首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ICV cromakalim, a K+ channel opener, produced antinociception. This effect was completely antagonized by ICV glibenclamide, a selective adenosine triphosphate-sensitive K+ channel (KATP channel) blocker. Furthermore, direct opening of central KATP channels by ICV cromakalim increased the spinal noradrenaline (NA) turnover. On the other hand, the antinociception induced by ICV morphine ( opioid agonist), but not ICV U-50,488H ( opioid agonist) was markedly potentiated by cromakalim. These findings suggest that the opening of central KATP channels may elicit the antinociceptive effect and activate the descending NAergic pathway, and central KATP channels play an important role as a modulator of the antinociception induced by agonists but not agonists.  相似文献   

2.
ATP-sensitive K+ channels in the kidney   总被引:5,自引:0,他引:5  
ATP-sensitive K+ channels (KATP channels) form a link between the metabolic state of the cell and the permeability of the cell membrane for K+ which, in turn, is a major determinant of cell membrane potential. KATP channels are found in many different cell types. Their regulation by ATP and other nucleotides and their modulation by other cellular factors such as pH and kinase activity varies widely and is fine-tuned for the function that these channels have to fulfill. In most excitable tissues they are closed and open when cell metabolism is impaired; thereby the cell is clamped in the resting state which saves ATP and helps to preserve the structural integrity of the cell. There are, however, notable exceptions from this rule; in pancreatic -cells, certain neurons and some vascular beds, these channels are open during the normal functioning of the cell.In the renal tubular system, KATP channels are found in the proximal tubule, the thick ascending limb of Henle's loop and the cortical collecting duct. Under physiological conditions, these channels have a high open probability and play an important role in the reabsorption of electrolytes and solutes as well as in K+ homeostasis. The physiological role of their nucleotide sensitivity is not entirely clear; one consequence is the coupling of channel activity to the activity of the Na-K-ATPase (pump-leak coupling), resulting in coordinated vectorial transport. In ischemia, however, the reduced ATP/ADP ratio would increase the open probability of the KATP channels independently from pump activity; this is particularly dangerous in the proximal tubule, where 60 to 70% of the glomerular ultrafiltrate is reabsorbed.The pharmacology of KATP channels is well developed including the sulphonylureas as standard blockers and the structurally heterogeneous family of channel openers. Blockers and openers, exemplified by glibenclamide and levcromakalim, show a wide spectrum of affinities towards the different types of KATP channels. Recent cloning efforts have solved the mystery about the structure of the channel: the KATP channels in the pancreatic -cell and in the principal cell of the renal cortical collecting duct are heteromultimers, composed of an inwardly rectifying K+ channel and sulphonylurea binding subunit(s) with unknown stoichiometry. The proteins making up the KATP channel in these two cell types are different (though homologous), explaining the physiological and pharmacological differences between these channel subtypes.  相似文献   

3.
ATP-sensitive K+ channels (KATP channels) in the kidney have been found in the tubular system and in the afferent arteriole. In this study we have examined the binding of [3H]-P1075 ([3H]-N-cyano-N-(1,1-dimethylpropyl)-N-3-pyridylguanidine), a selective opener of KATP channels, in rat glomerular preparations.Equilibrium (saturation, competition) and kinetic experiments indicated that [3H]-P1075 binds to a single class of sites with a dissociation constant of about 3 nM and a maximum binding capacity of 10 fmol mg–1 glomerular protein. The association rate constant of the complex was 6,5×107 M–1 min–1; dissociation occurred with a half-time of 6.2 min. Specific [3H]-P1075 binding was strongly reduced when the metabolic state of the glomerular preparation was impaired during the preparation procedure or the binding assay or when the preparation was subjected to mild collagenase treatment. In different metabolically competent preparations, the amount of specific [3H]-P1075 binding correlated well with the number of vascular endings adherent to the glomeruli; no specific binding was found in mesangial cells in culture. Specific [3H]-P1075 binding was inhibited by representatives of the different classes of KATP channel openers and by sulphonylureatype blockers with inhibition constants similar to those obtained in rat aortic rings.It is concluded that rat glomerular preparations possess specific binding sites for KATP channel openers with vascular characteristics. The sensitivity of binding to mild collagenase treatment suggests that these sites are located on a membrane protein; in addition, the data suggest that these sites are localized on smooth muscle and/or renin secreting cells of the afferent vascular endings attached to some of the glomeruli. Their estimated density (1,500 m–2) is much higher than that of KATP channels in smooth muscle.  相似文献   

4.
The K+ channel openers activate ATP-sensitive K+ channels (KATP) in vascular smooth muscle and induce relaxation. In this study, the relationship between these two effects was examined in rings of rat aorta using levcromakalim and minoxidil sulfate as the openers and Ba2+ as the K+ channel blocker; K+ channel opening was assessed by determining the rate constant of 86Rb+ efflux from the preparation.Ba2+ inhibited the 86Rb+ efflux stimulated by levcromakalim in a noncompetitive manner with an IC50 value of 29 M and a Hill-coefficient of 1.2. At concentrations > 300 M, Ba2+ increased the tension of rat aortic rings concentration-dependently. Levcromakalim relaxed contractions to Ba2+ (0.5 and 1 mM) with potencies similar to those determined against KCl (25 mM) or noradrenaline as spasmogens (EC50 values 15–40 nM). The vasorelaxant effect against Ba2+ was inhibited by the KATP channel blockers, glibenclamide and tedisamil, and abolished in depolarizing medium (55 mM KCl). At 3 mM Ba2+, levcromakalim was still able to transiently induce complete relaxation; however, within 1 h oscillations in tension developed, leading to a stable level of only 15% relaxation. A similar level of relaxation was achieved against 10 mM Ba2+ whereas the combination of 0.5 mM Ba2+ and 3 M tedisamil blocked the relaxant effect of levcromakalim completely. With minoxidil sulfate as the KATP channel opener the results of the 86Rb+ efflux and tension experiments were similar to those obtained with levcromakalim.It is concluded that Ba2+ is more potent in inhibiting the K+ channel opening than the vasorelaxant effects of the openers. On the basis of the 86Rb+ efflux experiments it is estimated that at least 97% of the channels opened by the activators can be blocked without major effects on vasorelaxation suggesting a dissociation between the two effects. However, if the block is pushed to extremes ( 99.95%) the vasorelaxant effect of the openers is also abolished suggesting a link between both effects. This paradoxon remains to be solved.  相似文献   

5.
Summary The effect of coenzyme Q10 (CoQ10) on the cyanide (CN)-induced ATP-sensitive K+ channel current (KATP) was examined in single atrial myocytes, using the patch clamp technique. Superfusion of the cells with a CN/low glucose bathing solution induced an outward current in the whole-cell clamp condition. Glibenclamide (1 M) abolished this current, indicating that the current was carried through the KATP channel. After steady-state activation by CN, pinacidil (a KATP channel opener, 300 M) failed to further increase the current. In cell-attached patches, CN, when applied to the bath, induced bursting openings of an 80 pS channel (the KATP channel). In cells preincubated for 30 min in a solution containing CoQ10 (100 g/ml), CN-activation of the KATP channel was markedly attenuated both at the whole cell and at the single channel level. At the steady-state effect of CN in CoQ10-treated cells, pinacidil (300 M) activated the current to the maximum level achieved by CN in the control cells. These results suggest that CoQ10 reduces in the CN-induced KATP current not by affecting the channel itself but by preventing depletion of intracellular ATP caused by CN. Send offprint requests to Y. Kurachi at Mayo Foundation  相似文献   

6.

Background and purpose:

Levosimendan acts as a vasodilator through the opening of ATP-sensitive K+ channels (KATP) channels. Moreover, the coronary vasodilatation caused by levosimendan in anaesthetized pigs has recently been found to be abolished by the nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine methyl ester, indicating that nitric oxide (NO) has a role in the vascular effects of levosimendan. However, the intracellular pathway leading to NO production caused by levosimendan has not yet been investigated. Thus, the purpose of the present study was to examine the effects of levosimendan on NO production and to evaluate the intracellular signalling pathway involved.

Experimental approach:

In porcine coronary endothelial cells (CEC), the release of NO in response to levosimendan was examined in the presence and absence of Nω-nitro-L-arginine methyl ester, an adenylyl cyclase inhibitor, KATP channel agonists and antagonists, and inhibitors of intracellular protein kinases. In addition, the role of Akt, ERK, p38 and eNOS was investigated through Western blot analysis.

Key results:

Levosimendan caused a concentration-dependent and K+-related increase of NO production. This effect was amplified by the mitochondrial KATP channel agonist, but not by the selective plasma membrane KATP channel agonist. The response of CEC to levosimendan was prevented by the KATP channel blockers, the adenylyl cyclase inhibitor and the Akt, ERK, p38 inhibitors. Western blot analysis showed that phosphorylation of the above kinases lead to eNOS activation.

Conclusions and implications:

In CEC levosimendan induced eNOS-dependent NO production through Akt, ERK and p38. This intracellular pathway is associated with the opening of mitochondrial KATP channels and involves cAMP.  相似文献   

7.
Summary In the present work we studied the pharmacological profile of adenosine receptors in guinea pig atria by investigating the effect of different adenosine analogues on86Rb+-efflux from isolated left atria and on binding of the antagonist radioligand 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) to atrial membrane preparations. The rate of86Rb+-efflux was increased twofold by the maximally effective concentrations of adenosine receptor agonists. The EC50-values for 2-chloro-N6-cyclopentyladenosine (CCPA), R-N6-phenylisopropyladenosine (R-PIA), 5-N-ethylcarboxamidoadenosine (NECA), and S-N6-phenylisopropyladenosine (S-PIA) were 0.10, 0.14, 0.24 and 12.9 M, respectively. DPCPX shifted the R-PIA concentration-response curve to the right in a concentration-dependent manner with a KB-value of 8.1 nM, indicating competitive antagonism. [3H]DPCPX showed a saturable binding to atrial membranes with a Bmax-value of 227 fmol/mg protein and a KD-value of 1.3 nM. Competition experiments showed a similar potency for the three agonists CCPA, R-PIA and NECA. S-PIA is 200 times less potent than R-PIA. Our results suggest that the K+ channel-coupled adenosine receptor in guinea pig atria is of an A1 subtype.Abbreviations CCPA 2-chloro-N6-cyclopentyladenosine - DPCPX 8-cyclopentyl-1,3-dipropylxanthine - NECA 5-N-ethylcarboxami-doadenosine - PIA N6-phenylisopropyladenosine Send offprint requests to H. Tawfik-Schlieper at the above address  相似文献   

8.
In numerous studies the intracellular mononucleotide-dependent gating of ATP-sensitive K+ (KATP) channels has been demonstrated. However, it is not known whether dinucleotide polyphosphates, a family of endogenous compounds structurally-related to ATP, could also modulate this ion conductance. Therefore, in the present study we assessed the direct effect of diadenosine 5,5-P1,P5-pentaphosphate (Ap5A) on cardiac KATP channel activity using the inside-out configuration of the patch-clamp technique. Addition of Ap5A (50 M) to the internal side of membrane patches, excised from guinea-pig ventricular cells, strongly inhibited KATP channel activity. The estimated NPo (where N is the number of channels in the patch and Po the open probability of each channel) was 4.16 ± 0.50 in the absence and 0.85 ± 0.30 in the presence of Ap5A (50 M). This effect of Ap5A was partially reversible, and the NP0 was 2.26 ± 0.60 after washout of Ap5A. Exposure of KATP channels to increasing concentrations of Ap5A revealed that the Ap5A-induced inhibition is concentration-dependent with the half-maximal effective concentration of 16 M (Hill coefficient: 1.6). On the basis of these results, we conclude that Ap5A is a potent antagonist of the KATP channel activity. This represents a previously unrecognized property of Ap5A, as well as the discovery of a potentially novel endogenous ligand of myocardial KATP channels.  相似文献   

9.
During heart ischemia, ATP-sensitive potassium channels in the sarcolemmal membrane (sarcKATP) open and cause shortening of the action potential duration. This creates heterogeneity of repolarization, being responsible for the development of re-entry arrhythmias and sudden cardiac death. Therefore, the aim is to develop selective blockers of the cardiac sarcKATP channel. In the present study we established an in vitro model and classified 5 KATP channel inhibitors with respect to their potency and selectivity between cardiomyocytes and the coronary vasculature and compared the results with inhibition of Kir6.2/SUR2A channels expressed in HEK293 cells, recorded with the Rb+-efflux methods. We used Langendorff-perfused guinea pig hearts, where low-flow ischemia plus hypoxia was performed by reducing the coronary flow (CF) to 1.2 ml/min and by gassing the perfusion solution with N2 instead of O2. Throughout the experiment, the monophasic action potential duration at 90% repolarization (MAPD90) was recorded. In separate experiments, high-flow hypoxia was produced by oxygen reduction in the perfusate from 95% to 20%, which caused an increase in the coronary flow. Under normoxic conditions, the substances glibenclamide, repaglinide, meglitinide, HMR 1402 and HMR 1098 (1 M each) reduced the CF by 34%, 38%, 19%, 12% and 5%, respectively. The hypoxia-induced increase in CF was inhibited by the compounds half-maximally at 25 nM, approximately 200 nM, 600 nM, approximately 9 M and >100 M, respectively. In control experiments after 5 min low-flow ischemia plus hypoxia, the MAPD90 shortened from 121±2 to 99±2 ms (n=29). This shortening was half-maximally inhibited by the substances at concentrations of 95 nM, 74 nM, 400 nM, 110 nM and 550 nM, respectively. In HEK293 cells the Rb+-efflux through KIR6.2/SUR2A channels was inhibited by the compounds with IC50 values of 21 nM, 67 nM, 205 nM, 60 nM and 181 nM, respectively. In summary, the present data demonstrate that the sulfonylurea glibenclamide, and the carbamoylbenzoic acid derivatives repaglinide and meglitinide are unselective blockers of KATP channels in cardiac cells and in the cardiac vascular system, whereas the sulfonylthioureas HMR 1402, and especially HMR 1098 selectively blocked the cardiac sarcKATP channel. Blockade of Kir6.2/SUR2A channels in HEK293 cells occurred with comparable efficacy as in the cardiac tissue, indicating that the expression system is suited for screening for novel inhibitors.  相似文献   

10.
The effect of cocaine on K+ currents activated by the KATP channel opener cromakalim was investigated in follicular cells of Xenopus oocytes. The results indicate that cocaine in the concentration range of 3–500 M reversibly inhibits cromakalim-induced K+ currents. The IC50 value for cocaine was 96 M. Inhibition of the cromakalim-activated K+ current by cocaine was noncompetitive and voltage independent. Pretreatment with the Ca2+ chelator BAPTA did not modify the cocaine-induced inhibition of cromakalim-induced K+ currents, suggesting that Ca2+-activated second messenger pathways are not involved in the actions of cocaine. Outward K+ currents activated by the application of 8-Br-cAMP or forskolin were also inhibited by cocaine. The EC50 and slope values for the activation of K+ currents by cromakalim were 184±19 M and 1.14 in the absence of cocaine as compared to 191±23 M and 1.03 in the presence of cocaine (300 M). Cocaine also blocked K+ currents mediated through C-terminally deleted form of Kir6.2 (KirC26) in the absence of sulfonylurea receptor with an IC50 value of 87 M, suggesting that cocaine interacts directly with the channel forming Kir6.2 subunit. Radioligand binding studies indicated that cocaine (100 M) did not affect the binding characteristics of the KATP ligand, [3H]glibenclamide. These results demonstrate that cromakalim-activated K+ currents in follicular cells of Xenopus oocytes are modulated by cocaine.  相似文献   

11.

BACKGROUND AND PURPOSE

Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K+ channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective KATP channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of KATP channels are also sensitive to rosiglitazone and what their sensitivities are.

EXPERIMENTAL APPROACH

KIR6.1/SUR2B, KIR6.2/SUR1, KIR6.2/SUR2A, KIR6.2/SUR2B and KIR6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques.

KEY RESULTS

Rosiglitazone inhibited all isoforms of KATP channels in excised patches and in the whole-cell configuration. Its IC50 was 10 µmol·L−1 for the KIR6.1/SUR2B channel and ∼45 µmol·L−1 for KIR6.2/SURx channels. Rosiglitazone also inhibited KIR6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC50= 45 µmol·L−1) almost identical to that for KIR6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on KIR1.1, KIR2.1 and KIR4.1 channels, suggesting that the channel inhibitory effect is selective for KIR6.x channels.

CONCLUSIONS AND IMPLICATIONS

These results suggest a novel KATP channel inhibitor that acts on the pore-forming KIR6.x subunit, affecting the channel gating.

LINKED ARTICLE

This article is commented on by Dart, pp. 23–25 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01990.x  相似文献   

12.
Summary Effects of a vasodilator, nicorandil (2-nicotinamidoethyl nitrate) on four kinds for cardiac K+ channels were investigated in guinea pig ventricular and atrial cells using inside-out patch recording combined with oilgate concentration jump method.Nicorandil of 300 mol/l failed to affect the inward-rectifier K+ channel and the Na+-activated K+ channel. The open probability of the muscarinic K+ channel, when activated by the application of GTP, was not changed by the drug. Nicorandil selectively increased the open probability of the ATP-sensitive K+ channel that was partly suppressed by intracellular ATP. The median effective concentration (EC50) of nicorandil was 74 mol/l and Hill coefficient was 1.32 in the concentration-open probability relationship. The closing rate of the K+ channel by ATP was markedly delayed by the drug, whereas the open rate on removal of ATP was scarcely affected. Nicorandil had only little effect on this channel after run-down. It was concluded that nicorandil selectively activates the ATP-sensitive K+ channel mainly by modulating the ATP-dependent gate.Send offprint requests to M. Takano at the above address  相似文献   

13.
Summary Effects of K+- and Cl-channel blockers on the muscle contraction of mouse diaphragm in response to direct electrical muscle stimulation were studied. K+-channel blockers (0.1–1 mmol/1 4-aminopyridine, 0.4–1.2 mmol/l uranyl nitrate and 2-30 mmol/l tetraethylammonium chloride) and a Cl-channel blocker (0.01–0.03 mmol/1 9-anthracene carboxylic acid) increased the contractile amplitudes in a limited extent not to exceed over 50% of control. However, the sequential applications of two different channel blockers at a rather low concentration markedly increased the contractile responses mostly over 300% of control except the combination of 4-aminopyridine and uranyl nitrate. It appears that two K+-channel blockers synergistically exerted their effects rather than additionally in the regulation of muscle contractions. Investigation on the possible mechanism of the synergistic action of K+-channel blockers suggested that prolongation of action potential durations was in a linear correlation with the increased contractions. On the other hand, the contractile potentiation induced by combination of K+- and Cl-channel blockers was attributed to the production of repetitive action potential firings (150±12 Hz) upon a single electrical stimulation. Similar to Cl-channel blocker, low Cl as well as low Ca2+ enchanced K+-channel blockers in producing contractile potentiation accompanied with stimulus-bound repetitive discharges. Tetrodotoxin at a concentration of 0.03 mol/l which did not affect the twitches evoked by electrical stimulations completely inhibited the contractile potentiation induced by the combined application of K+- and Cl-channel blockers. It was believed that these studies on the contractions of mouse diaphragm carried out in the physiological salt solution provided a better approach in exploring the possible functions of K+- and Cl-channels in the regulation of skeletal muscle contractions. Moreover, because of the different K+-channels inhibited by these blockers (4-aminopyridine and uranyl nitrate majorly on delayed rectifier K+-channel and tetraethylammonium ion on Ca2+-activated and ATP-sensitive K+-channel), it was concluded that the different types of K+-channels as well as Cl-channels exert their effects in a synergistic manner on the regulation of the skeletal muscle contractions.  相似文献   

14.
Summary Single-channel K+ currents were recorded in cell-attached patches from slices of rat substantia nigra. On the somata of neurons in the caudal half of the substantia nigra pars reticulata a K+ selective channel with a unitary conductance of 71 pS (154 mmol/l K+ in pipette filling solution) was identified. The channel was activated both by application of diazoxide (300 mol/l) and by energy-depleting conditions (200 mol/l cyanide) and was reversibly blocked by tolbutamide (0.1–1 mmol/l). It is concluded that neurons in the substantia nigra pars reticulata of the rat contain a typical ATP-sensitive K+ channel the activity of which can be modulated by diazoxide and sulfonylureas.Correspondence to: C. Schwanstecher at the above address  相似文献   

15.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

16.
Background: Mechanisms of neuroprotection encompass energy deficits in brain arising from insufficient oxygen and glucose levels following respiratory failure; ischemia or stroke, which produce metabolic stresses that lead to unconsciousness and seizures; and the effects of general anesthetics. Foremost among those K+ channels viewed as important for neuroprotection are ATP-sensitive (KATP) channels, which belong to the family of inwardly rectifying K+ channels (Kir) and contain a sulfonylurea subunit (SUR1 or SUR2) combined with either Kir6.1 (KCNJ8) or Kir6.2 (KCNJ11) channel pore-forming α-subunits, and various members of the tandem two-pore or background (K2P) K+ channel family, including K2P1.1 (KCNK1 or TWIK1), K2P2.1 (KCNK2 or TREK/TREK1), K2P3.1 (KCNK3 or TASK), K2P4.1 (KCNK4 or TRAAK), and K2P10.1 (KCNK10 or TREK2). Objectives: This review covers patents and patent applications related to inventions of therapeutics, compound screening methods and diagnostics, including KATP channel openers and blockers, as well as KATP and K2P nucleic/amino acid sequences and proteins, vectors, transformed cells and transgenic animals. Although the focus of this patent review is on brain and neuroprotection, patents covering inventions of KATP channel openers for cardioprotection, diabetes mellitus and obesity, where relevant, are addressed. Results/conclusions: Overall, an important emerging therapeutic mechanism underlying neuroprotection is activation/opening of KATP and K2P channels. To this end substantial progress has been made in identifying and patenting agents that target KATP channels. However, current K2P channels patents encompass compound screening and diagnostics methodo-logies, reflecting an earlier ‘discovery’ stage (target identification/validation) than KATP in the drug development pipeline; this reveals a wide-open field for the discovery and development of K2P-targeting compounds.  相似文献   

17.
The rank order of potency of a series of benzopyran and cyanoguanidine K+ channel openers (KCOs) for causing relaxation of the PGF2-precontracted porcine coronary artery was determined. Glyburide, an inhibitor of KATP channels, showed an apparent competitive inhibition of the vasorelaxant activity of the KCOs. The pA2 values of glyburide when cromakalim and CGP 14877 (P1060) were used as vasorelaxants were 7.66 and 7.83, respectively. Charybdotoxin (40 nM), an inhibitor of BKCa channels, also caused a significant inhibition of the cromakalim mediated relaxation of the porcine coronary artery. In order to clarify the site of action of these KCOs, we identified a K+ channel current in single porcine coronary arterial cells and measured channel activity in the presence of these compounds. The prominent K+ ion current in these cells had characteristics typical of the conventional large Ca2+-activated K+ channel BKCa present in other smooth muscle cells. Using symmetrical K+ concentrations, the channel had a conductance of 214 pS and was found to be sensitive to [Ca2+]i and membrane potential. The KCOs were found to reversibly increase the open probability (Po) of the channel without changing channel conductance. The potency of the KCOs to increase K+ channel opening was similar to the potency of these compounds to cause coronary artery relaxation. These results indicate that the porcine coronary artery contains the BKCa channel and that this channel, along with other types of K+ channels (KATP), mediate the vasorelaxant effects of K+ channel openers.  相似文献   

18.
The effects of ouabain, an inhibitor of the plasmalemmal Na+/K+-ATPase activity, were examined in human isolated bronchus. Ouabain produced concentration-dependent contraction with –logEC50=7.16±0.11 and maximal effect of 67±4% of the response to acetylcholine (1 mM). Ouabain (10 M)-induced contraction was epithelium-independent and was not depressed by inhibitors of cyclooxygenase and lipoxygenase, antagonists of muscarinic, histamine H1-receptors and -adrenoceptors, or neuronal Na+ channel blockade. The inhibition of ouabain contraction in tissues bathed in K+-free medium, and the inhibition by ouabain of the K+-induced relaxation confirm that the contractile action of ouabain is mediated by inhibition of Na+/K+-ATPase. Furthermore, depolarization (16.4±0.9 mV) was observed in human isolated bronchus by intracellular microelectrode recording. Ouabain (10 M)-induced contractions were abolished by a Ca2+-free solution but not by blockers of L-type Ca2+ channels. In human cultured bronchial smooth muscle cells, ouabain (10 M) produced a sustained increase in [Ca2+]i (116±26 nM) abolished in Ca2+-free medium. Incubation with a Na+-free medium or amiloride (0.1 mM) markedly inhibited the spasmogenic effect of ouabain thus suggesting the role of Na+/Ca2+ exchange in ouabain contraction while selective inhibitors of Na+/H+-antiport, Na+/K+/Cl-antiport, or protein kinase C had no effect. Ouabain (10 M) failed to increase inositol phosphate accumulation in human bronchus. Ouabain (10 M) did not alter bronchial responsiveness to acetylcholine or histamine but inhibited the relaxant effects of isoprenaline, forskolin, levcromakalim, or sodium nitroprusside. These results indicate that ouabain acts directly to produce contraction of human airway smooth muscle that depends on extracellular Ca2+ entry unrelated to L-type channels and involving the Na+/Ca2+-antiporter.  相似文献   

19.

Background and purpose:

ATP-sensitive potassium channels (KATP channels) in beta cells are a major target for insulinotropic drugs. Here, we studied the effects of selected stimulatory and inhibitory pharmacological agents in islets lacking KATP channels.

Experimental approach:

We compared insulin secretion (IS) and cytosolic calcium ([Ca2+]c) changes in islets isolated from control mice and mice lacking sulphonylurea receptor1 (SUR1), and thus KATP channels in their beta cells (Sur1KO).

Key results:

While similarly increasing [Ca2+]c and IS in controls, agents binding to site A (tolbutamide) or site B (meglitinide) of SUR1 were ineffective in Sur1KO islets. Of two non-selective blockers of potassium channels, quinine was inactive, whereas tetraethylammonium was more active in Sur1KO compared with control islets. Phentolamine, efaroxan and alinidine, three imidazolines binding to KIR6.2 (pore of KATP channels), stimulated control islets, but only phentolamine retained weaker stimulatory effects on [Ca2+]c and IS in Sur1KO islets. Neither KATP channel opener (diazoxide, pinacidil) inhibited Sur1KO islets. Calcium channel blockers (nimodipine, verapamil) or diphenylhydantoin decreased [Ca2+]c and IS in both types of islets, verapamil and diphenylhydantoin being more efficient in Sur1KO islets. Activation of α2-adrenoceptors or dopamine receptors strongly inhibited IS while partially (clonidine > dopamine) lowering [Ca2+]c (control > Sur1KO islets).

Conclusions and implications:

Those drugs retaining effects on IS in islets lacking KATP channels, also affected [Ca2+]c, indicating actions on other ionic channels. The greater effects of some inhibitors in Sur1KO than in control islets might be relevant to medical treatment of congenital hyperinsulinism caused by inactivating mutations of KATP channels.  相似文献   

20.
Summary The effects of K+ channel openers, cromakalim and an acetoxyl derivative of KRN 2391 (Ki 4032), were studied on force of contraction, increases in intracellular calcium concentration ([Ca2+]i) measured by fura-2 and inositol 1,4,5-trisphosphate (IP3) production induced by the thromboxane A2 analogue, U46619, in canine coronary arteries. Upon single dose applications of U46619 at 300 nmol/l, phasic and tonic increases in [Ca2+]i and force were seen, which were almost abolished by cromakalim (10 mol/l) and Ki4032 (100 mol/l).In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction. Cromakalim (0.01–10 mol/l) and Ki4032 (0.1–100 mol/l) concentration-dependently inhibited the increases in [Ca2+]i and contraction. The inhibitory effects of cromakalim and Ki4032 were blocked by the K+ channel blocker tetrabutylammonium (TBA) and counteracted by 20 mmol/l KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production significantly and TBA blocked this inhibitory effect. These results suggest that the hyperpolarization of the plasma membrane by K+ channel openers inhibits the production of IP3 and Ca 2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.Correspondence to T. Yanagisawa at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号