1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca2+]i. GLIA 2014;62:1162–1175  相似文献   

18.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

19.
Maintenance and regulation of intracellular pH (pHi) was studied in single cultured mouse neocortical neurons using the fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Reversal of the Na+ gradient by reduction of the extracellular Na+ concentration ([Na+]o) resulted in rapid intracellular acidification, inhibited by 5′-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of Na+/H+ exchange. In the presence of EIPA and/or 4′,4′-diisothiocyano-stilbene-2′,2′-sulfonic acid (DIDS), an inhibitor of Na+-coupled anion exchangers and Na+-HCO3 cotransport, a slow decline of pHi was seen. Following intracellular acidification imposed by an NH4Cl prepulse, pHi recovered at a rapid rate, which was reduced by reduction of [Na+]o and was virtually abolished by EIPA and DIDS in combination. Creating an outward Cl gradient by removal of extracellular Cl significantly increased the rate of pHi recovery. In HCO3-free media, the pHi recovery rate was reduced in control cells and was abolished at zero [Na+]o and by EIPA. After intracellular alkalinization imposed by an acetate prepulse, pHi recovery was unaffected by DIDS but was significantly reduced in the absence of extracellular Cl, as well as in the presence of Zn2+, which is a blocker of proton channels. Together, this points toward a combined role of DIDS-insensitive Cl/HCO3 and passive H+ influx in the recovery of pHi after alkalinization. J. Neurosci. Res. 51:431–441, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Pituitary adenylate cyclase activating polypeptide (PACAP)-like immunoreactivity and its receptor mRNA have been reported in the supraoptic and the paraventricular nucleus (SON and PVN, respectively) and PACAP has been implicated in the regulation of magnocellular neurosecretory cell function. To examine the site and the mechanism of the action of PACAP in the neurosecretory cells, we measured AVP release from SON slice preparations and the cytosolic Ca2+ concentration ([Ca2+]i) from single dissociated SON neurons. PACAP at concentrations from 10?12 to 10?7 M increased [Ca2+]i in dissociated SON neurons in a dose-dependent manner. The patterns of the PACAP-induced [Ca2+]i increase were either sustained increase or cytosolic Ca2+ oscillations. PACAP (10?7 M) increased [Ca2+]i in 27 of 27 neurons and glutamate (10?4 M) increased [Ca2+]i in 19 of 19 SON neurons examined, whereas angiotensin II (10?7 M) increased [Ca2+]i in only 15 of 60 SON neurons examined. PACAP at lower concentrations (10?10 to 10?8 M) increased [Ca2+]i in 70–80% of neurons examined. Although the onset and recovery of the PACAP-induced [Ca2+]i increase were slower than those observed with glutamate, the spatial distribution of the [Ca2+]i increases in response to the two ligands were similar: [Ca2+]i increase at the proximal dendrites was larger and faster and that at the center of the soma was smaller and slower. The PACAP-induced [Ca2+]i responseswere abolished by extracellular Ca2+ removal, the l -type Ca2+-channel blocker, nicardipine, or by replacement of extracellular Na+ with N-methyl d-glucamine, and were partially inhibited by the Na+-channel blocker, tetrodotoxin. The N-type Ca2+-channel blocker, ω-conotoxin GVIA did not significantly inhibit the PACAP-induced [Ca2+]i responses. Furthermore, PACAP (10?7 M) as well as glutamate (10?4 M) increased AVP release from SON slice preparations, and extracellular Ca2+ removal or nicardipine inhibited the AVP release in response to PACAP. These results indicate that PACAP enhances Ca2+ entry via voltage-gated Ca2+ channels and increases [Ca2+]i, which, in turn, stimulates somatodendritic vasopressin release by directly activating PACAP receptors on SON neurons. The results also suggest that PACAP in the SON may play a pivotal role in the control of the neurohypophyseal function at the level of the soma or the dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号