首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Gene transfer into T lymphocytes is currently being tested for the treatment of lymphohematologic disorders. We previously showed that suicide gene transfer into donor lymphocytes infused to treat leukemic relapse after allogeneic hematopoietic stem cell transplantation allowed control of graft-versus-host disease. However, the T-cell receptor (TCR) activation and sustained proliferation required for retroviral vector transduction may impair the half-life and immune competence of transduced cells and reduce graft-versus-leukemia activity. Thus, we tested lentiviral vectors (LVs) and stimulation with cytokines involved in antigen-independent T-cell homeostasis, such as interleukin 7 (IL-7), IL-2, and IL-15. Late-generation LVs transduced efficiently nonproliferating T cells that had progressed from G0 to the G1 phase of the cell cycle on cytokine treatment. Importantly, IL-2 and IL-7, but not IL-15, stimulation preserved physiologic CD4/CD8 and naive-memory ratios in transduced cells with only minor induction of some activation markers. Functional analysis of immune response to cytomegalovirus (CMV) showed that, although CMV-specific T cells were preserved by all conditions of transduction, proliferation and specific killing of autologous cells presenting a CMV epitope were higher for IL-2 and IL-7 than for IL-15. Thus, LV transduction of IL-2 or IL-7 prestimulated cells overcomes the limitations of retroviral vectors and may significantly improve the efficacy of T-cell-based gene therapy.  相似文献   

3.
4.
The ability of lentiviral vectors to transduce and stably integrate their genomes into non-dividing cells was the major reason for the development of the HIV-1 based vector gene delivery system. The first VSV-G pseudotyped lentiviral vectors fulfilled these expectations by ferrying large genetic payloads to non-dividing cells in vitro and in vivo. Here we discuss advances in HIV-1 vector systems which lead to improvement in biosafety, transduction efficiency, longevity and regulation of transgene expression, and vector production. The successful use of the advanced HIV-1 based vector system opened new avenues in establishing transgenic animal models for basic research. Additionally, we describe accomplishments using HIV-1 based vectors to correct pathological courses of incurable diseases in preclinical animal models including Parkinson's disease and beta-thalassemia.  相似文献   

5.
6.
We studied the transduction of primary human B lymphocytes and myeloma cells with lentiviral vectors. In peripheral blood B cells that had been activated with helper T cells (murine thymoma EL-4 B5) and cytokines, multiply attenuated HIV-1-derived vectors pseudotyped with vesicular stomatitis virus (VSV) G-envelope protein achieved the expression of green fluorescence protein (GFP) in 27% +/- 12% (mean +/- 1 SD; median, 27%) of B cells in different experiments. When compared in parallel cultures, the transducibility of B cells from different donors exhibited little variation. The human cytomegalovirus (CMV) promoter gave 4- to 6-fold higher GFP expression than did the human elongation factor-1alpha promoter. A murine retroviral vector pseudotyped with VSV G protein proved inefficient even in mitotically active primary B cells. B cells freshly stimulated with Epstein-Barr virus were also transducible by HIV vectors (24% +/- 9%), but B cells activated with CD40 ligand and cytokines resisted transduction. Thus, different culture systems gave different results. Freshly isolated, nondividing myeloma cells were efficiently transduced by HIV vectors; for 6 myelomas the range was 14% to 77% (median, 28%) GFP(+) cells. HIV vectors with a mutant integrase led to no significant GFP signal in primary B or myeloma cells, suggesting that vector integration was required for high transduction. In conclusion, HIV vectors are promising tools for studies of gene functions in primary human B cells and myeloma cells for the purposes of research and the development of gene therapies.  相似文献   

7.
Peripheral blood lymphocytes (PBLs) are primary targets for gene therapy of inherited and acquired disorders of the immune system. We describe the development of an optimized transduction system that provides for high-efficiency retrovirus-mediated gene transfer into primary PBLs. This optimized transduction protocol combines centrifugation of the lymphocytes (1000 x g) at the inception of transduction with phosphate depletion, low-temperature incubation (32 degrees C), and the use of the packaging cell line PG13. Gene marking studies of human and primate PBLs using these optimized transduction conditions demonstrated that the transduction efficiency exceeded 50% of the total lymphocyte population. The optimized transduction efficiency of PBLs with amphotropic retroviral vectors was in excess of 25%. The transduction procedure does not alter phenotype, viability, or expansion of the transduced cells. Our data indicate that this optimized transduction system leads to high-efficiency gene transfer into primary human lymphocytes, which obviates the requirement for selection of transduced cells prior to gene-therapy procedures. Thus, large quantities of healthy retrovirally transduced lymphocytes containing a broad immunological repertoire can be generated for use in clinical protocols. Our results represent a significant improvement in the methodology for the transduction of lymphocytes for gene therapy.  相似文献   

8.
A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34(+) cells, that reside in the G(0) phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying "early-acting cytokines" on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34(+) cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34(+) cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34(+) cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34(+) cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.  相似文献   

9.
10.
A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells such as primary T cells, which hampers their application for gene therapy. Here we generated high-titer LVs incorporating Edmonston measles virus (MV) glycoproteins H and F on their surface. They allowed efficient transduction through the MV receptors, SLAM and CD46, both present on blood T cells. Indeed, these H/F-displaying vectors outperformed by far VSV-G-LVs for the transduction of IL-7-prestimulated T cells. More importantly, a single exposure to these H/F-LVs allowed efficient gene transfer in quiescent T cells, which are not permissive for VSV-G-LVs that need cell-cycle entry into the G1b phase for efficient transduction. High-level transduction of resting memory (50%) and naive (11%) T cells with H/F-LVs, which seemed to occur mainly through SLAM, was not at cost of cell-cycle entry or of target T-cell activation. Finally, the naive or memory phenotypes of transduced resting T cells were maintained and no changes in cytokine profiles were detected, suggesting that T-cell populations were not skewed. Thus, H/F-LV transduction of resting T cells overcomes the limitation of current lentiviral vectors and may improve the efficacy of T cell-based gene therapy.  相似文献   

11.
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.  相似文献   

12.
The recent development of HIV-1 lentiviral vectors is especially useful for gene transfer because they achieve efficient integration into nondividing cell genomes and successful long-term expression of the transgene. These attributes make the vector useful for gene delivery, mutagenesis, and other applications in mammalian systems. Here we describe two HIV-1-based lentiviral vector derivatives, pZR-1 and pZR-2, that can be used in gene-trap experiments in mammalian cells in vitro and in vivo. Each lentiviral gene-trap vector contains a reporter gene, either beta-lactamase or enhanced green fluorescent protein (EGFP), that is inserted into the U3 region of the 3' long terminal repeat. Both of the trap vectors readily integrate into the host genome by using a convenient infection technique. Appropriate insertion of the vector into genes causes EGFP or beta-lactamase expression. This technique should facilitate the rapid enrichment and cloning of the trapped cells and provides an opportunity to select subpopulations of trapped cells based on the subcellular localization of reporter genes. Our findings suggest that the reporter gene is driven by an upstream, cell-specific promoter during cell culture and cell differentiation, which further supports the usefulness of lentivirus-based gene-trap vectors. Lentiviral gene-trap vectors appear to offer a wealth of possibilities for the study of cell differentiation and lineage commitment, as well as for the discovery of new genes.  相似文献   

13.
Recent studies have opened the possibility that quiescent, G0/G1 hematopoietic stem cells (HSC) can be gene transduced; lentiviruses (such as HIV type 1, HIV) encode proteins that permit transport of the viral genome into the nucleus of nondividing cells. We and others have recently demonstrated efficient transduction by using an HIV-1-based vector gene delivery system into various human cell types including human CD34+ cells or terminally differentiated neurons. Here we compare the transduction efficiency of two vectors, HIV-based and murine leukemia virus (MuLV)-based vectors, on untreated and highly purified human HSC subsets that are virtually all in G0/G1. The HIV vector, but not MuLV vector supernatants, transduced freshly isolated G0/G1 HSC from mobilized peripheral blood. Single-step transduction using replication-defective HIV resulted in HSC that expressed the green fluorescent protein (GFP) transgene while retaining their stem cell phenotype; clonal outgrowths of these GFP+ HSC on bone marrow stromal cells fully retained GFP expression for at least 5 weeks. MuLV-based vectors did not transduce resting HSC, as measured by transgene expression, but did so readily when the HSC were actively cycling after culture in vitro for 3 days in a cytokine cocktail. These results suggest that resting HSC may be transduced by lentiviral-based, but not MuLV, vectors and maintain their primitive phenotype, pluripotentiality, and at least in vitro, transgene expression.  相似文献   

14.
Endothelial cells (ECs) in normal vessels are poorly transducible by retroviral vectors, which require cell division for gene transduction. Among retroviruses, lentiviruses have the unique ability to integrate their genome into the chromatin of nondividing cells. Here we show that multiply attenuated, self-inactivating, lentiviral vectors transduce both proliferating and growth-arrested human umbilical vein ECs (HUVECs), human coronary artery ECs (HCAECs), and human coronary artery smooth muscle cells (HCASMCs), with high efficacy. Lentiviral vectors containing the enhanced green fluorescence protein (EGFP) transgene driven by either the cytomegalovirus or the elongation factor-1alpha promoter, but not the phosphoglycerate kinase promoter, directed high-level EGFP expression in endothelial and smooth muscle cells. The endothelium-specific Tie2 promoter also directed transgene expression in ECs. Re-insertion of cis-acting sequences from pol of human immunodeficiency virus type 1 (HIV-1) into the vectors improved transgene expression. A lentiviral vector containing the vascular endothelial growth factor transgene promoted EC proliferation and sprouting in vitro. In vivo gene transfer was studied by lumenal infusion of vector containing solutions into rat carotid arteries. Lentivirus-mediated EGFP gene transfer was observed in approximately 5% of ECs. Lentiviral vectors containing the LacZ transgene achieved detectable beta-galactosidase activity in rat arteries, albeit at a lower level compared with adenoviral vectors. This difference was mainly due to the lower concentration of lentiviral vector preparations. Lentivirus-mediated gene transfer was associated with minimal neointimal hyperplasia and scant inflammatory cell infiltrates in the media and adventitia. These observations indicate that lentiviral vectors may be useful for genetic modifications of vascular cells in vitro and in vivo.  相似文献   

15.
16.
Horn PA  Keyser KA  Peterson LJ  Neff T  Thomasson BM  Thompson J  Kiem HP 《Blood》2004,103(10):3710-3716
The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.  相似文献   

17.
BACKGROUND/AIMS: Gene therapy is a promising approach for treatment of hepatocellular carcinoma (HCC). However, transduction of non-tumoral hepatocytes may lead to severe hepatitis when using suicide gene therapy approaches. The aim of our study was to evaluate the gene transfer efficiency into HCC cells and normal hepatocytes using human immunodeficiency virus (HIV)-derived lentiviral vectors in vitro and in vivo. METHODS: Lentiviral vectors encoding for the LacZ gene or the fusion gene HSV-Tk/GFP were tested in vitro in human HCC cells and human hepatocytes in primary culture and in vivo in a chemically induced rat model of HCC. RESULTS: We show that HIV-1-derived lentiviral vectors are efficient in transducing HCC cells in vitro and in vivo. No significant transduction of non-tumorous hepatocytes was observed in vivo whatever the route of administration used. Measurement of tumor growth following direct intratumoral injection of a lentiviral vector containing the HSV-Tk gene and GCV treatment showed a strong antitumoral efficacy in the absence of normal liver toxicity. CONCLUSIONS: These observations suggest that lentiviral vectors allow an antitumoral effect with low liver toxicity when using suicide gene therapy approach and could be efficient tools for HCC gene therapy.  相似文献   

18.
The Sleeping Beauty (SB) transposon system is a nonviral DNA delivery system in which a transposase directs integration of an SB transposon into TA-dinucleotide sites in the genome. To determine whether the SB transposon system can mediate stable gene expression in human T cells, primary peripheral blood lymphocytes (PBLs) were nucleofected with SB vectors carrying a DsRed reporter gene. Plasmids containing the SB transposase on the same molecule as (cis) or on a molecule separate from (trans) the SB transposon mediated long-term and stable reporter gene expression in human primary T cells. Sequencing of transposon:chromosome junctions confirmed that stable gene expression was due to SB-mediated transposition. In other studies, PBLs were successfully transfected using the SB transposon system and shown to stably express a fusion protein consisting of (1) a surface receptor useful for positive T-cell selection and (2) a "suicide" gene useful for elimination of transfected T cells after chemotherapy. This study is the first report demonstrating that the SB transposon system can mediate stable gene transfer in human primary PBLs, which may be advantageous for T-cell-based gene therapies.  相似文献   

19.
This study reports a lentiviral gene transfer protocol for efficient transduction of adult human peripheral blood (PB)-derived CD34+ NOD/SCID-repopulating cells (SRCs) using vesicular stomatitis virus-G protein (VSV-G)-pseudotyped lentiviruses encoding for enhanced green fluorescence protein (eGFP). Lentiviral stocks were concentrated by anion exchange chromatography, and transduction was performed under serum-free conditions at a multiplicity of infection (MOI) between 3 and 50. Similar transduction efficiencies were achieved in the presence and absence of cytokines. Transduction of PB-derived CD34+ cells at a MOI of 3 resulted in gene transfer efficiencies into SRCs of 9.2% and 12.0% in the absence and presence of cytokines, respectively. Using improved lentiviral vectors, transduction frequency varied between 42.0% (MOI 10) and 36.0% (MOI 50) with multilineage transgene expression within SRC-derived myeloid and lymphoid cells. The protocol described can be adapted for clinical application of lentiviral gene transfer into PB-derived CD34+ cells from adult patients.  相似文献   

20.
Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号