首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone remodeling consists of two phases--bone resorption and bone formation--that are normally balanced. When bone resorption exceeds bone formation, pathologic processes, such as osteoporosis, can result. Cathepsin K is a member of the papain family of cysteine proteases that is highly expressed by activated osteoclasts. Cathepsin K readily degrades type I collagen, the major component of the organic bone matrix. With such a major role in the initial process of bone resorption, cathepsin K has become a therapeutic target in osteoporosis. The antiresorptive properties of cathepsin K inhibitors have been studied in phase I and phase II clinical trials. Phase III studies are currently underway for odanacatib, a selective cathepsin K inhibitor.  相似文献   

2.
Postmenopausal osteoporosis is a disease of high bone remodeling, with an imbalance of bone resorption over bone formation, resulting in decreased bone mineral density and disruption of bone microarchitecture. With our improved understanding of the molecular and cellular regulators and mediators of bone remodeling, new targets for therapeutic intervention have been identified. Receptor activator of nuclear factor κB ligand (RANKL) is the principal regulator of osteoclast differentiation, activity, and survival; denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and is approved for the treatment of women with postmenopausal osteoporosis at high risk of fractures. Cathepsin K is a protease produced by activated osteoclasts that degrades the protein matrix of bone. An inhibitor of cathepsin K, odanacatib, is in phase III clinical trials for the treatment of postmenopausal osteoporosis; it decreases bone resorption while seeming to suppress bone formation less than other antiresorptive agents. Sclerostin is a cytokine produced by osteocytes that inhibits osteoblastic bone formation; investigational monoclonal antibodies to sclerostin, such as AMG 785, have osteoanabolic properties with the potential to improve clinical outcomes in patients with osteoporosis. These and other novel interventions that target newly recognized regulators of bone remodeling are promising agents for the treatment of osteoporosis.  相似文献   

3.
A human in vitro resorption assay has been developed using osteoclastoma-derived osteoclasts and used to evaluate novel antiresorptive agents including antagonists of the alphavbeta3 integrin, and inhibitors of cathepsin K and the osteoclast ATPase. The potency of novel compounds in the in vitro resorption assay correlates with functional assays for each class of inhibitor: the human alphavbeta3-mediated cell adhesion assay for the vitronectin receptor antagonists (r2 = 0.82), the chick osteoclast vacuolar ATPase enzyme assay for the H+-ATPase inhibitors (r2 = 0.77) and the recombinant human cathepsin K enzyme assay for the cathepsin K inhibitors (r2 = 0.80). Cell suspensions, rich in osteoclasts, are prepared by collagenase digestion of the tumor tissue. These cells can be stored long-term in liquid nitrogen and upon thawing maintain their bone-resorbing phenotype. The cryopreserved cells can be cultured on bovine cortical bone for 24-48 h and resorption can be measured by either confocal microscopy or biochemical assays. The resorptive activity of osteoclasts derived from a number of tumors can be inhibited reproducibly using a number of mechanistically unique antiresorptive compounds. In addition, the measurement of resorption pits by laser confocal microscopy correlates with the release of type I collagen C-telopeptides or N-telopeptides, as measured by enzyme-linked immunosorbent assay. Resorption can be measured reproducibly using a 48-h incubation of osteoclasts on bone slices, or a 24-h incubation with bone particles. This in vitro human osteoclast resorption assay provides a robust system for the evaluation of inhibitors of osteoclastic function that may be developed for the treatment of metabolic bone diseases such as osteoporosis.  相似文献   

4.
Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous bone matrix. INTRODUCTION: The osteoclast resorbs bone by lowering the pH in the resorption lacuna, which is followed by secretion of proteolytic enzymes. One of the enzymes taken to be essential in resorption is the cysteine proteinase, cathepsin K. Some immunolabeling and enzyme inhibitor data, however, suggest that other cysteine proteinases and/or proteolytic enzymes belonging to the group of matrix metalloproteinases (MMPs) may participate in the degradation. In this study, we investigated whether, in addition to cathepsin K, other enzymes participate in osteoclastic bone degradation. MATERIALS AND METHODS: In bones obtained from mice deficient for cathepsin K, B, or L or a combination of K and L, the bone-resorbing activity of osteoclasts was analyzed at the electron microscopic level. In addition, bone explants were cultured in the presence of different selective cysteine proteinase inhibitors and an MMP inhibitor, and the effect on resorption was assessed. Because previous studies showed differences in resorption by calvarial osteoclasts compared with those present in long bones, in all experiments, the two types of bone were compared. Finally, bone extracts were analyzed for the level of activity of cysteine proteinases and the effect of inhibitors hereupon. RESULTS: The analyses of the cathepsin-deficient bone explants showed that, in addition to cathepsin K, calvarial osteoclasts use other cysteine proteinases to degrade bone matrix. It was also shown that, in the absence of cathepsin K, long bone osteoclasts use MMPs for resorption. Cathepsin L proved to be involved in the MMP-mediated resorption of bone by calvarial osteoclasts; in the absence of this cathepsin, calvarial osteoclasts do not use MMPs for resorption. Selective inhibitors of cathepsin K and other cysteine proteinases showed a stronger effect on calvarial resorption than on long bone resorption. CONCLUSIONS: Our findings suggest that (1) cathepsin K-deficient long bone osteoclasts compensate the lack of this enzyme by using MMPs in the resorption of bone matrix; (2) cathepsin L is involved in MMP-mediated resorption by calvarial osteoclasts; (3) in addition to cathepsin K, other, yet unknown, cysteine proteinases are likely to participate in skull bone degradation; and finally, (4) the data provide strong additional support for the existence of functionally different bone-site specific osteoclasts.  相似文献   

5.
Cysteine proteinases, especially cathepsin K, play an important role in osteoclastic degradation of bone matrix proteins and the process can, consequently, be significantly inhibited by cysteine proteinase inhibitors. We have recently reported that cystatin C and other cysteine proteinase inhibitors also reduce osteoclast formation. However, it is not known which cysteine proteinase(s) are involved in osteoclast differentiation. In the present study, we compared the relative potencies of cystatins C and D as inhibitors of bone resorption in cultured mouse calvariae, osteoclastogenesis in mouse bone marrow cultures, and cathepsin K activity. Inhibition of cathepsin K activity was assessed by determining equilibrium constants for inhibitor complexes in fluorogenic substrate assays. The data demonstrate that whereas human cystatins C and D are equipotent as inhibitors of bone resorption, cystatin D is 10-fold less potent as an inhibitor of osteoclastogenesis and 200-fold less potent as an inhibitor of cathepsin K activity. A recombinant human cystatin C variant with Gly substitutions for residues Arg8, Leu9, Val10, and Trp106 did not inhibit bone resorption, had 1,000-fold decreased inhibitory effect on cathepsin K activity compared to wildtype cystatin C, but was equipotent with wildtype cystatin C as an inhibitor of osteoclastogenesis. It is concluded that (i) different cysteine proteinases are likely to be involved in bone resorption and osteoclast formation, (ii) cathepsin K may not be an exclusive target enzyme in any of the two systems, and (iii) the enzyme(s) involved in osteoclastogenesis might not be a typical papain-like cysteine proteinase.  相似文献   

6.
Cathepsin K is a cysteine protease that plays an essential role in osteoclast-mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB-357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB-357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin-releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB-357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N-terminal telopeptides (NTx) and C-terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis.  相似文献   

7.
Cathepsin K is a member of the papain superfamily of cysteine proteases and has been proposed to play a pivotal role in osteoclast-mediated bone resorption. We have developed a sensitive cytochemical assay to localize and quantify osteoclast cathepsin K activity in sections of osteoclastoma and human bone. In tissue sections, osteoclasts that are distant from bone express high levels of cathepsin K messenger RNA (mRNA) and protein. However, the majority of the cathepsin K in these cells is in an inactive zymogen form, as assessed using both the cytochemical assay and specific immunostaining. In contrast, osteoclasts that are closer to bone contain high levels of immunoreactive mature cathepsin K that codistributes with enzyme activity in a polarized fashion toward the bone surface. Polarization of active enzyme was clearly evident in osteoclasts in the vicinity of bone. The osteoclasts apposed to the bone surface were almost exclusively expressing the mature form of cathepsin K. These cells showed intense enzyme activity, which was polarized at the ruffled border. These results suggest that the in vivo activation of cathepsin K occurs intracellularly, before secretion into the resorption lacunae and the onset of bone resorption. The processing of procathepsin K to mature cathepsin K occurs as the osteoclast approaches bone, suggesting that local factors may regulate this process.  相似文献   

8.
Osteoporosis is an osteolytic disease that features enhanced osteoclast formation and bone resorption. Identification of agents that can inhibit osteoclast formation and function is important for the treatment of osteoporosis. Dihydroartemisinin is a natural compound used to treat malaria but its role in osteoporosis is not known. Here, we found that dihydroartemisinin can suppress RANKL‐induced osteoclastogenesis and bone resorption in a dose‐dependent manner. Dihydroartemisinin inhibited the expression of osteoclast marker genes such as cathepsin K, calcitonin receptor, and tartrate‐resistant acid phosphatase (TRAcP). Furthermore, dihydroartemisinin inhibited RANKL‐induced NF‐κB and NFAT activity. In addition, using an in vivo ovariectomized mouse model, we show that dihydroartemisinin is able to reverse the bone loss caused by ovariectomy. Together, this study shows that dihydroartemisinin attenuates bone loss in ovariectomized mice through inhibiting RANKL‐induced osteoclast formation and function. This indicates that dihydroartemisinin, the first physiology or medicine nobel prize discovery of China, is a potential treatment option against osteolytic bone disease. © 2015 American Society for Bone and Mineral Research.  相似文献   

9.
Cathepsin K is a cystein protease that displays a proteolytic activity against Type I collagen and is abundantly and selectively expressed in osteoclasts where it plays a critical role in bone degradation. Its direct role in bone tissue has been defined by knock-out mice studies and inhibiting strategies in animals models. However, direct proof of cathepsin K function in human osteoclast model in vitro is lacking. The aim of this study is to analyze cathepsin K expression and localization in human osteoclasts obtained from peripheral blood and to examine cathepsin K function in these cells by antisense oligodeoxynucleotide (AS-ODN) strategy. AS-ODN was added to the culture of osteoclast precursors induced to differentiate by RANKL and M-CSF. AS-ODN treatment produced a significant down-regulation of cathepsin K mRNA (>80%) and protein expression, as verified respectively by Real-time PCR and by immunocytochemistry or Western blot. The cathepsin K inhibition caused an impairment of resorption activity as evaluated by a pit formation assay ( p = 0.045) and by electron microscopy, while the acidification process was unaffected. We demonstrated that antisense strategies against cathepsin K are selectively effective to inhibit resorption activity in human osteoclasts, like in animal models.  相似文献   

10.
Antiresorptive agents, used in the treatment of osteoporosis, inhibit either osteoclast formation or function. However, with these approaches, osteoblast activity is also reduced because of the loss of osteoclast-derived coupling factors that serve to stimulate bone formation. This review discusses how osteoclast inhibition influences osteoblast function, comparing the actions of an inhibitor of osteoclast formation [anti-RANKL/Denosumab (DMAB)] with that of a specific inhibitor of osteoclastic cathepsin K activity [Odanacatib (ODN)]. Denosumab rapidly and profoundly, but reversibly, reduces bone formation. In contrast, preclinical studies and clinical trials of ODN showed that bone formation at some skeletal sites was preserved although resorption was reduced. This preservation of bone formation appears to be due to effects of coupling factors, secreted by osteoclasts and released from demineralized bone matrix. This indicates that bone resorptive activities of osteoclasts are separable from their coupling activities.  相似文献   

11.
12.
Cathepsin K is an osteoclast-derived cysteine protease that has been implicated as playing a major role in bone resorption. A substantial body of evidence indicates that cathepsin K is critical in osteoclast-mediated bone resorption and suggests that its pharmacological inhibition should result in inhibition of bone resorption in vivo. Here we report the pharmacological characterization of SB-462795 (relacatib) as a potent and orally bioavailable small molecule inhibitor of cathepsin K that inhibits bone resorption both in vitro in human tissue and in vivo in cynomolgus monkeys. SB-462795 is a potent inhibitor of human cathepsins K, L, and V (K(i, app)=41, 68, and 53 pM, respectively) that exhibits 39-300-fold selectivity over other cathepsins. SB-462795 inhibited endogenous cathepsin K in situ in human osteoclasts and human osteoclast-mediated bone resorption with IC50 values of approximately 45 nM and approximately 70 nM, respectively. The anti-resorptive potential of SB-462795 was evaluated in normal as well as medically ovariectomized (Ovx) female cynomolgus monkeys. Serum levels of the C- and N-terminal telopeptides of Type I collagen (CTx and NTx, respectively) and urinary levels of NTx were monitored as biomarkers of bone resorption. Administration of SB-462795 to medically ovariectomized or normal monkeys resulted in an acute reduction in both serum and urinary markers of bone resorption within 1.5 h after dosing, and this effect lasted up to 48 h depending on the dose administered. Our data indicate that SB-462795 potently inhibits human cathepsin K in osteoclasts, resulting in a rapid inhibition of bone resorption both in vitro and in vivo in the monkey. These studies also demonstrate the therapeutic potential of relacatib in the treatment of postmenopausal osteoporosis and serves to model the planned clinical trials in human subjects.  相似文献   

13.
Numerous experimental and clinical observations suggest that overall changes in bone resorption during menopause or treatment with hormone replacement therapy (HRT) are combined effects of changes in osteoclast number and function. Moreover, due to a coupling between osteoclastic bone resorption and osteoblastic bone formation, pronounced alteration of osteoclast number will eventually lead to alteration of osteoblastic bone formation. Fragments of type I collagen, such as the C- and N-terminal telopeptides of collagen type I (CTX and NTX, respectively), are generated during bone resorption and hence can be used as surrogate markers of osteoclast function. Circulating levels of different enzymes in the serum, such as TRAP 5b and cathepsin K are proportional to the number of osteoclasts, and hence can be used as surrogate markers of osteoclast number. Since antiresorptive effects can be obtained in different ways, we felt it was timely to discuss the different scenarios, highlight differences specific to different pharmacological interventions with different mechanisms of action, and discuss how these bone markers can assist us in a deeper analysis of the pharmacodynamics and safety profile of existing and upcoming drug candidates.  相似文献   

14.
Cathepsin K inhibitors, such as ONO‐5334, are being developed for the treatment of postmenopausal osteoporosis. However, their relative effects on bone resorption and formation, and how quickly the effects resolve after treatment cessation, are uncertain. The aim of this study was to examine the efficacy and safety of 24‐month treatment with ONO‐5334 and to assess the effect of treatment cessation over 2 months. We studied 197 postmenopausal women with osteoporosis or osteopenia with one fragility fracture. Patients were randomized to ONO‐5334 50 mg twice daily, 100 mg or 300 mg once daily, alendronate 70 mg once weekly (positive control), or placebo for 24 months. After 24 months, all ONO‐5334 doses were associated with increased bone mineral density (BMD) for lumbar spine, total hip, and femoral neck (p < 0.001). ONO‐5334 300 mg significantly suppressed the bone‐resorption markers urinary (u) NTX and serum and uCTX‐I throughout 24 months of treatment and to a similar extent as alendronate; other resorption marker levels remained similar to placebo (fDPD for ONO‐5334 300 mg qd) or were increased (ICTP, TRAP5b, all ONO‐5334 doses). Levels of B‐ALP and PINP were suppressed in all groups (including placebo) for approximately 6 months but then increased for ONO‐5334 to close to baseline levels by 12 to 24 months. On treatment cessation, there were increases above baseline in uCTX‐I, uNTX, and TRAP5b, and decreases in ICTP and fDPD. There were no clinically relevant safety concerns. Cathepsin K inhibition with ONO‐5334 resulted in decreases in most resorption markers over 2 years but did not decrease most bone formation markers. This was associated with an increase in BMD; the effect on biochemical markers was rapidly reversible on treatment cessation. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
Bone homeostasis requires stringent regulation of osteoclasts, which secrete proteolytic enzymes to degrade the bone matrix. Despite recent progress in understanding how bone resorption occurs, the mechanisms regulating osteoclast secretion, and in particular the trafficking route of cathepsin K vesicles, remain elusive. Using a genetic approach, we describe the requirement for protein kinase C–delta (PKCδ) in regulating bone resorption by affecting cathepsin K exocytosis. Importantly, PKCδ deficiency does not perturb formation of the ruffled border or trafficking of lysosomal vesicles containing the vacuolar‐ATPase (v‐ATPase). Mechanistically, we find that cathepsin K exocytosis is controlled by PKCδ through modulation of the actin bundling protein myristoylated alanine‐rich C‐kinase substrate (MARCKS). The relevance of our finding is emphasized in vivo because PKCδ?/? mice exhibit increased bone mass and are protected from pathological bone loss in a model of experimental postmenopausal osteoporosis. Collectively, our data provide novel mechanistic insights into the pathways that selectively promote secretion of cathepsin K lysosomes independently of ruffled border formation, providing evidence of the presence of multiple mechanisms that regulate lysosomal exocytosis in osteoclasts. © 2012 American Society for Bone and Mineral Research.  相似文献   

16.
Chemerin is an adipokine that regulates adipogenesis and metabolic functions of mature adipocytes mainly through the activation of chemokine‐like receptor 1 (CMKLR1). Elevated levels of chemerin have been found in individuals with obesity, type 2 diabetes, and osteoporosis. This adipokine was identified as an inflammatory and metabolic syndrome marker. Considering that the association between metabolic syndrome and bone health remains unclear, the present study aimed to clarify the role of chemerin in the pathophysiology of bone loss induced by dyslipidemia, particularly modulating osteoclastogenesis. In vitro analyses showed a downregulation of CMKLR1 at the early stage of differentiation and a gradual increase at late stages. Strikingly, chemerin did not modify osteoclast differentiation markers or osteoclast formation; however, it increased the actin‐ring formation and bone resorption activity in mature osteoclasts. The increased bone resorption activity induced by chemerin was effectively inhibited by CMKLR1 antagonist (CCX832). Chemerin boosting mature osteoclast activity involves ERK5 phosphorylation. Moreover, two models of dyslipidemia (high‐fat diet [HFD]‐treated C57/BL6 and db/db mice) exhibited significantly increased level of chemerin in the serum and gingival tissue. Morphometric analysis showed that HFD‐treated and db/db mice exhibited increased alveolar bone loss compared to respective control mice, which was associated with an up‐regulation of chemerin, CMKLR1 and cathepsin K mRNA expression in the gingival tissue. The treatment of db/db mice with CCX832 effectively inhibited bone loss. Antagonism of chemerin receptor also inhibited the expression of cathepsin K in the gingival tissue. Our results show that chemerin not only increases osteoclasts activity in vitro, but also that increased level of chemerin in dyslipidemic mice plays a critical role in bone homeostasis. © 2016 American Society for Bone and Mineral Research.  相似文献   

17.
Expression of bone resorption genes in osteoarthritis and in osteoporosis   总被引:6,自引:0,他引:6  
Cathepsin K and MMP-9 are considered to be the most abundant proteases in osteoclasts. TRAP is a marker for osteoclasts, and there is increasing evidence of its proteolytic role in bone resorption. RANKL is a recently discovered regulator of osteoclast maturation and activity and induces expression of many genes. This study compared cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin gene expression in the proximal femur of patients with osteoarthritis with that of patients with femoral neck fracture. Fifty-six patients undergoing arthroplasty because of osteoarthritis or femoral neck fracture were included in the study. Total mRNA was extracted from the bone samples obtained from the intertrochanteric region of the proximal femur. Real-time RT-PCR was used to quantify CTSK (cathepsin K), MMP-9 (matrix metalloproteinase 9), ACP5 (TRAP), TNFSF11 (RANKL), TNFRSF11B (OPG), and BGLAP (osteocalcin) mRNAs. The levels of mRNAs coding for MMP-9 and osteocalcin indicated higher expression in the osteoarthritic group (P = 0.011, P = 0.001, respectively), whereas RANKL expression and the ratio RANKL/OPG were both significantly lower in the osteoarthritic group than in the fracture group. Expression of cathepsin K, MMP-9, and TRAP relative to RANKL was significantly higher in the osteoarthritic group. Ratios of all three proteolytic enzymes relative to formation marker osteocalcin were higher in the fracture group. Gene expression of cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin and the association between their mRNA levels pointed to higher bone resorption and bone formation in osteoarthritis, differences in balance between them, and differences in regulation of bone resorption in osteoarthritic and osteoporotic bone.  相似文献   

18.
SI-591[N-[1-[[[(1S)-3-[[(3S)-hexahydro-2-oxo-1H-azepin-3-yl]amino]-1-(1-methylethyl)-2,3-dioxopropyl]amino]carbonyl]cyclohexyl]-2-furancarboxamide] is an orally bioavailable compound that was synthesized as one of several unique peptidomimetic compounds without a basic group. This compound was found to have the ability to inhibit cathepsin K, a lysosomal cysteine protease. Cathepsin K is known to be expressed in osteoclasts and involved in bone loss processes. In this study, SI-591 was shown to inhibit the activity of various purified cathepsin molecules at nanomolar concentrations but had high selectivity for cathepsin K over other subtypes including B and L. SI-591 also decreased the level of CTX-I, a bone resorption marker, which was released from osteoclasts in vitro in a dose-dependent manner. The mobilization of calcium from the bones to the blood stream is known to increase in rats fed with a low calcium diet; SI-591 inhibited this increase in serum calcium level at an oral dose of 3 mg/kg. Furthermore, SI-591 significantly decreased the level of CTX-I and DPD, bone resorption markers, at oral doses of 10 mg/kg or less in ovariectomized rats, while it did not affect the level of BGP, a bone formation marker. In addition, SI-591 prevented bone mineral density loss in the lumber vertebrae and femurs in ovariectomized rats. These results suggest that SI-591 inhibits bone resorption without affecting osteoblast maturation. Therefore, SI-591, a novel cathepsin K inhibitor, could be a promising agent for the treatment of postmenopausal osteoporosis.  相似文献   

19.
We hypothesized that the anabolic action of parathyroid hormone (PTH) with the anti-catabolic agents cathepsin K inhibitor and alendronate differs depending on the remodeling status in the bone. C57/BL/6J mice, 8 weeks of age, were subjected to ovariectomized (OVX) or sham surgery. At 6 weeks after surgery, the mice were treated with cathepsin K inhibitor, alendronate, or a vehicle (daily, for 8 weeks), with or without PTH (1–34) (5 times/week, for the last 4 weeks). We assessed the bone chemical markers of the serum and urine, bone mineral density (BMD), histomorphomery in the primary and secondary spongiosa of the proximal tibia after fluorescence labeling, primary cell culture, and mRNA expressions in bone marrow cells. Cathepsin K inhibitor and alendronate significantly increased the BMD and the bone volume of the primary and secondary spongiosa, with a reduction of the urinary C-telopeptide of type I collagen that was increased by OVX, respectively. Cathepsin K inhibitor augmented the anabolic action of PTH on the BMD and bone volume at both the primary and secondary spongiosa, while alendronate had the same effect on the BMD and bone volume only at the primary spongiosa. Cathepsin K inhibitor did not decrease serum osteocalcin with or without PTH, while alendronate did decrease it. Cathepsin K inhibitor did not decrease the values of osteoclast number or bone formation rate with or without PTH, while alendronate decreased those values and increased osteoclast apoptosis. The combination of PTH and cathepsin K inhibitor increased alkaline phosphatase-positive CFU-f formation and c-fos, osterix, and osteocalcin mRNA expressions of bone marrow cells as well as PTH alone, while the combination of PTH and alendronate decreased those values. This study demonstrated that alendronate enhances the anabolic action of PTH at the primary spongiosa, but blunts it in the remodeling trabecular bone, while cathepsin K inhibitor enhances the action at both sites in OVX mice. In conclusion, the anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status of bone in OVX mice.  相似文献   

20.
The localization of cathepsin K protein in mouse osteoclasts was examined by immunolight and immunoelectron microscopy using the avidin-biotin-peroxidase complex method with anti-cathepsin K (mouse) antibody. With light microscopy, a strong immunoreaction for cathepsin K was found extracellularly along the bone and cartilage resorption lacunae and detected intracellularly in vesicles, granules, and vacuoles throughout the cytoplasm of multinuclear osteoclasts and chondroclasts attached to the surface of the bone or cartilage. Mononuclear cells, probably preosteoclasts, some distance from the bone also contained a few cathepsin K-positive vesicles and granules. Cathepsin K was sometimes found in the cisternal spaces of the rough endoplasmic reticulum and vesicles of the Golgi apparatus with electron microscopy of the basolateral region of the osteoclasts. Cathepsin K-positive vesicles and granules as lysosomal compartments were present in various stages of fusion with vacuoles as endosomal compartments that contained fragmented cathepsin K-negative fibril-like structures. Some of the vacuoles (endolysosomes), which seemed to be formed by this process of fusion, contained cathepsin K-positive vesicles and fibril-like structures that did not show the regular cross striation of type I collagen fibrils. In the apical region of the osteoclasts, cathepsin K-positive vesicles and pits had already fused with or were in the process of fusing with the ampullar extracellular spaces. There were large deposits of cathepsin K on fragmented fibril-like structures without regular cross striation in the extracellular spaces, as well as on and between the cytoplasmic processes of the ruffled border. There were also extensive deposits of cathepsin K on the type I collagen fibrils with cross striation in the bone resorption lacunae. Osteoblasts and osteocytes were negative for cathepsin K. In the immunocytochemical controls, no immunoreaction was found in the osteoclasts or preosteoclasts, or on the collagen fibrils in the resorption lacunae. The results indicate that cathepsin K is produced in mature osteoclasts attached to the bone and secreted into the bone resorption lacunae. The findings suggest that cathepsin K participates in the extracellular degradation of collagen fibrils in the resorption lacunae and in the subsequent degradation of the fragmented fibrils in the endolysosomes. It is also suggested that cathepsin K degrades the organic cartilage matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号