首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The management of the central nervous system (CNS) disorders is challenging, due to the need of drugs to cross the blood‒brain barrier (BBB) and reach the brain. Among the various strategies that have been studied to circumvent this challenge, the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results. In addition, the encapsulation of the drugs in lipid-based nanocarriers, such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) or nanoemulsions (NEs), can improve nose-to-brain transport by increasing the bioavailability and site-specific delivery. This review provides the state-of-the-art of in vivo studies with lipid-based nanocarriers (SLNs, NLCs and NEs) for nose-to-brain delivery. Based on the literature available from the past two years, we present an insight into the different mechanisms that drugs can follow to reach the brain after intranasal administration. The results of pharmacokinetic and pharmacodynamics studies are reported and a critical analysis of the differences between the anatomy of the nasal cavity of the different animal species used in in vivo studies is carried out. Although the exact mechanism of drug transport from the nose to the brain is not fully understood and its effectiveness in humans is unclear, it appears that the intranasal route together with the use of NLCs, SLNs or NEs is advantageous for targeting drugs to the brain. These systems have been shown to be more effective for nose-to-brain delivery than other routes or formulations with non-encapsulated drugs, so they are expected to be approved by regulatory authorities in the coming years.KEY WORDS: Nose-to-brain delivery, Intranasal administration, Nanostructured lipid carriers, NLC, Solid lipid nanoparticles, SLN, Nanoemulsions, In vivo studies, Pharmacokinetic, Pharmacodynamics  相似文献   

2.
Introduction: With the advancement in the field of medical colloids and interfacial sciences, the life expectancy has been greatly improved. In addition, changes in the human lifestyle resulted in development of various organic and functional disorders. Central nervous system (CNS) disorders are most prevalent and increasing among population worldwide. The neurological disorders are multi-systemic and difficult to treat as portal entry to brain is restricted on account of its anatomical and physiological barrier.

Areas covered: The present review discusses the limitations to CNS drug delivery, and the various approaches to bypass the blood brain barrier (BBB), focusing on the potential use of solid lipid nanoparticles (SLN) for drug targeting to brain. The methods currently in use for SLN production, physicochemical characterization and critical issues related to the formulation development suitable for targeting brain are also discussed.

Expert opinion: The potential advantages of the use of SLN over polymeric nanoparticles are due to their lower cytotoxicity, higher drug loading capacity and scalability. In addition, their production is cost effective and the systems provide a drug release in a controlled manner up to several weeks. Drug targeting potential of SLN can be enhanced by attaching ligands to their surface.  相似文献   

3.
Introduction: Chemotherapy remains the major form of treatment for cancer. However, chemotherapy often fails due to a variety of barriers, resulting in a limited intratumoral drug disposition. Recently, lipid nanoparticles (LNs, i.e., solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)) have been shown to provide a favorable means for efficiently delivering drugs to tumor sites, while minimizing their side effects.

Areas covered: The delivery of drugs to tumors is restricted by a series of barriers, including the tumor abnormalities, strong adverse effects and poor specificity of cytotoxic drugs, and the induction of multidrug resistance (MDR). The present review summarizes the strategies using SLNs and/or NLCs to improve the anticancer efficacy of cytotoxic drugs, including passive targeting, active targeting, long circulating and MDR reversing. Specifically, the most significant in vitro and in vivo results on the use of SLNs and/or NLCs are highlighted.

Expert opinion: The future success of SLNs and NLCs for administration of cytotoxic drugs will depend on their ability to efficiently encapsulate and release drugs, the possibility for large-scale production, selective tumor cells targeting and increased antitumor efficacy with reduced tissue toxicity.  相似文献   

4.
Purpose. Recently, colloidal dispersions made of mixtures from solid and liquid lipids have been described to combine controlled-release characteristics with higher drug-loading capacities than solid lipid nanoparticles (SLNs). It has been proposed that these nanostructured lipid carriers (NLCs) are composed of oily droplets that are embedded in a solid lipid matrix. The present work investigates the structure and performance of NLCs. Methods. Colloidal lipid dispersions were produced by high-pressure homogenization and characterized by laser diffraction, photon correlation spectroscopy, wide-angle x-ray scattering, and differential scanning calorimetry. Proton nuclear magnetic resonance spectroscopy and electron spin resonance experiments were performed to investigate the mobility of the components and the molecular environment of model drugs. Furthermore, a nitroxide reduction assay with ascorbic acid was conducted to explore the accessibility of the lipid model drug from the outer aqueous phase. Results. Proton nuclear magnetic resonance spectra clearly demonstrate that NLC nanoparticles differ from nanoemulsions and from SLNs by forming a liquid compartment that is in strong interaction to the solid lipid. The electron spin resonance model drug was found to be accommodated either on the particle surface with close water contact (SLN) or additionally in the oil (NLC). The oil compartment must be localized on the particle surface, because it can be easily reached by ascorbic acid. Conclusion. Neither SLN nor NLC lipid nanoparticles showed any advantage with respect to incorporation rate or retarded accessibility to the drug compared with conventional nanoemulsions. The experimental data let us conclude that NLCs are not spherical solid lipid particles with embedded liquid droplets, but they are rather solid platelets with oil present between the solid platelet and the surfactant layer.  相似文献   

5.
传统吸入疗法不能使药物靶向到肺的特定部位,而纳米载体药物的肺部给药系统可克服传统吸入药物的不足。其中纳米结构脂质载体是固体和液体脂质的混合物经表面活性剂乳化后形成的纳米粒,具有更好的胶体稳定性和持续的药物释放行为。其组成成分具有无毒、生理惰性和生物相容性的特点,还具有良好的雾化特性,特别适用于肺部应用,并且生产过程简单(高压均质),适合大规模生产。本文介绍了常见肺部给药纳米载体,概述了纳米结构脂质载体应用于肺部的优势,为其在肺部给药领域中的深度开发提供参考。  相似文献   

6.
ABSTRACT

Introduction: The failure of many molecules as CNS bioactive compounds is due to many restrictions: poor water solubility, intestinal absorption, in vivo stability, bioavailability, therapeutic effectiveness, side effects, plasma fluctuations, and difficulty crossing physiological barriers, like the brain blood barrier (BBB), to deliver the drug directly to the site of action.

Area covered: Nanotechnology-based approaches with the employment of liposomes, micelles, dendrimers, and solid lipid nanoparticles (SLN) as drug delivery systems, are used to overcome the above reported limitations. Here, we focus on the delivery of drugs based on SLN formulation to treat neurodegenerative diseases. Notably, SLN have the ability to protect drugs from chemical and enzymatic degradation, direct the active compound towards the target site with a substantial reduction of toxicity for the adjacent tissues, and pass physiological barriers increasing bioavailability without resorting to high dosage forms.

Expert opinion: We believe that SLN could represent a suitable tool to pass the BBB and permit drugs to reach damaged areas of the CNS in patients affected by neurodegenerative pathologies, such as Alzheimer’s and Parkinson’s diseases.  相似文献   

7.
Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.  相似文献   

8.
Introduction: Incorporation of anticancer drugs with low lipophilicity in lipid nanocarriers is usually low, which limits the utilization of this strategy in cancer therapy. However, the complexation of these drugs with lipophilic ion pairs containing ionizable groups has been reported to improve their incorporation in nanocarriers such as solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs). Therefore, those nanocarriers have shown an increase in efficacy and lower toxicity compared with the free drugs, particularly if the counter ion utilized has anticancer activity.

Areas covered: This review covers, from 1999 to the present, the utilization of the hydrophobic ion pair (HIP) approach to enhance the encapsulation of anticancer drugs in lipid nanostructured delivery systems, SLN, NLC, and NE; the benefits achieved; and challenges to improve the anticancer therapy.

Expert opinion: The HIP strategy has consistently demonstrated enhancement of the encapsulation efficiency in NLCs associated with increased anticancer activity of drugs such as doxorubicin, all-trans retinoic acid, methotrexate, vincristine and others. From this point on, conducting further physicochemical characterization studies of the formed ion pair as well as proceeding with the in vivo efficacy, toxicity and pharmacokinetics studies are expected.  相似文献   


9.
《Drug delivery》2013,20(6):691-700
ABSTRACT

Context: Nanostructured lipid carrier (NLCs) is the second generation solid lipid nanoparticles (NPs) made up of physiological, biocompatible, biodegradable, non-sensitizing and non-irritating lipids.

Objective: The main objective of this review is to explore the role of NLCs system for delivering drugs by oral route and thus increasing the oral bioavailability.

Methods: The present review article highlights the definition and types of NLCs and their importance as colloidal carriers including the production techniques and their formulation. This review article also deals with the fate of lipids used in the NLCs formulation and the NLCs toxicity.

Conclusion: On the basis of the literature survey done, it was concluded that the NLCs enhances the oral bioavailability of the drug and may decrease the side effects and toxicity of the lipids used in other polymeric NPs as NLCs uses physiological and biodegradable lipids.  相似文献   

10.
Introduction: Neuronal T-type calcium channels (T-type channels) are expressed throughout the central nervous system (CNS), regulating neuronal excitability. T-type channels in the CNS are involved in various neurophysiological and pathophysiological states, and thus have become a promising therapeutic target.

Areas covered: This article discusses T-type channel-related CNS disorders such as epilepsy, neuropathic pain, insomnia and tremor disorders including Parkinson's disease. In addition, the article reviews T-type channel inhibitors showing efficacy in animal models in such CNS disorders, with a focus on classical T-type channel inhibitors with limited specificity for T-type channels as well as novel inhibitors with high specificity. Furthermore, the article also presents and discusses the next generation of T-type channel inhibitor discovery, virtual as well as screening and high-throughput screening techniques.

Expert opinion: Although T-type channel-related CNS disorders seem to be diverse, it converges into the one major cause – abnormal hyperactivity of neurons. T-type channel-specific inhibitors could thus be commonly applied for the treatment of such CNS disorders regardless of the complexity of individual disorder. Structural information of inhibitor-binding sites would facilitate the discovery of the next generation of T-type channel-specific inhibitors by stimulating structure-based rational drug designs.  相似文献   

11.
Abstract

Objective: The aim of this study was to develop nanostructured lipid carriers (NLCs) as well as solid lipid nanoparticles (SLNs) and evaluate their potential in the topical delivery of meloxicam (MLX).

Materials and methods: The effect of various compositional variations on their physicochemical properties was investigated. Furthermore, MLX-loaded lipid nanoparticles-based hydrogels were formulated and the gels were evaluated as vehicles for topical application.

Results and discussion: The results showed that NLC and SLN dispersions had spherical shapes with an average size between 215 and 430?nm. High entrapment efficiency was obtained ranging from 61.94 to 90.38% with negatively charged zeta potential in the range of ?19.1 to ?25.7?mV. The release profiles of all formulations exhibited sustained release characteristics over 48?h and the release rates increased as the amount of liquid lipid in lipid core increased. Finally, Precirol NLC with 50% Miglyol® 812 and its corresponding SLN were incorporated in hydrogels. The gels showed adequate pH, non-Newtonian flow with shear-thinning behavior and controlled release profiles. The biological evaluation revealed that MLX-loaded NLC gel showed more pronounced effect compared to MLX-loaded SLN gel.

Conclusion: It can be concluded that lipid nanoparticles represent promising particulate carriers for topical application.  相似文献   

12.
Introduction: The development of therapeutics for central nervous system (CNS) disorders is still considered a challenging area in drug development due to insufficient translocation through the blood-brain barrier (BBB). Under normal conditions, BBB restrict the penetration of more than 98% of blood-borne molecules including drugs to the CNS. However, recent research findings have proven that the nature of the BBB is altered in several neurological conditions. This complexity encourages revisiting drug delivery strategies to the CNS as this can give a wide range of opportunities for CNS drug development.

Areas covered: This review focuses on nanotechnology-based drug delivery platforms designed for selective recruitment into the lesioned brain by taking advantages of BBB disruption that is associated with certain neurological conditions.

Expert opinion: Current CNS therapeutic strategies do not fully address the pathophysiological adaptation of BBB in their design. The lack of selective delivery to the brain lesions has been the culprit behind the failure of many CNS therapeutics. This highlighted the need for smart designs of advanced drug delivery systems that take advantage of BBB structural changes in CNS diseases. Recently, promising examples have been reported in this area, however, more work is still required beyond the preclinical testing.  相似文献   


13.
纳米结构脂质载药系统的研究进展   总被引:1,自引:0,他引:1  
陈晶  顾月清 《药学进展》2010,34(12):535-541
纳米结构脂质载体是在第一代脂质纳米粒——固体脂质纳米粒的基础上发展起来的一种新型药物传递系统,相比于传统脂质纳米粒,具有安全性好、稳定性高等优势,故而引起国内外医药工作者的广泛关注。对纳米结构脂质载体的特点、性质、结构、制备工艺及其用作载药系统的研究情况进行概述,为其在医药领域中的深度开发提供参考。  相似文献   

14.
Introduction: Nanoparticles are rapidly developing as drug carriers because of their size-dependent properties. Lipid nanoparticles (LNPs) are widely employed in drug delivery because of the biocompatibility of the lipid matrix.

Areas covered: Many different types of LNPs have been engineered in the last 20 years, the most important being solid lipid nanoparticles (SLNs), nanostrucured lipid carriers (NLCs), lipid–drug conjugates (LDCs) and lipid nanocapsules (LNCs). This review gives an overview of LNPs, including their physico-chemical properties and pharmacological uses. Moreover, it highlights the most important innovations in the preparation techniques of LNPs, aimed to encapsulate different molecules within the lipid matrix. Finally, it gives a short perspective on the challenges of drug delivery, which are a potential field of application for LNPs: cancer therapy, overcoming the blood–brain barrier and gene and protein delivery.

Expert opinion: LNPs are a safe and versatile vehicles for drug and active delivery, suitable for different administration routes. New technologies have been developed for LNP preparation and studies are currently underway in order to obtain the encapsulation of different drugs and to deliver the active molecule to the site of action.  相似文献   

15.
Drug delivery system focuses on the regulation of the in vivo dynamics, in order to improve the effectiveness and safety of the incorporated drugs by use of novel drug formulation technologies. Lipids such as fatty acids, triglycerides, vegetable oils and their derivatives, used for developing multiparticulate dosage forms, may be available in solid, semi-solid or liquid state. Solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid drug conjugate (LDCs) nanoparticles are novel lipid drug delivery systems. They were devised to address some of the challenges of conventional drug delivery systems ranging from low drug encapsulation efficiency to low bioavailability of Biopharmaceutical Classification Systems (BCS) class II and class IV drugs. SLNs are based on melt-emulsified lipids, which are solid at room temperature and consist of physiologically well tolerated ingredients often generally recognised as safe. NLCs are colloidal carriers characterized by a solid lipid core consisting of a mixture of solid and liquid lipids, and having a mean particle size in the nanometer range. LDC are nanoparticles contain drugs linked to lipid particles. This minireview highlights these three different but related technologies in lipid drug delivery. The objectives of their introduction, current applications, major challenges and some patented formulations are highlighted.  相似文献   

16.
天然药物靶向给药系统的研究   总被引:2,自引:0,他引:2  
魏赟  李娟  张钧寿 《药学进展》2005,29(1):8-13
采用新型药物载体使天然药物具有靶向作用是近年来药剂学的研究热点之一。综述脂质体、纳米粒、微球、微乳、药质体等新型载体在天然药物靶向给药系统研究中的应用,并介绍膜融合脂质体、纳米脂质载体、药脂结合物纳米粒以及分泌颗粒类似物等几种新型靶向给药系统的药物载体。  相似文献   

17.
Corticosteroids are potent anti-inflammatory and immunosuppressive drugs widely used world-wide for treatment of diverse conditions. However, their use is restricted by their poor bioavailability and high risk-benefit ratio. Therefore, the aim of this study was to develop nanostructred lipid carriers (NLC) of prednisolone acetate (PA) to improve the drug's therapeutic outcome by altering its pharmacokinetic profile and/or allow preferential targeting to inflammatory tissues. PA-loaded NLCs were formulated by solvent injection method using Compritol (solid lipid), oleic acid (liquid lipid) and Tween 80 or Pluronic F68 (surfactant). Formulation conditions, such as liquid lipid concentration, total lipids, drug:lipid ratio and surfactant type were optimized based on particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE%) results. Optimized formulation was further characterized for its surface morphology, thermal properties, storage stability and anti-inflammatory activity in an animal acute inflammation model. Selected NLCs displayed PS of 170.7 nm, EE% of 67.4%, sustained release over 72 h and good stability for 30 days at refrigeration conditions. PA NLCs displayed superior anti-inflammatory activity of 83.9 ± 4.46% compared to PA suspension (40.5 ± 7.03%) and drug-free NLCs (54.7 ± 6.12%). The current work delineates the potential of NLCs for distinctly improved biopharmaceutical performance of PA.  相似文献   

18.
The pharmacological treatment of neurological disorders is often complicated by the inability of drugs to pass the blood-brain barrier. Recently we discovered that polymeric nanoparticles (NPs) made of poly(d,l-lactide-co-glycolide), surface-decorated with the peptide Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser(O-β-d-glucose)-CONH2 are able to deliver, after intravenous administration, the model drug loperamide into the central nervous system (CNS). This new drug delivery agent is able to ensure a strong and long-lasting pharmacological effect, far greater than that previously observed with other nanoparticulate carriers. Here we confirmed the effectiveness of this carrier for brain targeting, comparing the effect obtained by the administration of loperamide-loaded NPs with the effect of an intracerebroventricular administration of the drug; moreover, the biodistribution of these NPs showed a localization into the CNS in a quantity about two orders of magnitude greater than that found with the other known NP drug carriers. Thus, a new kind of NPs that target the CNS with very high specificity was discovered.From the Clinical EditorThis paper discusses a nanoparticle-based technique of targeted drug delivery through the blood-brain barrier. The biodistribution of these novel nanoparticles showed two orders of magnitude greater efficiency compared to other known NP drug carriers.  相似文献   

19.
Topotecan is an important cytotoxic drug that has gained broad acceptance in clinical use for the treatment of refractory ovarian and small-cell lung cancer. The lactone active form of topotecan can be hydrolyzed in vivo, decreasing the drug’s therapeutic efficacy. Lipid encapsulation may promote in vivo stabilization by removing topotecan from aqueous media. Earlier reports of topotecan lipid nanoencapsulation have focused on liposomal encapsulation; however, the higher stability and cost-effectiveness of solid lipid nanoparticles (SLN) highlight the potential of these nanoparticles as an advantageous carrier for topotecan. The initial motivation for this work was to develop, for the first time, solid lipid nanoparticles and nanostructured lipid carriers (NLC) with a high drug loading for topotecan. A microemulsion technique was employed to prepare SLNs and NLCs and produced homogeneous, small size, negatively charged lipid nanoparticles with high entrapment efficiency and satisfactory drug loading. However, low recovery of topotecan was observed when the microemulsion temperature was high and in order to obtain high quality nanoparticles, and precise control of the microemulsion temperature is critical. Nanoencapsulation sustained topotecan release and improved its chemical stability and cytotoxicity. Surprisingly, there were no significant differences between the NLCs and SLNs, and both are potential carriers for topotecan delivery.  相似文献   

20.
INTRODUCTION: Chemotherapy remains the major form of treatment for cancer. However, chemotherapy often fails due to a variety of barriers, resulting in a limited intratumoral drug disposition. Recently, lipid nanoparticles (LNs, i.e., solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)) have been shown to provide a favorable means for efficiently delivering drugs to tumor sites, while minimizing their side effects. AREAS COVERED: The delivery of drugs to tumors is restricted by a series of barriers, including the tumor abnormalities, strong adverse effects and poor specificity of cytotoxic drugs, and the induction of multidrug resistance (MDR). The present review summarizes the strategies using SLNs and/or NLCs to improve the anticancer efficacy of cytotoxic drugs, including passive targeting, active targeting, long circulating and MDR reversing. Specifically, the most significant in vitro and in vivo results on the use of SLNs and/or NLCs are highlighted. EXPERT OPINION: The future success of SLNs and NLCs for administration of cytotoxic drugs will depend on their ability to efficiently encapsulate and release drugs, the possibility for large-scale production, selective tumor cells targeting and increased antitumor efficacy with reduced tissue toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号