首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation.  相似文献   

2.
Lahav J  Jurk K  Hess O  Barnes MJ  Farndale RW  Luboshitz J  Kehrel BE 《Blood》2002,100(7):2472-2478
Studies have suggested a pivotal role for free sulfhydryls in platelet integrin function, and enzyme-mediated reduction of disulfide bonds on platelets has been implicated. The platelet fibrinogen receptor alpha(IIb)beta(3) is the best-studied platelet integrin and serves as a model system for studying the structure-function relation in this family of adhesion receptors. The demonstration of free sulfhydryls on the exofacial domain of purified alpha(IIb)beta(3), specifically in its activated conformation, prompted us to explore the potential for activation-dependent, enzymatically catalyzed thiol expression on intact platelets and the possible role of surface-associated protein disulfide isomerase (PDI) in alpha(IIb)beta(3) ligation. Using the membrane-impermeant sulfhydryl blocker para-chloromercuriphenyl sulfonate, the inhibitor of disulfide exchange bacitracin, and the monoclonal anti-PDI antibody RL90, we examined fibrinogen binding to alpha(IIb)beta(3) as well as ligation-induced allosteric changes in the conformation of alpha(IIb)beta(3). We sought to distinguish the possible involvement of disulfide exchange in agonist-induced platelet stimulation from its role in integrin ligation. Analysis of the role of free thiols in platelet aggregation suggested a thiol-independent initial ligation followed by a thiol-dependent stabilization of binding. Flow cytometric analysis showed that sustained binding of fibrinogen, as well as expression of ligand-induced binding site epitopes and ligand-bound conformation, depended on free thiols and disulfide exchange. Expression of P-selectin was minimally affected, even with complete inhibition of alpha(IIb)beta(3) function. These data indicate that although agonist-induced platelet stimulation is independent of ecto-sulfhydryls, engagement of integrin alpha(IIb)beta(3) on the intact platelet depends totally on their enzymatically catalyzed surface expression.  相似文献   

3.
The thiol isomerase enzymes protein disulphide isomerase (PDI) and endoplasmic reticulum protein 5 (ERp5) are released by resting and activated platelets. These re‐associate with the cell surface where they modulate a range of platelet responses including adhesion, secretion and aggregation. Recent studies suggest the existence of yet uncharacterised platelet thiol isomerase proteins. This study aimed to identify which other thiol isomerase enzymes are present in human platelets. Through the use of immunoblotting, flow cytometry, cell‐surface biotinylation and gene array analysis, we report the presence of five additional thiol isomerases in human and mouse platelets and megakaryocytes, namely; ERp57, ERp72, ERp44, ERp29 and TMX3. ERp72, ERp57, ERp44 and ERp29 are released by platelets and relocate to the cell surface following platelet activation. The transmembrane thiol isomerase TMX3 was also detected on the platelet surface but does not increase following activation. Extracellular PDI is also implicated in the regulation of coagulation by the modulation of tissue factor activity. ERp57 was identified within platelet‐derived microparticle fractions, suggesting that ERp57 may also be involved in the regulation of coagulation as well as platelet function. These data collectively implicate the expanding family of platelet‐surface thiol isomerases in the regulation of haemostasis.  相似文献   

4.
Li Z  Zhang G  Feil R  Han J  Du X 《Blood》2006,107(3):965-972
Integrin activation (inside-out signaling) in platelets can be initiated by agonists such as von Willebrand factor (VWF) and thrombin. Here we show that a mitogen-activated protein kinase (MAPK), p38, plays an important role in the activation of integrin alphaIIb beta3 induced by VWF and thrombin. A dominant-negative mutant of p38, p38AF, inhibits alphaIIb beta3 activation induced by VWF binding to its receptor, the platelet glycoprotein Ib-IX (GPIb-IX), and p38 inhibitors diminish platelet aggregation induced by VWF or low-dose thrombin. The inhibitory effect of p38 inhibitor is unlikely to be caused by the previous suggested effect on cyclo-oxygenase, as inhibition also was observed in the presence of high concentrations of cyclo-oxygenase inhibitor, aspirin. VWF or thrombin induces p38 activation, which is inhibited in cGMP-dependent protein kinase (PKG)-knockout mouse platelets and PKG inhibitor-treated human platelets, indicating that activation of p38 is downstream from PKG in the signaling pathway. p38AF or p38 inhibitors diminish PKG-induced phosphorylation of extracellular stimuli-responsive kinase (ERK), which also is important in integrin activation. Thus, p38 plays an important role in mediating PKG-dependent activation of ERK. These data delineate a novel signaling pathway in which platelet agonists sequentially activate PKG, p38, and ERK pathways leading to integrin activation.  相似文献   

5.
Integrin alpha2beta1 is the principal adhesive receptor for collagen but platelets also adhere through glycoprotein VI (GPVI). Integrin alphaIIbbeta3 may augment platelet adhesion. We have shown that disulfide exchange is necessary for platelet adhesion to fibrinogen, fibronectin, and collagen. However 2 questions remained: (1) Can activated alphaIIbbeta3 explain the observed role of disulfide exchange in adhesion to collagen, or is this role common to other integrins? (2) Is disulfide dependence specific to the integrin receptors or shared with GPVI? To discriminate adhesive functions of alpha2beta1 from those of alphaIIbbeta3 we used Glanzmann platelets and alphaIIbbeta3-specific antibodies applied to normal platelets. To resolve adhesive events mediated by alpha2beta1 from those of GPVI we used synthetic peptides specific to each receptor. We addressed direct integrin ligation using purified alpha2beta1 and recombinant I domain. We observed the following: adhesion to the alpha2beta1-specific peptide was disulfide-exchange dependent and protein disulfide isomerase (PDI) mediated; membrane-impermeant thiol blockers inhibited alpha2beta1, but not GPVI mediated, adhesion; direct blockade of PDI revealed that it is involved in adhesion through alpha2beta1 but not GPVI; and purified alpha2beta1, but not recombinant I domain, depended on free thiols for ligation. These data suggest that the enzymatically catalyzed adhesion-associated reorganization of disulfide bonds is common to members of the integrin family and specific to this family.  相似文献   

6.
7.
The platelet integrin alphaIIbbeta3 alters conformation in response to platelet activation and ligand binding, although the molecular mechanisms involved are not known. We previously showed that a lipid modified peptide, corresponding to the membrane proximal 989KVGFFKR995 portion of the alphaIIb cytoplasmic tail, independently activates platelet alphaIIbbeta3. Calreticulin (CRT) is a potential integrin regulatory protein based on its interaction with the highly conserved alpha-integrin sequence KxGFFKR. We therefore examined the possible interaction of calreticulin and alphaIIbbeta3 in human platelets. We demonstrate that calreticulin in platelets is localised to the granulomere. In contrast, the known integrin-binding protein talin accumulates at the periphery of spreading platelets and colocalises with alphaIIbbeta3 during the process of adhesion. An interaction between calreticulin and alphaIIbbeta3 could not be demonstrated using co-immunoprecipitation techniques under various platelet activation states, even in the presence of covalent chemical crosslinkers. Thus, calreticulin does not functionally interact with the major integrin in human platelets. In order to identify proteins that interact with the integrin KVGFFKR motif we then used a peptide 'pull-down' assay from platelet lysates with biotinylated peptides and demonstrate that only the alphaIIb and beta3 subunits selectively and individually interact with this sequence. This interaction is divalent cation-dependent, has high-affinity, and occurs both with purified alphaIIbbeta3 complex and with electroeluted alpha and beta subunits. Thus, our data show that the conserved integrin KVGFFKR domain interacts primarily with the alpha and beta cytoplasmic tails and not with CRT in human platelets.  相似文献   

8.
A push-pull mechanism for regulating integrin function   总被引:4,自引:0,他引:4       下载免费PDF全文
Homomeric and heteromeric interactions between the alphaIIb and beta3 transmembrane domains are involved in the regulation of integrin alphaIIbbeta3 function. These domains appear to interact in the inactivated state but separate upon integrin activation. Moreover, homomeric interactions may increase the level of alphaIIbbeta3 activity by competing for the heteromeric interaction that specifies the resting state. To test this model, a series of mutants were examined that had been shown previously to either enhance or disrupt the homomeric association of the alphaIIb transmembrane domain. One mutation that enhanced the dimerization of the alphaIIb transmembrane domain indeed induced constitutive alphaIIbbeta3 activation. However, a series of mutations that disrupted homodimerization also led to alphaIIbbeta3 activation. These results suggest that the homo- and heterodimerization motifs overlap in the alphaIIb transmembrane domain, and that mutations that disrupt the alphaIIb/beta3 transmembrane domain heterodimer are sufficient to activate the integrin. The data also imply a mechanism for alphaIIbbeta3 regulation in which the integrin can be shifted from its inactive to its active state by destabilizing an alphaIIb/beta3 transmembrane domain heterodimer and by stabilizing the resulting alphaIIb and beta3 transmembrane domain homodimers.  相似文献   

9.
Blue R  Murcia M  Karan C  Jirousková M  Coller BS 《Blood》2008,111(3):1248-1256
Small-molecule alphaIIbbeta3 antagonists competitively block ligand binding by spanning between the D224 in alphaIIb and the MIDAS metal ion in beta3. They variably induce conformational changes in the receptor, which may have undesirable consequences. To identify alphaIIbbeta3 antagonists with novel structures, we tested 33 264 small molecules for their ability to inhibit the adhesion of washed platelets to immobilized fibrinogen at 16 muM. A total of 102 compounds demonstrated 50% or more inhibition, and one of these (compound 1, 265 g/mol) inhibited ADP-induced platelet aggregation (IC(50): 13+/- 5 muM), the binding of soluble fibrinogen to platelets induced by mAb AP5, and the binding of soluble fibrinogen and a cyclic RGD peptide to purified alphaIIbbeta3. Compound 1 did not affect the function of GPIb, alpha2beta1, or the other beta3 family receptor alphaVbeta3. Molecular docking simulations suggest that compound 1 interacts with alphaIIb but not beta3. Compound 1 induced partial exposure of an alphaIIb ligand-induced binding site (LIBS), but did not induce exposure of 2 beta3 LIBS. Transient exposure of purified alphaIIbbeta3 to eptifibatide, but not compound 1, enhanced fibrinogen binding ("priming"). Compound 1 provides a prototype for small molecule selective inhibition of alphaIIbbeta3, without receptor priming, via targeting alphaIIb.  相似文献   

10.
Platelet surface thiols and disulphides play an important role in platelet responses. Agents that reduce disulphide bonds expose the fibrinogen receptor in platelets and activate the purified glycoprotein (GP) IIbIIIa receptor. Protein disulphide isomerase (PDI), an enzyme that rearranges disulphides bonds, is found on the platelet surface where it is catalytically active. We investigated the role of PDI in platelet responses using (1) rabbit anti-PDI IgG specific for PDI, (2) a competing substrate (scrambled ribonuclease A), and (3) the PDI inhibitor, bacitracin. Fab fragments of the rabbit anti-PDI IgG inhibited platelet responses to the agonists tested (ADP and collagen), whereas Fab fragments prepared identically from normal rabbit IgG had no inhibitory effect. Scrambled ribonuclease A blocked platelet aggregation and secretion, but native ribonuclease A did not. When biphasic platelet aggregation was examined using platelets in citrated plasma, the principle effect of bacitracin was on second phase or irreversible aggregation responses and the accompanying secretion. Using flow cytometry and an antibody specific for activated GPIIbIIIa (PAC-1), the rabbit anti-PDI Fab fragments substantially inhibited activation of GPIIbIIIa when added before, but not after, platelet activation. In summary, we have demonstrated that protein disulphide isomerase mediates platelet aggregation and secretion, and that it activates GPIIbIIIa, suggesting this receptor as the target of the enzyme.  相似文献   

11.
PURPOSE OF REVIEW: Integrin alphaIIbbeta3 activation is essential for platelet aggregation and related hemostatic events. In recent years, intense effort has been put forward to understand the molecular mechanisms regulating platelet integrin alphaIIbbeta3 activation. Here we review the current models of alphaIIbbeta3 activation and highlight the potential regulatory roles of proteins that interact directly with the alphaIIbbeta3 cytoplasmic domains, with emphasis on the alphaIIb cytoplasmic domain binding protein, CIB1. RECENT FINDINGS: Mutational and crystallographic studies reveal the importance of integrin transmembrane and cytoplasmic domains in propagating bidirectional signaling events. Proteins that interact directly with the integrin cytoplasmic domains may play important roles in mediating these signaling events. Of particular interest is the interaction between CIB1 and the alphaIIb tail which may function to negatively regulate alphaIIbbeta3 activation. In addition, a number of CIB1 interacting proteins have been identified, including p21-activated kinase and serum-inducible kinase, which may act in concert with CIB1 to regulate platelet function. SUMMARY: Understanding the molecular mechanisms underlying integrin activation will be important in developing novel therapies to regulate platelet function in cardiovascular disease. Discussion of recent developments in elucidating the mechanism of integrin activation, with particular focus on the platelet integrin alphaIIbbeta3, is provided in this review.  相似文献   

12.
In the present study the ability of plasminogen activator inhibitor type-1 (PAI-1) to interfere with platelet and megakaryoblastic cell adhesion was investigated. Both cell types exhibited integrin-dependent adhesion in a static system, mediated by alphaIIb beta3 on platelets and alpha v-integrins on different megakaryoblastic cell lines, even though they also expressed alphaIIb beta3. In a concentration-dependent manner, active, but not latent or complexed, PAI-1 abrogated cell adhesion onto vitronectin but not onto fibrinogen or other matrix substrata. Urokinase as well as thrombin neutralized the anti-adhesive effect of active PAI-1. The direct binding of vitronectin, but not of other matrix proteins, to integrin alphaIIb beta3 was blocked by active PAI-1 in a purified system. Since activated platelets release active and latent PAI-1 as well as structurally and functionally distinct forms of vitronectin, the described interactions appear to be physiologically significant. Co-distribution of vitronectin and PAI-1 at sites of fibrin polymers within platelet thrombi was demonstrated by transmission electron microscopy, suggesting an extracellular functional relationship of both release products with regard to cell adhesion. Our data emphasize the regulatory role of active PAI-1 in platelet adhesion to provisional matrix proteins as found during wound healing independent of its anti-proteolytic activity. Furthermore, megakaryocyte maturation may depend on the intact vitronectin-integrin adhesion system that is influenced by PAI-1, thereby proposing a regulatory role for the inhibitor in cellular differentiation.  相似文献   

13.
Flevaris P  Li Z  Zhang G  Zheng Y  Liu J  Du X 《Blood》2009,113(4):893-901
Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin alpha(IIb)beta(3). Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin alpha(IIb)beta(3), integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK-dependent cell retractile signaling pathway.  相似文献   

14.
Efficient platelet adhesion and aggregation at sites of vascular injury requires the synergistic contribution of multiple adhesion receptors. The initial adhesion of platelets to subendothelial matrix proteins involves GPIb/V/IX and one or more platelet integrins, including integrin alpha IIb beta 3, alpha 2 beta 1, alpha 5 beta 1 and possibly alpha 6 beta 1. In contrast, platelet-platelet adhesion (platelet cohesion or aggregation) is mediated exclusively by GPIb/V/IX and integrin alpha IIb beta 3. Integrin alpha IIb beta 3 is a remarkable receptor that not only stabilizes platelet-vessel wall and platelet-platelet adhesion contacts, but also transduces signals necessary for a range of other functional responses. These signals are linked to cytoskeletal reorganization and platelet spreading, membrane vesiculation and fibrin clot formation, and tension development on a fibrin clot leading to clot retraction. This diverse functional role of integrin alpha IIb beta 3 is reflected by its ability to induce the activation of a broad range of signaling enzymes that are involved in membrane phospholipid metabolism, protein phosphorylation, calcium mobilization and activation of small GTPases. An important calcium-dependent signaling enzyme involved in integrin alpha IIb beta 3 outside-in signaling is the thiol protease, calpain. This enzyme proteolyses a number of key structural and signaling proteins involved in cytoskeletal remodeling and platelet activation. These proteolytic events appear to play a potentially important role in modulating the adhesive and signaling function of integrin alpha IIb beta 3.  相似文献   

15.
Mobley  JL; Ennis  E; Shimizu  Y 《Blood》1994,83(4):1039-1050
T lymphocytes isolated from human peripheral blood express beta 1 (VLA) and LFA-1 integrins, but strong binding to integrin ligands occurs only after the delivery of an activation stimulus to the T cell. To gain further insight into activation-dependent regulation of integrin function, we have analyzed integrin activity on three different T- leukemic cell lines: Jurkat, CEM, and H9. This analysis shows important mechanistic differences in integrin regulation. First, phorbol ester treatment results in increased beta 1 integrin-dependent adhesion of both Jurkat and CEM cells to fibronectin, but decreased adhesion of H9 cells. Second, certain activation stimuli that upregulate beta 1 integrin activity in peripheral T cells are nonfunctional in these T- cell lines. Third, analysis of a panel of Jurkat mutants lacking surface expression of CD2 and/or CD3 shows that CD2-mediated upregulation of beta 1 integrin activity is dependent on expression of CD3, whereas CD28-mediated upregulation is not dependent on either CD2 or CD3 expression. Fourth, all T-cell lines tested show an inability to adhere to purified ICAM-1 via LFA-1. The selective alterations in integrin regulation in these cell lines relative to peripheral blood T cells provide important insights into the intracellular processes involved in integrin activation.  相似文献   

16.
Glanzmann thrombasthenia (GT) is an inherited disorder where an absence of platelet aggregation is associated with quantitative or qualitative abnormalities of the alphaIIbbeta3 integrin. In rare patients, amino acid substitutions have provided information on the functional significance of specific domains within alphaIIb or beta3. We now report an elderly male GT patient (R.M.) from the south west of France whose platelets possess a small residual expression of alphaIIbbeta3. Furthermore, the integrin failed to undergo the necessary conformational changes following platelet activation to permit the binding of fibrinogen or activation-dependent monoclonal antibodies despite the presence of an RGD-binding site. Screening of the alphaIIb and beta3 genes by PCR-SSCP revealed a heterozygous mutation at position 685 in exon 5 of the beta3 gene leading to a 196Leu to Pro substitution. 196Leu is a highly conserved amino acid of beta3. The other beta3 allele appeared to be silent. This mutation, inherited from his mother and present in other family members with intermediate levels of alphaIIbbeta3, was close to the MIDAS-like domain of beta3, a fact that appears to explain its effect on alphaIIbbeta3 activation and fibrinogen binding.  相似文献   

17.
Lau LM  Wee JL  Wright MD  Moseley GW  Hogarth PM  Ashman LK  Jackson DE 《Blood》2004,104(8):2368-2375
The tetraspanin family member CD151 forms complexes with integrins and regulates cell adhesion and migration. While CD151 is highly expressed in megakaryocytes and to a lesser extent in platelets, its physiologic role in platelets is unclear. In this study, we investigate the physical and functional importance of CD151 in murine platelets. Immunoprecipitation/Western blot studies reveal a constitutive physical association of CD151 with integrin alpha(IIb)beta(3) complex under strong detergent conditions. Using CD151-deficient mice, we show that the platelets have impaired "outside-in" integrin alpha(IIb)beta(3) signaling with defective platelet aggregation responses to protease-activated receptor 4 (PAR-4) agonist peptide, collagen, and adenosine diphosphate (ADP); impaired platelet spreading on fibrinogen; and delayed kinetics of clot retraction in vitro. This functional integrin alpha(IIb)beta(3) defect could not be attributed to altered expression of integrin alpha(IIb)beta(3). CD151(-/-) platelets displayed normal platelet alpha granule secretion, dense granule secretion, and static platelet adhesion. In addition, CD151(-/-) platelets displayed normal "inside-out" integrin alpha(IIb)beta(3) signaling properties as demonstrated by normal agonist-induced binding of soluble fluorescein isothiocyanate (FITC)-fibrinogen, JON/A antibody binding, and increases in cytosolic-free calcium and inositol 1,4,5 triphosphate (IP(3)) levels. This study provides the first direct evidence that CD151 is essential for normal platelet function and that disruption of CD151 induced a moderate outside-in integrin alpha(IIb)beta(3) signaling defect.  相似文献   

18.
CD40 is a 48-kDa phosphorylated transmembrane glycoprotein belonging to the TNF receptor superfamily. CD40 has been demonstrated on a range of cell types, and it has an important role in adaptive immunity and inflammation. CD40 has recently been described on platelets but platelet activation by CD40 has not been described. In the present study, we use flow cytometry and immunoblotting to confirm that platelets constitutively express surface CD40. CD40 mRNA was undetectable, suggesting that the protein is synthesized early in platelet differentiation by megakaryocytes. Ligation of platelet CD40 with recombinant soluble CD40L trimer (sCD40LT) caused increased platelet CD62P expression, alpha-granule and dense granule release, and the classical morphological changes associated with platelet activation. CD40 ligation also caused beta3 integrin activation, although this was not accompanied by platelet aggregation. These actions were abrogated by the CD40L blocking antibody TRAP-1 and the CD40 blocking antibodies M2 and M3, showing that activation was mediated by CD40L binding to platelet CD40. beta3 integrin blockade with eptifibatide had no effect, indicating that outside-in signaling via alphaIIbbeta3 was not contributing to these CD40-mediated effects. CD40 ligation led to enhanced platelet-leukocyte adhesion, which is important in the recruitment of leukocytes to sites of thrombosis or inflammation. Our results support a role for CD40-mediated platelet activation in thrombosis, inflammation, and atherosclerosis.  相似文献   

19.
MT1-MMP plays a key role in endothelial function, as underscored by the angiogenic defects found in MT1-MMP deficient mice. We have studied the molecular interactions that underlie the functional regulation of MT1-MMP. At lateral endothelial cell junctions, MT1-MMP colocalizes with tetraspanin CD151 (Tspan 24) and its associated partner alpha3beta1 integrin. Biochemical and FRET analyses show that MT1-MMP, through its hemopexin domain, associates tightly with CD151, thus forming alpha3beta1 integrin/CD151/MT1-MMP ternary complexes. siRNA knockdown of HUVEC CD151 expression enhanced MT1-MMP-mediated activation of MMP2, and the same activation was seen in ex vivo lung endothelial cells isolated from CD151-deficient mice. However, analysis of collagen degradation in these experimental models revealed a diminished MT1-MMP enzymatic activity in confined areas around the cell periphery. CD151 knockdown affected both MT1-MMP subcellular localization and its inclusion into detergent-resistant membrane domains, and prevented biochemical association of the metalloproteinase with the integrin alpha3beta1. These data provide evidence for a novel regulatory role of tetraspanin microdomains on the collagenolytic activity of MT1-MMP and indicate that CD151 is a key regulator of MT1-MMP in endothelial homeostasis.  相似文献   

20.
Thiosulfinates are characteristic flavors of Allium vegetables, with a highly reactive S-S=O group, that we previously showed to inhibit platelet aggregation through calpain-dependent mechanisms. With the aim to clarify the mode of action of these redox phytochemicals, we studied their effect on extracellular free sulfhydryls in relation to their effect on platelet responses (Ca2+ signals, release reaction, and aIIb3 integrin activation state). At the platelet surface, thiosulfinate dose-dependently increased the basal level of free sulfhydryls, independently of protein disulfide isomerase activity. This generation of new free sulfhydryls was associated with: (i) a three fold increase in labeling of resting platelets with an anti ligand-induced binding site antibody and (ii) marked inhibition of subsequent aIIb3 activation by agonists. Thiosulfinates increased the basal intracellular Ca2+ level of platelets. In activated platelets, they markedly inhibited the Ca2+ mobilization independently of the external Ca2+, the calpain-induced SNAP-23 cleavage and the granule release. In platelet free systems, thiosulfinates inhibited the activity of purified calpain and the free sulfhydryl of glutathione without any reducing properties on disulfides. The results demonstrate for the first time that thiosulfinates rapidly interact with sulfhydryls both at the platelet surface and inside the cell on intracellular cysteine-proteins, especially calpain. Inhibition of free cysteine and glutathione in whole blood may also contribute to their anti-aggregant properties. Such sulfur compounds are of interest for the development of a new class of antithrombotic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号