首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
目的 从血液流变学的角度对长期无症状高尿酸血症开展系统研究,为该症的临床处理提供参考依据。方法 将20只SD大鼠随机平均分为空白对照组和模型组。通过对大鼠腹腔注射250 mg/(kg?d)氧嗪酸钾诱导8周无症状高尿酸血症模型,采血测量尿酸水平、血液流变学指标、氧化和抗氧化指标。结果 模型组大鼠红细胞的聚集指数、破碎率、血清黄嘌呤氧化酶活性(XOD)、血浆纤维蛋白原、血液黏度显著升高,红细胞的取向指数、电泳率、血清超氧化物歧化酶活性(SOD)、活化部分凝血酶时间(APTT)和凝血酶原时间(PT)显著降低。结论 无症状高尿酸血症水平下机体氧化应激增强,使大鼠红细胞流变特性的发生不良变化,血液处于高黏高凝状态。研究结果提示临床诊治中应对无症状高尿酸血症正确认识并及时干预。  相似文献   

2.
It has been shown that exercise is helpful against brain disorders. However, this may not be true for intense exercise (IE). Because it is easy to misadjust exercise intensity with physical condition, it is essential to know the effects of IE on cognitive process because it may have important consequences on people skills and work skills. We investigated the effects of IE on male C57Bl/6 mice, 3-mo-old, undergoing 10 days of intense and exhaustive running program on cognition and its possible relationship with brain oxidative stress. Cognition was evaluated by three different cognitive tests: passive avoidance task, contextual fear conditioning, and tone fear conditioning, performed 24 h after the last exercise session. Brain oxidative stress was evaluated by lipid peroxidation and protein oxidation. There was a remarkable memory reduction of exercised animals in comparison with the control group, associated with increase in the brain oxidative stress, with no alterations in shock sensitivity, locomotion and anxiety parameters. Concurrent vitamin C and E supplementation fully prevented the memory decrement induced by IE and partially recovered both the increased the brain lipid peroxidation and the protein oxidation. In conclusion, IE-induces a high index of brain oxidative stress and impairs memory in murine model that was prevented by vitamin C and E supplementation.  相似文献   

3.
Summary There is general agreement today that intracellular diffusive transport of HbO2 and O2 limits the rate of oxygen uptake or release by the blood in the exchange vessels. Recent hemorheological results have shown that the mammalian erythrocyte exhibits fluidity as its most unique rheological property: it can be deformed continuously and rapidly, shear and normal stresses can be transmitted to the interior of the cell where systems of laminar flow are induced. These mechanical properties lead to the question whether or not intracellular convection does take place in the erythrocyte and to what extent it plays a part in gas exchange. A method was developed which subjects oxygen-saturated solutions and cell suspensions to an artificial but well defined flow (cone-plate-viscosimeter), and allows simulataneous determination of the initial O2 release indices under standardized conditions (O2 saturation, temperature, time, diffusion area, and difference of O2 partial pressure). The results strongly suggest that intracellular flow resulting from the physiological erythrocyte deformation in flow can supplement the O2 release from intact cells through a convective transport of HbO2 and O2 molecules. The example of osmotic shrinking shows that red cell fluidity is not only a precondition for normal flow in the microcirculation, but also for the normal gas exchange of the cells.The experiments were carried out at the Inst. of Physiol. München, supported by the Deutsche Forschungsgemeinschaft.Presented in part at the XXV. Int. Congress of Physiological Sciences, München 1971.  相似文献   

4.
Li H  Li X  Jia N  Cai Q  Bai Z  Chen R  Song T  Zhu Z  Liu J 《Behavioral neuroscience》2008,122(2):331-339
The study was designed to investigate whether nuclear factor of kappa B (NF-kappaB) plays regulating role in prenatal stress-induced cognitive impairment and oxidative damage in offspring rats. The authors used a rat model to study plasma levels of corticosterone and oxidative DNA damage (8-OH-dG), protein expression of P65/p50 NF-kappaB, and cognitive function in female and male offspring rats in middle pregnant stage and later pregnant stage. Prenatal stress affected the capability of learning and memory in the offspring, especially in later stage stressed female offspring. The levels of corticosterone and 8-OH-dG were enhanced in response to stress. Both middle and later stage stresses induced a significant decrease in P65 expression and a significant increase in P50 expression in female offspring. In addition, later stage stress induced a significant decrease in P50 expression in male offspring. These results suggest that NF-kappaB complex may be acting in a positive regulatory fashion in prenatal stress-induced cognitive impairment and that oxidative DNA damage may exacerbate the activation of NF-kappaB.  相似文献   

5.
Thiamine-dependent processes and treatment strategies in neurodegeneration   总被引:1,自引:0,他引:1  
Reductions in brain glucose metabolism and increased oxidative stress invariably occur in Alzheimer's disease (AD) and thiamine (vitamin B1) deficiency. Both conditions cause irreversible cognitive impairment; their behavioral consequences overlap but are not identical. Thiamine-dependent processes are critical in glucose metabolism, and recent studies implicate thiamine in oxidative stress, protein processing, peroxisomal function, and gene expression. The activities of thiamine-dependent enzymes are characteristically diminished in AD, and the reductions in autopsy AD brain correlate highly with the extent of dementia in the preagonal state. Abnormalities in thiamine-dependent processes can be plausibly linked to the pathology of AD. Seemingly paradoxical properties of thiamine-dependent processes may underlie their relation to the pathophysiology of AD: Reduction of thiamine-dependent processes increase oxidative stress. Thiamine can act as a free radical scavenger. Thiamine-dependent mitochondrial dehydrogenase complexes produce oxygen free radicals and are sensitive to oxidative stress. Genetic disorders of thiamine metabolism that lead to neurological disease can be treated with large doses of thiamine. Although thiamine itself has not shown dramatic benefits in AD patients, the available data is scanty. Adding thiamine or more absorbable forms of thiamine to tested treatments for the abnormality in glucose metabolism in AD may increase their efficacy.  相似文献   

6.

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.

  相似文献   

7.
In addition to mitochondria, NADPH oxidase (NOX) is a source of oxidative stress, which can induce oxidative damage in Alzheimer's disease (AD). For this reason, several groups have investigated the effect of its inhibition. In AD mice, NADPH oxidase 2 (NOX2) deficiency improved behavior and cerebrovascular function, and reduced oxidative stress. In our study, we administered the NOX inhibitor apocynin to Tg19959 mice, and found that it did not improve cognitive and synaptic deficits, and did not decrease amyloid deposition, microgliosis and hyperphosphorylated tau. However, apocynin reduced carbonyl levels in the cerebral cortex but not the hippocampus, which may have not been sufficient to ameliorate symptoms. Also, the reduction of NOX-mediated oxidative stress may not be sufficient to prevent AD, since other sources of reactive oxygen species such as mitochondria may be more important.  相似文献   

8.
Xie T  Wang WP  Mao ZF  Qu ZZ  Luan SQ  Jia LJ  Kan MC 《Neuroscience letters》2012,516(2):237-241
Cognitive dysfunction is commonly observed in epileptic patients. It has been shown that not only epilepsy but also antiepileptic drugs could induce cognitive impairment. Thus, there is an urgent need for drugs that can suppress seizures without causing cognitive deficit. Recent studies have shown that oxidative stress is involved in the pathophysiology of epilepsy, and many antioxidants have an antiepileptic property. Epigallocatechin-3-gallate (EGCG), a catechin polyphenols component, is found to be an effective antioxidant. The purpose of this study was to assess the effect of EGCG against seizures, seizure-induced oxidative stress and cognitive impairment in pentylenetetrazole-induced kindling. Male Sprague-Dawley rats were injected intraperitoneally with a dose of 35 mg/kg of pentylenetetrazole (PTZ) once every alternate day for 13 injections. EGCG was administered daily in two doses (25mg/kg and 50mg/kg) intraperitoneally along with alternate-day PTZ. Morris water maze test was carried out 24h after the last injection of PTZ, and the oxidative stress parameters (malondialdehyde and glutathione) were assessed after the completion of the behavioral test. The results showed that EGCG dose-dependently suppressed the progression of kindling. EGCG also ameliorated the cognitive impairment and oxidative stress induced by PTZ kindling. These observations suggest that EGCG may be a potential agent for the treatment of epilepsy as well as a preventive agent against cognitive impairment induced by seizure.  相似文献   

9.
10.
Cocoa flavanols (CF) influence physiological processes in ways that suggest their consumption may improve aspects of neural function, and previous studies have found positive influences of CF on cognitive performance. In this preliminary study we investigated whether visual, as well as cognitive, function is influenced by an acute dose of CF in young adults. We employed a randomized, single-blinded, order counterbalanced, crossover design in which 30 healthy adults consumed both dark chocolate containing 720mg CF and a matched quantity of white chocolate, with a one week interval between testing sessions. Visual contrast sensitivity was assessed by reading numbers that became progressively more similar in luminance to their background. Motion sensitivity was assessed firstly by measuring the threshold proportion of coherently moving signal dots that could be detected against a background of random motion, and secondly by determining the minimum time required to detect motion direction in a display containing a high proportion of coherent motion. Cognitive performance was assessed using a visual spatial working memory for location task and a choice reaction time task designed to engage processes of sustained attention and inhibition. Relative to the control condition, CF improved visual contrast sensitivity and reduced the time required to detect motion direction, but had no statistically reliable effect on the minimum proportion of coherent motion that could be detected. In terms of cognitive performance, CF improved spatial memory and performance on some aspects of the choice reaction time task. As well as extending the range of cognitive tasks that are known to be influenced by CF consumption, this is the first report of acute effects of CF on the efficiency of visual function. These acute effects can be explained by increased cerebral blood flow caused by CF, although in the case of contrast sensitivity there may be an additional contribution from CF induced retinal blood flow changes.  相似文献   

11.
Leukocytes adherent to the surfaces of both vascular biomaterials and normal blood vessels experience blood flow induced shear stress. The goal of the reported studies was to investigate the effect of fluid flow on the morphology, phagocytic function and stress response induction in adherent immune cells. Shear approximating arterial, venous and intermediate levels were applied onto glass-adherent IC21 macrophages in a temperature-controlled parallel plate flow system. The results indicate that fluid flow induces a shear-dependent physiological stress response in adherent macrophages and that significant morphological changes accompany macrophage responses to shear stress. In addition, arterial flow conditions induce not only significant cell polarisation, but also enhanced phagocytic ingestion in glass-adherent IC21 macrophages. These findings suggest that blood flow induced shear stress may not only be consequent to adherent leukocyte activation, but may also be integral to the regulation of adherent leukocyte behaviour in vivo.  相似文献   

12.
Leukocytes adherent to the surfaces of both vascular biomaterials and normal blood vessels experience blood flow induced shear stress. The goal of the reported studies was to investigate the effect of fluid flow on the morphology, phagocytic function and stress response induction in adherent immune cells. Shear approximating arterial, venous and intermediate levels were applied onto glass-adherent IC21 macrophages in a temperature-controlled parallel plate flow system. The results indicate that fluid flow induces a shear-dependent physiological stress response in adherent macrophages and that significant morphological changes accompany macrophage responses to shear stress. In addition, arterial flow conditions induce not only significant cell polarisation, but also enhanced phagocytic ingestion in glass-adherent IC21 macrophages. These findings suggest that blood flow induced shear stress may not only be consequent to adherent leukocyte activation, but may also be integral to the regulation of adherent leukocyte behaviour in vivo.  相似文献   

13.
Continuous decline in cognitive performance accompanies the natural aging process in humans, and multiple studies in both humans and animal models have indicated that this decrease in cognitive function is associated with an age-related increase in oxidative stress. Treating aging mammals with exogenous free radical scavengers has generally been shown to attenuate age-related cognitive decline and oxidative stress. The present study assessed the effectiveness of the superoxide dismutase/catalase mimetics EUK-189 and EUK-207 on age-related decline in cognitive function and increase in oxidative stress. C57/BL6 mice received continuous treatment via osmotic minipumps with either EUK-189 or EUK-207 for 6 months starting at 17 months of age. At the end of treatment, markers for oxidative stress were evaluated by analyzing levels of free radicals, lipid peroxidation and oxidized nucleic acids in brain tissue. In addition, cognitive performance was assessed after 3 and 6 months of treatment with fear conditioning. Both EUK-189 and EUK-207 treatments resulted in significantly decreased lipid peroxidation, nucleic acid oxidation, and reactive oxygen species (ROS) levels. In addition, the treatments also significantly improved age-related decline in performance in the fear-conditioning task. Our results thus confirm a critical role for oxidative stress in age-related decline in learning and memory and strongly suggest a potential usefulness for salen-manganese complexes in reversing age-related declines in cognitive function and oxidative load.  相似文献   

14.
Impaired neuroprotection resulting from oxidative stress has been implicated in neurodegeneration in a number of pathologic conditions of the brain, including both subcortical and cortical type dementias. Production of excessive oxidative stress, moreover, can lead to elevated levels of certain proinflammatory cytokines that are considered to be contributing factors to neuronal injury and are evident in HIV-related dementia as well as in other neurodegenerative conditions. Inhibitors of oxidative damage could thus be promising therapeutic agents for preventing progressive nerve cell death and slowing the advance of neurodegenerative disease. The potential of antioxidant therapy to provide neuroprotection is substantiated by studies demonstrating reduced oxidative stress with supplementation and lower risk for cognitive impairment with higher plasma antioxidant levels.  相似文献   

15.
Common mechanisms of amyloid oligomer pathogenesis in degenerative disease   总被引:9,自引:0,他引:9  
Many age-related degenerative diseases, including Alzheimer's, Parkinson's, Huntington's diseases and type II diabetes, are associated with the accumulation of amyloid fibrils. The protein components of these amyloids vary widely and the mechanisms of pathogenesis remain an important subject of competing hypotheses and debate. Many different mechanisms have been postulated as significant causal events in pathogenesis, so understanding which events are primary and their causal relationships is critical for the development of more effective therapeutic agents that target the underlying disease mechanisms. Recent evidence indicates that amyloids share common structural properties that are largely determined by their generic polymer properties and that soluble amyloid oligomers may represent the primary pathogenic structure, rather than the mature amyloid fibrils. Since protein function is determined by the three-dimensional structure, the fact that amyloids share generic structures implies that they may also share a common pathological function. Amyloid oligomers from several different proteins share the ability to permeabilize cellular membranes and lipid bilayers, indicating that this may represent the primary toxic mechanism of amyloid pathogenesis. This suggests that membrane permeabilization may initiate a core sequence of common pathological events leading to cell dysfunction and death that is shared among degenerative diseases, whereas pathological events that are unique to one particular type of amyloid or disease may lie in up stream pathways leading to protein mis-folding. Although, these upstream events may be unique to a particular disease related protein, their effects can be rationalized as having a primary effect of increasing the amount of mis-folded, potentially amyloidogenic proteins.  相似文献   

16.
When subjected to excessive oxidative stress, neurons may respond adaptively to overcome the stress, or they may activate a programmed cell death pathway called apoptosis. Apoptosis is characterized by alterations in mitochondria and the endoplasmic reticulum and activation of cysteine proteases called caspases. Increasing evidence suggests that apoptotic biochemical cascades are involved in the dysfunction and death of neurons in neurodegenerative disorders such as Alzheimer's, Parkinson, and Huntington's diseases. Studies of normal aging, of genetic mutations that cause disease, and of environmental factors that affect disease risk are revealing cellular and molecular alterations that may cause excessive oxidative stress and trigger neuronal apoptosis. Accumulation of self-aggregating proteins such as amyloid beta-peptide, tau, alpha-synuclein, and huntingtin may be involved in apoptosis both upstream and downstream of oxidative stress. Membrane-associated oxidative stress resulting in perturbed lipid metabolism and disruption of cellular calcium homeostasis may trigger apoptosis in several different neurodegenerative disorders. Counteracting neurodegenerative processes are an array of mechanisms including neurotrophic factor signaling, antioxidant enzymes, protein chaperones, antiapoptotic proteins, and ionostatic systems. Emerging findings suggest that the resistance of neurons to death during aging can be enhanced by modifications of diet and lifestyle.  相似文献   

17.
Taking into account that atherosclerosis is a focal disease and high levels of plasma cholesterol are closely correlated with its pathogenesis, it is a challenge to explain how equal concentrations of cholesterol bathing the endothelium can produce local, rather than global, effects on arteries. The focal distribution of atherosclerotic lesions has been considered to be dependent, at least in part, on hydrodynamic factors. The present study was carried out to further test the hypothesis that these forces are an important localizing factor in rats feeding a hypercholesterolaemic diet and submitted to infra-diaphragmatic aortic constriction. These animals develop a normotensive prestenotic region with laminar blood flow that serves as control for a normotensive poststenotic region with turbulent blood flow. Our findings clearly demonstrated that the combination of turbulent blood flow and low wall shear stress (WSS) in the presence of hypercholesterolaemia and oxidative stress creates conditions to the formation of focally distributed incipient atherosclerotic lesions observed in the poststenotic segment. In contrast, only diffuse fatty streaks could be observed in the normotensive prestenotic segment with laminar blood flow and normal WSS in the presence of hypercholesterolaemia and oxidative stress. Although haemodynamic forces are not by themselves responsible for the pathogenesis of atherosclerosis, they prime the local vascular wall in which the lesion develop. Further studies are required to establish how haemodynamic forces are detected and transduced into chemical signalling by the cells of the artery wall and then converted into pathophysiologically relevant phenotypic changes.  相似文献   

18.
Oxidative and nitrative injury in periventricular leukomalacia: a review   总被引:7,自引:0,他引:7  
Periventricular leukomalacia (PVL) is the major substrate of cerebral palsy in survivors of prematurity. Its pathogenesis is complex and likely involves ischemia/reperfusion in the critically ill premature infant, with impaired regulation of cerebral blood flow, as well as inflammatory mechanisms associated with maternal and/or fetal infection. During the peak period of vulnerability for PVL, developing oligodendrocytes (OLs) predominate in the white matter. We hypothesize that free radical injury to the developing OLs underlies, in part, the pathogenesis of PVL and the hypomyelination seen in long-term survivors. In human PVL, free radical injury is supported by evidence of oxidative and nitrative stress with markers to lipid peroxidation and nitrotyrosine, respectively. Evidence in normal human cerebral white matter suggests an underlying vulnerability of the premature infant to free radical injury resulting from a developmental mismatch of antioxidant enzymes (AOE) and subsequent imbalance in oxidant metabolism. In vitro studies using rodent OLs suggest that maturational susceptibility to reactive oxygen species is dependent, not only on levels of individual AOE, but also on specific interactions between these enzymes. Rodent in vitro data further suggest 2 mechanisms of nitric oxide damage: one involving the direct effect of nitric oxide on OL mitochondrial integrity and function, and the other involving an activation of microglia and subsequent release of reactive nitrogen species. The latter mechanism, while important in rodent studies, remains to be determined in the pathogenesis of human PVL. These observations together expand our knowledge of the role that free radical injury plays in the pathogenesis of PVL, and may contribute to the eventual development of therapeutic strategies to alleviate the burden of oxidative and nitrative injury in the premature infant at risk for PVL.  相似文献   

19.
Ozonated autohemotherapy is used as a complementary medical approach in the treatment of vascular disorders. One of the greatest problems concerning an application of ozone in medicine is its induction of oxidative stress. The standards of ozonotherapy were elaborated recently making this treatment useful and probably non toxic. The aim of the present study was to investigate the influence of ozonated autohemotherapy on the oxidative stress extent in hemodialyzed patients, known to be particularly exposed to generation and deleterious effects of free radicals. Twelve continuously hemodialyzed subjects with atherosclerotic ischemia of the lower limbs were examined in a prospective, controlled, single blind study. Autohemotherapy with blood exposure to oxygen served as a control. The protein and lipid peroxidation products, the reduced glutathione level in red blood cells and free hemoglobin plasma concentration were measured. The study showed that ozonated autohemotherapy with ozone concentration 50 microg/ml per gram of blood induced a significant decrease in glutathione level after 9 sessions of this procedure. Therapy did not cause either the enhancement of protein and lipid peroxidation, or erythrocytes damage. It seems likely that the antioxidant defense system, part of which is glutathione, neutralizes oxidative properties of ozone in this concentration and protects against oxidative cell damage.  相似文献   

20.
目的 :探讨藻酸双酯钠 (PSS)对系统性红斑狼疮患者血液流变性的影响。方法 :通过临床观察单用激素组与并用PSS组治疗前后血液流变性的变化 ,以LG R 80 (A)型血液流变仪进行相关指标检测。结果 :单用激素组治疗前后患者的血浆粘度及红细胞聚集指数轻度升高 ,其他指标无明显变化 ;并用PSS组治疗后低切全血粘度、红细胞聚集指数、纤维蛋白原等均显著降低。结论 :PSS能明显改善SLE患者的高血凝状态 ,并可减轻激素的副作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号