首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Culture of chondrocytes in alginate and collagen carrier gels   总被引:10,自引:0,他引:10  
In this in vitro study, we compared the potential of collagen and alginate gels as carriers for chondrocyte transplantation and we studied the influence of demineralized bone matrix (DBM) on chondrocytes in the gels. Chondrocytes were assessed for cell viability, phenotype (histology), proliferation rate and sulfate incorporation.

Collagen gels showed a significant increase in cell numbers, but the chondrocytes dedifferentiated into fibroblast-like cells from day 6 onwards. In alginate gels, initial cell loss was found, but the cells maintained their typical chondrocyte phenotype. Although the total quantity of proteoglycans initially synthesized per cell in collagen gel was significantly higher, expressed per cell, the quantity in alginate gel eventually surpassed collagen. No effects of culturing chondrocytes in combination with DBM could be demonstrated on cell proliferation and sulfate incorporation.

The collagen and alginate gels have different advantages as carriers for chondrocyte transplantation. The high proliferation rate of chondrocytes in collagen gel may be an advantage, but the preservation of the chondrocyte phenotype and the gradually increasing proteoglycan synthesis in alginate gel is a promising method for creating a hyaline cartilage implant in vitro.  相似文献   

2.
OBJECTIVE: Chondrocyte behavior is very sensitive to culture environment such as physical and biochemical conditions. As extracellular pH (pHo) and the existence of bicarbonate could affect the chondrocyte fate, hence, the purpose of this study is to investigate the buffer system effect on chondrocyte fate during relatively long-term culture. METHODS: In order to examine whether effects seen were due to bicarbonate or to pHo, we had to devise a system which could differentiate between the two effects. Culture media buffered by N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) only and the combination of HEPES and bicarbonate were used. Bovine articular chondrocytes were cultured in alginate beads for up to 12 days. pHo was kept constant by culture of 3 beads in 2 ml culture medium. Cell density, intracellular pH (pHi) and glycosaminoglycan (GAG) were measured at day 5 and day 12. Cell morphology, distribution and viability in alginate beads were monitored over 12 days of culture. RESULTS: Compared to culture in the absence of bicarbonate, a higher proliferation rate of chondrocytes was observed in the presence of bicarbonate. pHi was more alkaline, about 0.2 pH unit, in the presence of bicarbonate than that in the absence of bicarbonate. About 50% more GAG was deposited in alginate beads when chondrocytes were cultured in the combination of HEPES and bicarbonate, compared to chondrocytes cultured in the absence of NaHCO3 at the end of 12 days of culture. CONCLUSION: The presence of bicarbonate results in more alkaline in the pHi of bovine chondrocytes after long-term culture. The combination of bicarbonate and HEPES in culture medium improves cell growth, matrix production in three-dimensional alginate beads.  相似文献   

3.
Tenascin-C is an oligomeric glycoprotein of the extracellular matrix that is expressed in a variety of processes including development, tissue remodeling, wound healing, cell adhesion/antiadhesion, and cell/matrix interactions. Tenascin has recently been acknowledged as a component of the extracellular matrix of articular cartilage, but its function remains unclear. In this study, bovine articular chondrocytes were grown in alginate beads for 35 days to examine the kinetics of tenascin synthesis and incorporation into de novo extracellular matrix. During the culture period, 6 harvest days were established in which culture medium was recovered, alginate beads were dissociated with an EDTA solution, and chondrocytes were collected and lysed by sonication. Total DNA determination performed on the cell lysates demonstrated chondrocyte survival and proliferation. Western blotting performed on the medium, EDTA/alginate, and lysate samples demonstrated the production of both the 220 and 320 kDa tenascin size variants and their differential compartmentalization within the culture system. Tenascin was incorporated into the alginate bead matrix at a constant rate of 3.8 μg/day. The 320 kDa variant was produced in higher quantity, but the 220 kDa fragment was twice as likely to be incorporated into the de novo matrix. Methylene blue/acid fuchsin staining and tenascin immunohistochemistry demonstrated the incorporation of tenascin into a progressively expanding matrix surrounding the chondrocytes. The results suggest a role for tenascin in the assembly of the chondrocyte matrix and as a soluble mediator of chondrocytes with possible diverse functions for the tenascin size variants.  相似文献   

4.
Bone morphogenetic protein (BMP) stimulates mesenchymal cells to differentiate, resulting in de novo endochondral ossification in vivo. The response of fibrocartilage and periosteal cells from human and canine nonunion tissues to partially purified BMP was examined in culture. Cells derived from neonatal rat muscle explants were used for comparison. Alkaline phosphatase activity and expression of alkaline phosphatase and Types I and II collagen mRNAs were compared to that of rat chondrocytes. Synthesis of Type II collagen by the muscle cells was verified by enzyme-linked immunosorbent assay (ELISA). Addition of BMP to the muscle cell and nonunion cell cultures resulted in a dose-dependent decrease in cell number. There was a decrease in matrix vesicle and plasma membrane alkaline phosphatase activity concomitant with an increase in mRNA levels for alkaline phosphatase and collagen genes. Synthesis of immunoreactive Type II collagen increased. These data indicate that neonatal rat muscle cells and nonunion cells may respond in a similar fashion to BMP. Bone morphogenetic protein stimulated hyaluronic acid synthesis at three days, but chondroitin sulfate synthesis did not increase until ten days exposure to BMP. These data, together with those summarized above, suggest that more than three days may be required for complete expression of the chondrocyte phenotype typical of endochondral ossification.  相似文献   

5.
OBJECTIVE: Studies on the biology of the human meniscus cell are scarce. The objective of our studies was to assess survival/proliferation of human meniscus cells in different culture conditions and to characterize the extracellular matrix (ECM) produced by these cells in these artificial environments. The composition of this ECM offers a variable to define the distinct meniscus cell phenotype. MATERIALS AND METHODS: Human meniscus cells were isolated enzymatically from visually intact lateral and medial knee menisci. Cells were cultured in monolayer conditions or in alginate gel. The composition of the cell-associated matrix (CAM) accumulated by the isolated cells during culture was investigated and compared to the CAM of articular chondrocytes cultured in alginate using flow cytometry with fluorescein isothiocyanate-conjugated monoclonal antibodies against type I collagen, type II collagen and aggrecan. Additional cell membrane markers analysis was performed to further identify the different meniscus cell populations in the alginate culture conditions and meniscus tissue sections. Proliferation was analyzed using the Hoechst 33258 dye method. In some experiments, the effect of TGFbeta1 on some of these variables was investigated. RESULTS: The CAM of monolayer cultured meniscus cells is composed of high amounts of type I and II collagen and low amounts of aggrecan. A major population of alginate cultured meniscus cells on the other hand synthesized a CAM containing high amounts of type I collagen, low amounts of type II collagen and high amounts of aggrecan. This population is CD44+CD105+CD34-CD31-. In contrast, a minor cell population in the alginate culture did not accumulate ECM and was mainly CD34+. The CAM of alginate cultured articular chondrocytes is composed of low amounts of type I collagen, high amounts of type II collagen and aggrecan. The expression of aggrecan and of type II collagen was increased by the addition of TGFbeta1 to the culture medium. The proliferation of meniscus cells is increased in the monolayer culture conditions. Cell numbers decrease slightly in the alginate culture, but can be increased after the addition of TGFbeta1. CONCLUSION: These results demonstrate that the human meniscus is populated by different cell types which can be identified by a distinct CAM composition and membrane marker expression. Unlike the monolayer culture conditions, the alginate culture conditions appear to favor a more fibrochondrocyte-like cell accumulating a CAM resembling the native tissue composition. This CAM composition is distinctly different from the CAM composition of phenotypically stable articular cartilage chondrocytes cultured in the same alginate matrix.  相似文献   

6.
Dedifferentiated human articular chondrocytes exhibited a wide variation in their capacity to proliferate and redifferentiate in an alginate suspension culture system. The greatest extent of proliferation and redifferentiation was seen to be dependent on the formation of clonal populations of chondrocytes and correlated inversely with the initial cell seeding density. Redifferentiating chondrocytes seeded at low density (1 x 10(4) cells/ml alginate) compared with chondrocytes that were seeded at high density (1 x 10(6) cells/ml alginate) showed a nearly 3-fold higher median increase in cell number. a 19-fold greater level of type-II collagen mRNA expression, a 4-fold greater level of aggrecan mRNA expression, and a 6-fold greater level of sulfated glycosaminoglycan deposition at 4 weeks of culture. Matrix molecules from low-density cultures were assembled into chondrocyte-encapsulated, spherical extracellular matrices that were readily visualized in sections from 12-week cultures stained with antibodies against types I and II collagen and aggrecan. Ultrastructural analysis of 12-week low-density cultures confirmed the presence of thin collagen fibrils throughout the matrix.  相似文献   

7.
Endochondral ossification (EO) occurs in the growth plate where chondrocytes pass through discrete stages of proliferation, maturation, hypertrophy, and calcification. We have developed and characterized a novel bovine cell culture model of EO that mirrors these events and will facilitate in vitro studies on factors controlling chondrocyte differentiation. Chondrocytes derived from the epiphyses of long bones of fetal calves were treated with 5-azacytidine (aza-C) for 48 h. Cultures were maintained subsequently without aza-C and harvested at selected time points for analyses of growth and differentiation status. A chondrocytic phenotype associated with an extensive extracellular matrix rich in proteoglycans and collagen types II and VI was observed in aza-C-treated and -untreated cultures. aza-C-treated cultures were characterized by studying the expression of several markers of chondrocyte differentiation. Parathyroid hormone-related protein (PTHrP) and its receptor, both markers of maturation, were expressed at days 5-9. Type X collagen, which is restricted to the stage of hypertrophy, was expressed from day 11 onward. Hypertrophy was confirmed by a 14-fold increase in cell size by day 15 and an increased synthesis of alkaline phosphatase during the hypertrophic period (days 14-28). The addition of PTHrP to aza-C-treated cultures at day 14 led to the down-regulation of type X collagen by 6-fold, showing type X collagen expression is under the control of PTHrP as in vivo. These findings show that aza-C can induce fetal bovine epiphyseal chondrocytes to differentiate in culture in a manner consistent with that which occurs during the EO process in vivo.  相似文献   

8.
Fibronectin, a ubiquitous glycoprotein of the extracellular matrix, serves as a substrate for cell attachment. Binding to fibronectin through cell-surface receptors promotes a flattened cell shape, stimulates the phosphorylation of intracellular protein, and changes the pattern of gene expression. Although fibronectin is abundant in normal articular cartilage, its effects on chondrocytes are not well understood. Proteolytic fragments of fibronectin stimulate the catabolism of matrix in articular cartilage and may promote the degeneration of cartilage in osteoarthritis; however, intact fibronectin may regulate other aspects of matrix metabolism, including matrix synthesis. To determine whether intact fibronectin affects the synthetic activity of chondrocytes, as well as to determine the responses of chondrocytes to the anabolic growth factor.insulin-like growth factor-I, we compared the incorporation of [35S] by articular chondrocytes of the rat culture.din the presence and absence of commercially prepared cellular fibronectin and 0, 10, or 100 ng/ml recomBinanf human insulin-like growth factor-I. Monolayer and alginate suspension cultures were compared to determine whether responses differed under conditions in which fibronectin promoted a flattened cell shape (monolayer culture) and under those in which cells maintained a spherical shape (alginate culture). In alginate cultures, fibronectin alone stimulated the incorporation of [35S]. Fibronectin with 10 ng/ml insulin-like growth factor-I had additive effects in alginate culture, producing the maximum incorporation of [35S]. In monolayer cultures, fibronectin did not stimulate incorporation and blocked stimulation by 100 ng/ml insulin-like growth factor-I. The cells from the monolayer culture were much less active synthetically (at all doses of the growth factor) than those culture in alginate. Thus, fibronectin enhanced proteoglycan synthesis and the response to insulin-like growth factor-I in alginate but inhibited the response to the growth factor in monolayers. These observations suggest intact fibronectin may contribute to the maintenance or repair of the matrix of articular cartilage by stimulating proteoglycan synthesis.  相似文献   

9.
This study used the ionophore, A23187, to examine the hypothesis that the regulation of alkaline phosphatase and phospholipase A2 activity by vitamin D3 metabolites in cartilage cells is mediated by changes in calcium influx. Confluent, fourth-passage cultures of growth zone and resting zone chondrocytes from the costochondral cartilage of 125 g rats were incubated with 0.01-10 microM A23187. Specific activities of alkaline phosphatase and phospholipase A2 were measured in the cell layer and in isolated plasma membranes and matrix vesicles. There was an inhibition of alkaline phosphatase specific activity at 0.1 microM A23187 in resting zone cells and at 0.1 and 1 microM in growth zone chondrocytes. At these concentrations of ionophore, the 45Ca content of the chondrocytes was shown to increase. Both the plasma membrane and matrix vesicle enzyme activities were inhibited. There was no effect of ionophore on matrix vesicle or plasma membrane phospholipase A2 in either cell type. In contrast, alkaline phosphatase activity is stimulated when growth zone chondrocytes are incubated with 1,25-(OH)2D3 and in resting zone cells incubated with 24,25-(OH)2D3. Phospholipase A2 activity is differentially affected depending on the metabolite used and the cell examined. Addition of ionophore to cultures preincubated with 1,25-(OH)2D3 or 24,25-(OH)2D3 blocked the stimulation of alkaline phosphatase by the vitamin D3 metabolites in a dose-dependent manner. The effects of ionophore were not due to a direct effect on the membrane enzymes since enzyme activity is isolated membranes incubated with A23187 in vitro was unaffected. These results suggest a role for calcium in the action of vitamin D metabolites on chondrocyte membrane enzyme activity but indicate that mechanisms other than merely Ca2+ influx per se are involved.  相似文献   

10.
Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA.  相似文献   

11.
Biological freezing of human articular chondrocytes   总被引:2,自引:0,他引:2  
AIM: To preserve viable, metabolically active chondrocytes cultured in alginate beads at -196 degrees C for further use in in vitro and in vivo studies. METHODS: Human articular chondrocytes were isolated from femoral condyles within 24 h post mortem. To optimize the biological freezing procedure, the chondrocytes were control-rate frozen in different concentrations of dimethyl sulfoxide (DMSO) in Dulbecco's MEM supplemented with 10% FCS before being thawed and the cell viability was determined by Trypan Blue exclusion test. To investigate the effect of control-rate freezing on chondrocyte metabolism, control-rate frozen chondrocytes in 5% DMSO were thawed and cultured in gelled agarose for 2 weeks. Non-frozen chondrocytes cultured in agarose served as controls. Furthermore, human articular chondrocytes were cultured in 2% alginate beads for 2 weeks after which the beads were incubated with 5% DMSO for 0 h, 2.5 h, 5 h and 10 h and frozen at -196 degrees C. Non-frozen alginate beads containing chondrocytes and incubated with 5% DMSO served as a control. After 2 weeks in culture, chondrocytes in agarose or in alginate were sulfated with 10 microCi(35)SO(4)/ml for 48 h. The total production of aggrecans, and the aggrecan subtypes, were subsequently determined. RESULTS: Five percent DMSO in the culture medium was the optimal condition to control-rate freeze and recover viable and functional isolated chondrocytes. Total aggrecan synthesis of control-rate frozen chondrocytes cultured in gelled agarose was not significantly reduced when compared with control cells. The proportion of aggrecan in the aggregate form of control-rate frozen chondrocytes kept in agarose remained unaltered. Chondrocytes, control-rate frozen in the alginate matrix, showed a 0-30% decrease in total aggrecan synthesis rates in culture when compared with the non-frozen chondrocytes. The optimal pre-incubation time of the alginate beads with 5% DMSO was 5 h, without any change in aggrecan synthesis rates when compared with the control situation. Shorter pre-incubation times resulted in an insufficient diffusion of DMSO into the beads and in cell death. There was no difference in the synthesis of the different aggrecan subtypes between frozen and non-frozen chondrocytes in alginate. CONCLUSION: Human articular chondrocytes can be stored at -196 degrees C for 24 h without important decreases in their aggrecan synthesis rates when control-rate frozen as a cell suspension in 5% DMSO. Proportions of the aggrecan subtypes (monomers, aggregates) synthesized by chondrocytes cultured in agarose remained unchanged. The control-rate freezing procedure in the alginate beads pre-incubated with 5% DMSO for 5 h produced no decrease in total aggrecan synthesis rates and no change in the synthesized aggrecan subtypes. Further experiments have to confirm the suitability of this freezing method for long-term storage of chondrocytes allowing us to set up a 'chondrocyte' bank for further use in in vitro and in vivo manipulations.  相似文献   

12.
13.
Summary The phorbol ester 12-O-tetradecanoyl-13-acetate (TPA) blocked the growth of, and induced the appearance of processes in the human osteosarcoma cell line U-2 OS. The phorbol ester decreased the intracellular level of alkaline phosphatase (APase) activity (as measured per mg cell protein) and caused a marked increase in the APase activity secreted from the cells into the culture medium. The secretion of APase appeared after a lag period of 4–6 hours of TPA treatment, and it could also be visualized with histological staining. Differential ultracentrifugation of the culture media showed that the APase was released to the media in the form of vesicles. The vesicles were studied by electron microscopy and appeared similar to matrix vesicles isolated from cartilage and chondrocytes. It is thus concluded that TPA is able to induce the primary steps of mineralization in these cells.  相似文献   

14.
The goal of this investigation was to explore the mechanism by which NOS and NO serve to regulate events linked to chondrocyte terminal differentiation. NOS isoform expression and NO adducts in chick growth cartilage were detected by immunohistochemistry and Western blot analysis. All NOS isoforms were expressed in chick growth plate chondrocytes with the highest levels present in the hypertrophic region. The enzymes were active since nitrosocysteine and nitrotyrosine residues were detected in regions of the epiphysis with the highest levels of NOS expression. Maturing chick sternal chondrocytes evidenced an increase in NO release and a rise in NOS protein levels. When treated with NOS inhibitors, there was a decrease in the alkaline phosphatase activity of the hypertrophic cells. On the other hand, NO donors caused a small but significant elevation in alkaline phosphatase activity. Transient transfections of chondrocytes with an endothelial NOS isoform caused an increase in collagen type X promoter activity. Induction of both collagen type X expression and alkaline phosphatase activity was blocked by inhibitors of the cGMP pathway. These findings indicate that NO is generated by three NOS isoforms in terminally differentiated chondrocytes. The expression of NOS and the generation of NO enhanced maturation by upregulating alkaline phosphatase and collagen type X expression. Since expression of these two determinants was blocked by inhibitors of the cGMP pathway, it is concluded that NO metabolism is required for development of the mature chondrocyte phenotype.  相似文献   

15.
Articular cartilage is an avascular tissue with chondrocytes in the deeper zones existing under conditions of sustained hypoxia. Using a hypoxic chamber to provide controlled hypoxia, this study was performed to determine whether sustained hypoxia enhances the production of cartilage matrix proteins. Freshly isolated primary bovine articular chondrocytes were encapsulated in three-dimensional alginate beads and maintained at 2% oxygen with media changes using media pre-equilibrated to 2% oxygen. Immunolocalization of HIF-1α was performed to verify hypoxic conditions. Sustained hypoxia resulted in an increase in proteoglycan synthesis after only 1 day, as measured by 35S-sulfate incorporation. This increase was maintained for the duration of the 17 day study. After 17 days of hypoxic culture, increases in total type II collagen and COL2A1 gene expression were probed by indirect immunofluorescence, type II collagen ELISA, and real-time qPCR; in addition, increased glycosaminoglycan deposition was observed as determined by chemical analysis. These studies show that sustained hypoxia enhances articular chondrocyte matrix synthesis and viability in three-dimensional alginate culture. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 793–799, 2009  相似文献   

16.
OBJECTIVE: To determine the influence of low oxygen tension on the redifferentiation and matrix production of dedifferentiated articular chondrocytes in monolayer and alginate bead culture. METHODS: Bovine articular chondrocytes were isolated enzymatically. After multiplication and dedifferentiation in a 2-week monolayer culture under 21% oxygen, the cells were subcultured in monolayer or alginate bead culture and subjected to 21% or 5% O(2)for 2 or 3 weeks in order to redifferentiate. Controls consisted of primary cultures in alginate. Matrix production was monitored immunocytochemically [collagen types I, II, IX, and GAGs (keratan sulfate, chondroitin-4- and -6-sulfate)] and collagen type II additionally assayed by Western blotting. Biosynthetic activity was measured by [(3)H]-proline incorporation and cell-viability by the trypan blue exclusion method. RESULTS: The cell number increased more than four-fold during dedifferentiation. Collagen type II was not produced by dedifferentiated chondrocytes under 5% or 21% oxygen in the monolayers or under 21% in alginate. However, dedifferentiated cells in alginate subjected to 5% oxygen exhibited a strong collagen type II expression indicating a redifferentiation. Additionally, collagen type IX and GAGs were also higher and [(3)H]-proline incorporation increased significantly. Primary cultures in alginate displayed a stronger collagen type II expression under 5% but no significant differences for other extracellular matrix components, or [(3)H]-proline incorporation. Viability was approximately 90% for all alginate cultures. CONCLUSION: A combination of alginate and high oxygen tension might not be suitable for redifferentiation or culturing of dedifferentiated chondrocytes. However, low oxygen tension promotes or induces a redifferentiation of dedifferentiated cells in alginate, stimulates their biosynthetic activity, and increases collagen type II production in primary alginate cultures.  相似文献   

17.
Low cell density cell numbers and dedifferentiation are two major problems of human chondrocyte culture associated with articular cartilage repair. Bovine chondrocytes seeded at low density (3.5 x 10(4) cells/ml of gels) in three-dimensional collagen type I gels do proliferate and maintain their phenotype as shown by cell counts, morphology and matrix synthesis. The combination of three growth factors (3GFs; 10 ng/ml TGF-beta1 + 100 ng/ml IGF-I + 10 ng/ml b-FGF) added to serum-free culture medium in this culture system enhances the mitotic activity of bovine chondrocytes similar to 20% foetal calf serum (FCS). At day 21, cells proliferated by 41 fold in gels-FCS and 37 fold in gels-3GFs. Protein synthesis by gels-3GFs cultures was similar to 20% FCS when cultured for 3 weeks but much less proteoglycan was synthesized. The matrix deposition as observed by light and electron microscopy was quite different. More small diameter branching collagen fibrils and a denser matrix were presented in gels-FCS culture whilst loosely arranged larger diameter collagen fibrils were observed in gels-3GFs.  相似文献   

18.
This report describes the properties of a neutral protease that was synthesized and secreted into medium by intact cartilaginous growth plate in tissue culture. Bovine cartilaginous growth plate was grown for seven days in tissue culture, during which time the chondrocytes remained viable and metabolically active as determined by quantitation of trypan-blue exclusion and incorporation of 3H-cytidine. Protease activity, assayed by viscometry using proteoglycan monomer from cartilage as a substrate, was absent on day 1 but was present at high levels on days 2 through 5. The protease activity did not require activation and was highest at neutral and alkaline pH. Protease activity was abolished by twenty-millimolar EDTA but was unaffected by pepstatin, iodoacetate, and soybean trypsin inhibitor. In contrast to the high levels of activity of neutral protease that were present in tissue cultures of the intact growth plate, no protease activity could be detected when chondrocytes from the cartilaginous growth plate were grown in cell culture, even after sonication of the cells or activation with aminophenyl mercuric acetate or trypsin. Since hypertrophic chondrocytes probably do not survive the disruption of tissue that is involved in establishing cell cultures, these observations suggest that neutral protease is probably released into the medium by the hypertrophic chondrocytes that are present in the cultures of cartilaginous growth-plate tissue. It appears that the organization of the growth plate in tissue culture, as well as the maturation of proliferating chondrocytes into hypertrophic chondrocytes in tissue culture, may be required for synthesis of the neutral protease and its extracellular secretion by hypertrophic chondrocytes.  相似文献   

19.
20.
OBJECTIVE: Our aim was to investigate the maintenance of the transfection status of non-viral transfected chondrocytes in an alginate culture system. DESIGN: Chondrocytes harvested from rabbit knees were isolated by sequential digestion and cultivated in monolayer culture. At 60-70% cell density, chondrocytes were transfected with different transfection systems (FuGENE6, CaCl2, Lipofectin). A lac Z expression vector (pcDNA 3.1/Myc-His+ lacZ) was used as a reporter system. In order to improve transfection rates, hyaluronidase (4 U/ml) was used prior and during the transfection procedure. Thereafter, transfected cells were either kept in monolayer culture or embedded in alginate beads and kept in culture for up to the next 30 weeks. RESULTS: Transfection efficiency was maximal using FuGENE6TM/DNA at a ratio of 3:2 and hyaluronidase (4 U/ml). Transfection efficiency reached up to 40.8% (+/- 3.2%) after 36 h. In alginate beads lac Z positive cells declined to 8.5% +/- 3.3% after 4 weeks and to 4.6% +/- 3.2% after 12 weeks of culturing. After 30 weeks 3% of chondrocytes still expressed lac Z. In contrast, during culturing in monolayer, no lac Z expression was detectable after 4 weeks. Differentiation status of the chondrocytes was confirmed by histology and immunohistochemistry methods. CONCLUSIONS: After successful gene transfer to rabbit chondrocytes the alginate system made it possible to culture lipofected chondrocytes phenotypically stable. Genetically engineered chondrocytes express the lac Z reporter gene over a period of at least 30 weeks. This transfection and culture system provides a promising tool to further investigate the over-expression of growth factors and enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号