首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was undertaken to investigate the stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin) at distinct elapsed storage durations. The glutaraldehyde-fixed counterpart was used as a control. Porcine pericardia procured from a slaughterhouse were used as raw materials. After fixation, the fixed tissues were sterilized in a graded series of ethanol solutions and thoroughly rinsed in phosphate buffered saline for 1 day, and then stored in a jar containing sterilized water. The samples were taken out and tested for their stability during the durations of 1day through 6 months after storage. The stability of each study group was tested by measuring its tensile strength, free-amino-group content, and denaturation temperature. Additionally, the cytotoxicity of each test sample and its corresponding storage solution were investigated in vitro using 3T3 fibroblasts. The results were examined using a microscope and 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was found that the stability of the genipin-fixed tissue during storage was superior to its glutaraldehyde-fixed counterpart. The differences in stability between the genipin- and glutaraldehyde-fixed tissues during storage may be caused by their differences in crosslinking structure. There was no apparent cytotoxicity for both the genipin-fixed tissue and its corresponding storage solution throughout the entire course of the study, whereas significant cytotoxicity was observed for both the glutaraldehyde-fixed tissue and its storage solution. However, the cytotoxicity of the glutaraldehyde-fixed tissue decreased with increasing elapsed storage duration, whereas that of its corresponding storage solution increased. This suggested that the toxic residues remaining in the glutaraldehyde-fixed tissue leached out slowly into its corresponding storage solution during the course of storage.  相似文献   

2.
Sung HW  Chen CN  Huang RN  Hsu JC  Chang WH 《Biomaterials》2000,21(13):1353-1362
The study was designed to characterize the surface properties (including water contact angle, surface tension, protein adsorption, platelet adhesion, and cellular compatibility) of a biological patch fixed with genipin, a naturally occurring crosslinking agent. Fresh and glutaraldehyde-fixed counterparts were used as controls. It was found that both glutaraldehyde and genipin are effective crosslinking agents for biological tissue fixation. Fixation of biological tissue with glutaraldehyde or genipin significantly increased its hydrophilicity and surface tension and reduced its mol ratio of adsorbed fibrinogen to adsorbed albumin as well as the amount of adhered platelet. There were no significant differences in hydrophilicity, surface tension, the mole ratio of adsorbed fibrinogen to adsorbed albumin, and the amount of platelet adhesion between the glutaraldehyde- and genipin-fixed tissues. However, the cellular compatibilities of fresh and the genipin-fixed tissues were significantly superior to the glutaraldehyde-fixed tissue.  相似文献   

3.
Currently available crosslinking agents used in fixing bioprostheses are all highly (or relatively highly) cytotoxic, which may induce an adverse inflammatory reaction in vivo. It is therefore desirable to provide a crosslinking agent that is of low cytotoxicty and may form stable and biocompatible crosslinked products. To achieve this goal, a naturally occurring crosslinking agent-genipin-was used by our group to fix biological tissues. Genipin may be obtained from its parent compound, geniposide, which may be isolated from the fruits of Gardenia jasminoides Ellis. In our previous studies, it was found that the cytotoxicity of genipin is significantly lower than both glutaraldehyde and an epoxy compound. Also, it was shown that genipin can form stable and biocompatible crosslinked products. The present study further investigates the crosslinking characteristics and mechanical properties of a genipin-fixed bovine pericardium. Fresh and glutaraldehyde- and epoxy-fixed counterparts were used as controls. It was found that the denaturation temperatures of the glutaraldehyde- and genipin-fixed tissues were significantly greater than the epoxy-fixed tissue, although their fixation indices were comparable. The mechanical properties of fresh bovine pericardium are anisotropic. However, fixation tended to eliminate tissue anisotropy. The tendency in the elimination of tissue anisotropy for the genipin-fixed tissue was more remarkable than for the glutaraldehyde- and epoxy-fixed tissues. In addition, the genipin-fixed tissue had the greatest ultimate tensile strength and toughness among all the fixed tissues. Distinct patterns in rupture were observed in the study: The torn collagen fibers of the genipin- and glutaraldehyde-fixed tissues appeared to be bound together, while those of fresh and the epoxy-fixed tissues stayed loose. The results obtained in the study suggests that tissue fixation in glutaraldehyde, epoxy compound, and genipin may produce distinct crosslinking structures. The differences in crosslinking structure may affect the crosslinking characteristics and mechanical properties of the fixed tissues.  相似文献   

4.
Tsai CC  Chang Y  Sung HW  Hsu JC  Chen CN 《Biomaterials》2001,22(6):523-533
Heparinized biomaterials have been used to manufacture blood-contacting prostheses. The present study was intended to characterize the surface properties of a genipin-fixed biological tissue immobilized with heparin using the methods of ionic binding (the /h-i tissue) or covalent binding via multi-point attachment (the /h-m tissue) or end-point attachment (the /h-e tissue). The surface characteristics of test tissues evaluated were water contact angle, surface tension, protein adsorption, platelet adhesion, and cellular compatibility. Nonheparinized and the glutaraldehyde-fixed counterparts were used as controls. It was found that immobilization of heparin on the glutaraldehyde- and genipin-fixed tissues increased their hydrophilicity and surface tension and suppressed their mole ratio of adsorbed fibrinogen to adsorbed albumin and the amount of platelets adhered. Among the heparinized tissues, the /h-m tissue was more hydrophobic and had a higher mole ratio of adsorbed fibrinogen to adsorbed albumin and a greater amount of platelets adhered than the /h-i and /h-e tissues. In general, the surface characteristics of the /h-i tissue were comparable to the /h-e tissue. However, it is known that the ionically immobilized heparin may be displaced from the surface by an ion-exchange mechanism when exposed to blood. There were no significant differences in hydrophilicity, surface tension, the mole ratio of adsorbed fibrinogen to adsorbed albumin, and the amount of platelet adhesion between the glutaraldehyde- and genipin-fixed tissues in comparison with their respective counterparts. However, the cellular compatibility of the genipin-fixed tissues with or without heparinization was significantly superior to its glutaraldehyde-fixed counterparts.  相似文献   

5.
H W Sung  Y Chang  C T Chiu  C N Chen  H C Liang 《Biomaterials》1999,20(19):1759-1772
The study investigates the mechanical properties of porcine aortic valve leaflets fixed with a naturally occurring crosslinking agent, genipin, at distinct pressure heads. Fresh and the glutaraldehyde-fixed counterparts were used as controls. Subsequent to fixation, the changes in leaflet collagen crimps and its surface morphology were investigated by light microscopy and scanning electron microscopy (SEM). Also, the crosslinking characteristics of each studied group were determined by measuring its fixation index and denaturation temperature. In the mechanical testing, tissue strips made from each studied group were examined in both the circumferential and radial directions. Histological and SEM comparisons between fresh porcine aortic valve leaflet and those fixed at medium or high pressure revealed that the following changes may occur: elimination of the natural collagen crimping, and extensive loss of the endothelial layer. The denaturation temperatures of the glutaraldehyde-fixed leaflets were significantly greater than the genipin-fixed leaflets; however, their fixation indices were comparable. Generally, fixation pressure did not affect the crosslinking characteristics of the genipin- and glutaraldehyde-fixed leaflets. It was found that fixation of porcine aortic valves in genipin or glutaraldehyde did not alter the mechanical anisotropy observed in fresh valve leaflets. This indicated that the intramolecular and intermolecular crosslinks introduced into the collagen fibrils during fixation is of secondary importance to the presence of structural and mechanical anisotropy in fresh leaflet. Tissue fixation in genipin or glutaraldehyde may produce distinct crosslinking structures. However, the difference in crosslinking structure between the genipin- and glutaraldehyde-fixed leaflets did not seem to cause any significant discrepancies in their mechanical properties when compared at the same fixation pressure. Nevertheless, regardless of the crosslinking agent used, changes in mechanical properties and ruptured patterns were observed when the valve leaflets were fixed at distinct pressures.  相似文献   

6.
Chang Y  Lee MH  Liang HC  Hsu CK  Sung HW 《Tissue engineering》2004,10(5-6):881-892
A cell extraction process was employed to remove the cellular components from bovine pericardia. Various porous structures of the acellular tissues were then created, using acetic acid and collagenase, and subsequently fixed with genipin. The biological response and tissue regeneration pattern for each studied group were evaluated in a growing rat model. One month postoperatively, fibroblasts, neoconnective tissue fibrils, and neocapillaries were observed in the acellular, acetic acid-treated, and collagenase-treated tissues to fill the pores within the implanted samples, indicating that these tissue samples were being regenerated. The neoconnective tissue fibrils were identified to be neocollagen fibrils and neoglycosaminoglycans. On the other hand, no tissue regeneration was observed in the cellular tissue throughout the entire course of the study; tissue regeneration was limited to the outer most layer of the acellular tissue. In contrast, the areas of tissue regeneration in the acetic acid-treated and collagenase-treated tissues were expanded with increasing duration of implantation. However, 1 year postoperatively there were still numerous inflammatory cells observed in the acetic acid-treated tissue, whereas inflammatory cells in the collagenase-treated tissue had almost disappeared. These results indicated that tissue regeneration patterns within acellular tissues were significantly affected by their porous structures.  相似文献   

7.
A naturally occurring crosslinking agent, genipin, extracted from the fruits of Gardenia jasminoides ELLIS was used by our group to chemically modified biomolecules. Genipin and its related iridoid glucosides have been widely used as an antiphlogistic and cholagogue in herbal medicine. Our previous study showed that the cytotoxicity of genipin is significantly lower than glutaraldehyde. The study was to investigate the feasibility of using genipin to polymerize hemoglobin as a blood substitute. The results indicated that the rate of hemoglobin polymerization by glutaraldehyde was significantly faster than that by genipin and it readily produced polymers with molecular masses greater than 500,000 Da. It was found that the maximum degree of hemoglobin polymerization by genipin was approximately 40% if over-polymerization is to be prevented. With increasing the reaction temperature, hemoglobin concentration, and genipin-to-hemoglobin molar ratio, the duration taken to achieve the maximum degree of hemoglobin polymerization by genipin became significantly shorter. The P50 value of the unmodified hemoglobin was 9 mmHg, while that of the genipin-polymerized PLP-hemoglobin increased to 21 mmHg. It was found in a rat model that the genipin-polymerized PLP-hemoglobin resulted in a longer circulation time than the unmodified hemoglobin. In conclusion, the results of the study indicated that the genipin-polymerized hemoglobin solution has a lower oxygen affinity and a longer vascular retention time than the unmodified hemoglobin solution.  相似文献   

8.
Wei HJ  Liang HC  Lee MH  Huang YC  Chang Y  Sung HW 《Biomaterials》2005,26(14):1905-1913
In the study, a cell extraction process was used to remove the cellular components from bovine pericardia. Varying pore sizes and porosities of the acellular tissues were then created using acetic acid and collagenase and subsequently fixed with genipin. Biochemical analyses found that these acellular tissues with distinct porous structures consisted primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans. The thermal stability, mechanical properties, and capability against enzymatic degradation of the bovine pericardial tissue remained unaltered after cell extraction. However, following further treatment with acetic acid and collagenase, the thermal stability and capability against enzymatic degradation of the acellular tissues declined. The porous structures of the implanted samples seem to determine whether successful microvessel-ingrowth takes place. The acetic-acid- and collagenase-treated tissues, due to their high pore size and porosity, showed a large number of microvessels infiltrating into the interstices of the implanted samples. In contrast, a low density of microvessels was observed infiltrating into the acellular tissue and penetration of microvessels into the cellular tissue was never encountered.  相似文献   

9.
The study was to evaluate the characteristics of a chitosan membrane cross-linked with a naturally-occurring cross-linking reagent, genipin. This newly-developed genipin-cross-linked chitosan membrane may be used as an implantable drug-delivery system. The chitosan membrane without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan membrane were used as controls. The characteristics of test chitosan membranes evaluated were their cross-linking degree, swelling ratio, mechanical properties, antimicrobial activity, cytotoxicity, and degradability. It was found that cross-linking of chitosan membrane using genipin increased its ultimate tensile strength but significantly reduced its strain-at-fracture and swelling ratio. There was no significant difference in antimicrobial activity between the genipin-cross-linked chitosan membrane and its fresh counterpart. Additionally, the results showed that the genipin-cross-linked chitosan membrane had a significantly less cytotoxicity and a slower degradation rate compared to the glutaraldehyde-cross-linked membrane. These results suggested that the genipin-cross-linked chitosan membrane may be a promising carrier for fabricating an implantable drug-delivery system. The drug-release characteristics of the genipin-cross-linked chitosan membrane are currently under investigation.  相似文献   

10.
A natural compound, aglycone geniposidic acid (aGSA), originated from the fruits of Gardenia jasminoides ELLIS was used for the fixation of collagenous tissues. The presumed crosslinking reaction mechanism of collagenous tissues with aGSA was inferred by reacting aGSA with a bifunctional amine, 1,6-hexanediamine, using a series of (1)H NMR, FT-IR, and UV/Vis spectra analyses. aGSA reacted with 1,6-hexanediamine by a nucleophilic attack on the olefinic carbon atom at C-2 of deoxyloganin aglycone, followed by opening the dihydropyran ring to form heterocyclic amine compounds. It is inferred that aGSA may form intramolecular and intermolecular crosslinks with a heterocyclic structure within collagen fibers in tissues. The degrees of tissue fixation by aGSA at different pH values were investigated by examining the fixation indices and denaturation temperatures of test samples. It was found that the fixation indices and denaturation temperatures of test samples fixed at neutral or basic pH (pH 7.4 or pH 8.5) were significantly greater than at acidic pH (pH 4.0). The results obtained in this study may be used to elucidate the crosslinking mechanism and optimize the fixation process for developing bioprostheses fixed by aGSA.  相似文献   

11.
The study was to evaluate the characteristics of a chitosan membrane cross-linked with a naturally-occurring cross-linking reagent, genipin. This newly-developed genipin-cross-linked chitosan membrane may be used as an implantable drug-delivery system. The chitosan membrane without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan membrane were used as controls. The characteristics of test chitosan membranes evaluated were their cross-linking degree, swelling ratio, mechanical properties. antimicrobial activity, cytotoxicity, and degradability. It was found that cross-linking of chitosan membrane using genipin increased its ultimate tensile strength but significantly reduced its strain-at-fracture and swelling ratio. There was no significant difference in antimicrobial activity between the genipin-cross-linked chitosan membrane and its fresh counterpart. Additionally, the results showed that the genipin-cross-linked chitosan membrane had a significantly less cytotoxicity and a slower degradation rate compared to the glutaraldehyde-cross-linked membrane. These results suggested that the genipin-cross-linked chitosan membrane may be a promising carrier for fabricating an implantable drug-delivery system. The drug-release characteristics of the genipin-cross-linked chitosan membrane are currently under investigation.  相似文献   

12.
In an attempt to overcome the cytotoxicity problem of the glutaraldehyde-fixed tissues, a naturally occurring crosslinking agent (genipin) was used by our group to fix biological tissues. The study was intended to investigate the rate of tissue fixation by genipin. Glutaraldehyde was used as a control. In addition, the degrees of tissue fixation by genipin at different pHs (pH 4.0, pH 7. 4, pH 8.5, or pH 10.5), temperatures (4 degrees C, 25 degrees C, 37 degrees C, or 45 degrees C), and initial fixative concentrations (0.250%, 0.625%, or 1.000%) were examined. The results obtained revealed that the rate of tissue fixation by glutaraldehyde was significantly faster than that by genipin. The degree of tissue fixation by genipin may be controlled by adjusting its fixation duration or fixation conditions. The order in degree of tissue fixation by genipin at different pHs, from high to low, was: at nearly neutral pH (pH 7.4 or pH 8.5) > at basic pH (pH 10.5) > at acidic pH (pH 4.0). The degrees of tissue fixation by genipin at different temperatures were about the same, except for that at 4 degrees C. In contrast, the initial fixative concentration did not seem to affect the degree of tissue fixation by genipin, if only the amount of genipin in the fixation solution was sufficient to complete tissue fixation. The concentrations of genipin in the aqueous solutions at different pHs, temperatures, and initial fixative concentrations tended to decrease with time with or without the occurrence of tissue fixation. This indicated that genipin was not stable in the aqueous solution. The instability of aqueous genipin was more remarkable with increasing pH or temperature. The results obtained in this study may be used to optimize the fixation process for developing bioprostheses fixed by genipin.  相似文献   

13.
Wei HJ  Chen SC  Chang Y  Hwang SM  Lin WW  Lai PH  Chiang HK  Hsu LF  Yang HH  Sung HW 《Biomaterials》2006,27(31):5409-5419
A patch is often mandatory to repair myocardial defects; however, currently available patches lack the possibility of regeneration. To overcome this limitation, a porous acellular bovine pericardium seeded with BrdU-labeled mesenchymal stem cells (MSCs) was prepared (the MSC patch) to repair a surgically created myocardial defect in the right ventricle of a syngeneic rat model. The bovine pericardium before cell extraction was used as a control (the Control patch). The implanted samples were retrieved at 4- and 12-week postoperatively (n=5 per group at each time point). At retrieval, no aneurysmal dilation of the implanted patches was seen for both studied groups. No apparent tissue adhesion was observed for the MSC patch throughout the entire course of the study, while for the Control patch, two out of the five studied animals at 12-week postoperatively had a filmy adhesion to the chest wall. On the inner (endocardial) surface, intimal thickening was observed for both studied groups; however, no thrombus formation was found. Intact layers of endothelial and mesothelial cells were identified on the inner and outer (epicardial) surfaces of the MSC patch. Smooth muscle cells together with neo-muscle fibers, neo-glycosaminoglycans and neo-capillaries were observed within the pores of the MSC patch. Some cardiomyocytes, which stained positively for BrdU and alpha-sacromeric actin, were observed in the MSC patch, indicating that the implanted MSCs can engraft and differentiate into cardiomyocytes. Additionally, a normality of the local electrograms on the epicardial surface of the MSC patch was observed. In contrast, no apparent tissue regeneration was observed for the Control patch throughout the entire course of the study, while only abnormal electrogram signals were seen on its epicardial surface. In conclusion, the MSC patch may preserve the structure of the ventricular wall while providing the potential for myocardial tissue regeneration.  相似文献   

14.
A recognized drawback of the currently available chemical cross-linking reagents used to fix bioprostheses is the potential toxic effects a recipient may be exposed to from the fixed tissues and/or the residues. It is, therefore, desirable to provide a cross-linking reagent which is of low cytotoxicity and may form stable and biocompatible cross-linked products. To achieve this goal, a naturally occurring cross-linking reagent -- genipin -- which has been used in herbal medicine and in the fabrication of food dyes, was used by our group to fix biological tissues. The study was to assess the cytotoxicity of genipin in vitro using 3T3 fibroblasts (BALB/3T3 C1A31-1-1). Glutaraldehyde, the most commonly used cross-linking reagent for tissue fixation, was used as a control. The cytotoxicity of the glutaraldehyde- and genipin-fixed tissues and their residues was also evaluated and compared. The observation in the light microscopic examination revealed that the cytotoxicity of genipin was significantly lower than that of glutaraldehyde. Additionally, the results obtained in the MTT assay implied that genipin was about 10000 times less cytotoxic than glutaraldehyde. Moreover, the colony forming assay suggested that the proliferative capacity of cells after exposure to genipin was approximately 5000 times greater than that after exposure to glutaraldehyde. It was noted that the cells seeded on the surface of the glutaraldehyde-fixed tissue were not able to survive. In contrast, the surface of the genipin-fixed tissue was found to be filled with 3T3 fibroblasts. Additionally, neocollagen fibrils made by these fibroblasts were observed on the genipin-fixed tissue. This fact suggested that the cellular compatibility of the genipin-fixed tissue was superior to its glutaraldehyde-fixed counterpart. Also, the residues from the glutaraldehyde-fixed tissue markedly reduced the population of the cultured cells, while those released from the genipin-fixed tissue had no toxic effect on the seeded cells. In conclusion, as far as cytotoxicity is concerned, genipin is a promising cross-linking reagent for biological tissue fixation.  相似文献   

15.
The link between immunodeficiencies and nucleoside metabolism is exemplified by the inherited deficiencies of adenosine deaminase and purine nucleoside phosphorylase which are associated with an abnormal development of the immune system. In this report we show that high doses of methylthioadenosine (MTA), a natural purine nucleoside, inhibit both the mitogen-induced blastogenesis of human peripheral blood lymphocytes (PBL) and the pokeweed mitogen (PWM)-driven in vitro immunoglobulin synthesis by PBL in a non-toxic and reversible fashion. Our data support the view that both T and B cells are sensitive to MTA inhibition and that PWM-driven Ig production is more affected by MTA than the mitogen-induced PBL proliferation. The observation that MTA causes an evident inhibition of in vitro PWM-driven Ig secretion when added four days after the start of the cultures suggests that MTA can exert its activity not only on proliferation but also on differentiation of B cells.  相似文献   

16.
Expression of ferric citrate receptor FecA by Escherichia coli and Klebsiella pneumoniae isolated from bovine mastitis was investigated. Transformant E. coli UT5600/pSV66, which produces large quantities of FecA in the presence of citrate, was constructed. The FecA of E. coli UT5600/pSV66 was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and used to prepare polyclonal antiserum in rabbits. All coliform isolates of E. coli (n = 18) and K. pneumoniae (n = 17) from naturally occurring bovine intramammary infections in five herds induced iron-regulated outer membrane proteins when grown in Trypticase soy broth containing 200 microM alpha-alpha'-dipyridyl and 1 mM citrate. Polyclonal antiserum against FecA was used in conjunction with an immunoblot technique to determine the degree of antigenic homology of FecA among isolates. In the presence of citrate, each isolate expressed FecA that reacted with the anti-FecA polyclonal antiserum. The molecular mass of FecA ( approximately 80.5 kDa) was also highly conserved among isolates. Therefore, the ferric citrate iron transport may be induced in coliform bacteria and utilized to acquire iron in milk for survival and growth. The FecA is an attractive vaccine component for controlling coliform mastitis during the lactation period.  相似文献   

17.
长效抗生育埋植剂CaproF体内药物释放的研究   总被引:1,自引:0,他引:1  
目的对可降解长效抗生育埋植剂CaproF的体内药物释放动力学进行评价。方法将CaproF植入Wister大鼠皮下。每隔一定时间处死动物,取出埋植剂,用紫外分光光度法测药物残留量,计算单位长度埋植剂平均每日药物释放量。放射免疫法测定左炔诺孕酮(LNG)血药浓度。结果CaproF埋植剂在60、120、180、360、720d药物平均释放速率分别为(11.0±3.0)、(11.7±3.7)、(8.0±1.2)、(7.3±0.4)、(9.3±0.9)μg/(d·cm),并可维持基本恒定的血药浓度。结论左炔诺孕酮CaproF埋植剂植入体内后,平均药物释放速率达到7.6μg/(d·cm),并可维持2年的基本稳定释放。  相似文献   

18.
Serum hepatitis B virus (HBV) DNA was extracted from a chronically infected patient with cocirculation of hepatitis B surface antigen (HBsAg) and anti-HBs antibodies. Direct PCR and clone-derived sequences of the S and overlapped P genes were obtained. DNA sequences and phylogenetic analysis ascribed this isolate to genotype A (serotype adw2). Five of six HBV DNA clones exhibited point mutations inside and outside the major hydrophilic region, while the sixth clone exhibited a genotype A "wild-type" amino acid sequence. Observed replacements included both humoral and/or cellular (major histocompatibility complex class I [MHC-I] and MHC-II) HBV mutated epitopes, such as S45A, P46H, L49H, C107R, T125A, M133K, I152F, P153T, T161S, G185E, A194T, G202R, and I213L. None of these mutants were individually present within a given clone. The I213L replacement was the only one observed in the five clones carrying nonsynonymous mutations in the S gene. Some of the amino acid substitutions are reportedly known to be responsible for the emergence of immune escape mutants. C107R replacement prevents disulfide bonding, thus disrupting the first loop of the HBsAg. Circulation of some of these mutants may represent a potential risk for the community, since neither current hepatitis B vaccines nor hyperimmune hepatitis B immune globulin are effectively prevent the liver disease thereto associated. Moreover, some of the recorded HBsAg variants may influence the accuracy of the results obtained with currently used diagnostic tests.  相似文献   

19.
20.
BACKGROUND: Human parainfluenza viruses (hPIV) are respiratory pathogens responsible for upper and lower respiratory tract infections. In most labs, the clinical diagnosis of hPIV is routinely done using techniques based on the detection of viral antigens such as immunofluorescence assay or/and viral isolation. STUDY DESIGN: Five hPIV-2 isolated from respiratory samples exhibited unusual phenotypic and antigenic characteristics. These isolates showed important syncytial cytopathic effect and failed to react with one specific monoclonal antibody. These variant strains were subsequently compared with hPIV-2 prototype strain by cellular and molecular techniques. RESULTS: Both variant and prototype strains showed similar growth kinetics. Observation of plaque formation and syncytia assay indicated a more important fusogenic activity for the variant strains. Sequencing of fusion (F) and hemagglutinin-neuraminidase (HN) genes showed differences between the "atypical" hPIV-2 isolates and the Greer hPIV-2 prototype strain. These differences were analyzed with molecular modelling and structure prediction soft wares. A potential new glycosylation site in HN, in addition to minor changes observed in the predicted structure for the variant strains could explain their antigenic variation. Genetic changes in the fusion peptide and the cleavage site of F could also explain the difference observed in the fusion activity. CONCLUSIONS: Continuous global viral surveillance is essential to monitor antigenic changes that may occur in nature particularly with regards to the implementation of diagnostic assays. The differences observed in F and HN between the prototype strain and clinical hPIV-2 variants could also provide new data for the analysis of Paramyxovirus fusion mechanisms and their pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号