首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of HIV-1 protease inhibitor therapy has significantly improved the expectancy and quality of life for HIV-infected patients. Recent reports have highlighted the development of metabolic complications in patients taking protease inhibitors, including abnormalities in glucose metabolism such as impaired glucose tolerance and type 2 diabetes. The mechanisms by which protease inhibitors induce these metabolic syndromes are not well understood. The aim of this study was to determine whether treatment with the HIV-1 protease inhibitor, saquinavir, influences the early insulin signaling cascade in insulin-sensitive cell lines. METHODS: Insulin-stimulated phosphorylation of insulin receptor (IR-beta), insulin receptor substrates (IRS-1 and IRS-2), association of phosphatidylinositol 3-kinase (PI 3-kinase), Ser 473-phosphorylation of Akt and Thr202/Tyr204-phosphorylated p44/42 MAP kinase in 3T3L1 adipocytes and FAO hepatoma cells incubated with increasing concentrations of saquinavir for 24, 36 hours, 2, 3 and 6 days were measured. Results. Phosphorylation of IR-beta, IRS-1 and IRS-2 was not permanently affected by incubation with therapeutic doses (2.5 microM) of saquinavir for 36 hours. After 24 hours we observed an increase of IR-beta and IRS-1 phosphorylation. However, this initial stimulation of IR-beta and IRS-1 phosphorylation was not permanent and did not result in an increased PI 3-kinase association. Phosphorylation of IRS-2 and MAP kinase as well as glucose transport activity was not altered by therapeutic doses. Doses of 10, 25 and 50 microM of saquinavir altered the early insulin signaling events in a dose-dependent manner. However, this effect was primarily due to the cytotoxic effect of higher saquinavir doses. Glucose transport activity was not significantly reduced in 3T3L1 cells treated with 2.5 microM saquinavir in comparison to the control cells stimulated with insulin. CONCLUSION: Early insulin signaling cascade, essential for normal glucose metabolism, is not affected by therapeutic doses of saquinavir. The reduction of insulin-induced phosphorylation in higher concentrations is primarily related to cytotoxic effects. Other mechanisms than early insulin signaling must be primarily responsible for the metabolic alterations during saquinavir therapy.  相似文献   

2.
Overactivity of glycogen synthase kinase 3 (GSK-3) is associated with insulin resistance of skeletal muscle glucose transport in prediabetic and type 2 diabetic rodent models. However, limited information is available concerning the potential molecular mechanisms underlying the role GSK-3 plays in the etiology of insulin resistance in the male Zucker Diabetic Fatty (ZDF) rat, a model of type 2 diabetes mellitus. Therefore, we assessed the functionality of proximal and distal insulin signaling elements in isolated type I (slow-twitch oxidative) soleus muscles of ZDF rats after in vitro exposure to a selective GSK-3 inhibitor (1 micromol/L CT98014, K(i) <10 nmol/L for GSK-3alpha and GSK-3beta). Moreover, Ser307 phosphorylation of insulin receptor substrate 1 (IRS-1), which has been implicated in the development of insulin resistance, was also determined in the absence or presence of this GSK-3 inhibitor. Maximally insulin-stimulated (5 mU/mL) GSK-3beta serine phosphorylation was significantly less (35%, P < .05) in soleus muscle of ZDF rats compared with insulin-sensitive lean Zucker rats, indicating GSK-3 overactivity. In the absence of insulin, no effects of GSK-3 inhibition were detected. GSK-3 inhibition led to significant enhancement (28%) of insulin-stimulated glucose transport activity that was associated with significant up-regulation of tyrosine phosphorylation of IR (52%) and IRS-1 (50%), and with enhanced Akt Ser473 phosphorylation (48%) and GSK-3beta Ser9 phosphorylation (36%). Moreover, the selective GSK-3 inhibitor induced a significant reduction in the phosphorylation of IRS-1 Ser307 (26%) and c-jun N-terminal kinases 1 and 2 (31%), a mediator of IRS-1 Ser307 phosphorylation. These results indicate that selective inhibition of GSK-3 activity in type I skeletal muscle from overtly diabetic ZDF rats enhances IRS-1-dependent insulin signaling, possibly by a decrease in c-jun N-terminal kinase activation and a diminution of the deleterious effects of IRS-1 Ser307 phosphorylation.  相似文献   

3.
Li G  Barrett EJ  Barrett MO  Cao W  Liu Z 《Endocrinology》2007,148(7):3356-3363
Chronic inflammation contributes to vascular insulin resistance and endothelial dysfunction. Systemic infusion of TNF-alpha abrogates insulin's action to enhance skeletal muscle microvascular perfusion. In skeletal muscle TNF-alpha induces insulin resistance via the p38 MAPK pathway. To examine whether p38 MAPK also regulates TNF-alpha-induced vascular insulin resistance, bovine aortic endothelial cells (bAECs) were incubated+/-TNF-alpha (5 ng/ml) for 6 h in the presence or absence of SB203580 (p38 MAPK specific inhibitor, 10 microM) after serum starvation for 10 h. For the last 30 min, cells were treated+/-1 nM insulin, and insulin receptor substrate (IRS)-1, Akt, endothelial nitric oxide synthase (eNOS), p38 MAPK, ERK1/2, c-Jun N-terminal kinase, and AMP-activated protein kinase (AMPK) phosphorylation, and eNOS activity were measured. TNF-alpha increased p38 MAPK phosphorylation, potently stimulated IRS-1 serine phosphorylation, and blunted insulin-stimulated IRS-1 tyrosine and Akt phosphorylation and eNOS activity. TNF-alpha also potently stimulated the phosphorylation of ERK1/2 and AMPK. Treatment with SB203580 decreased p38 MAPK phosphorylation back to the baseline and restored insulin sensitivity of IRS-1 tyrosine and Akt phosphorylation and eNOS activity in TNF-alpha-treated bAECs without affecting TNF-alpha-induced ERK1/2 and AMPK phosphorylation. We conclude that in cultured bAECs, TNF-alpha induces insulin resistance in the phosphatidylinositol 3-kinase/Akt/eNOS pathway via a p38 MAPK-dependent mechanism and enhances ERK1/2 and AMPK phosphorylation independent of the p38 MAPK pathway. This differential modulation of TNF-alpha's actions by p38 MAPK suggests that p38 MAPK plays a key role in TNF-alpha-mediated vascular insulin resistance and may contribute to the generalized endothelial dysfunction seen in type 2 diabetes mellitus and the cardiometabolic syndrome.  相似文献   

4.
Essential hypertension is frequently associated with insulin resistance of skeletal muscle glucose transport, and angiotensin II (ANGII) can contribute to the pathogenesis of both conditions. The male heterozygous TG(mREN2)27 rat (TGR) harbors the mouse transgene for renin, exhibits local tissue elevations in ANGII and is an excellent model of both hypertension and insulin resistance associated with defective insulin signaling. The present study was designed to assess the specific role of ANGII in the insulin resistance of the male heterozygous TGR. TGRs were treated with either vehicle or the ANGII (AT(1)-specific) receptor antagonist, irbesartan (50 mg/kg body weight), for 21 consecutive days. Compared with vehicle-treated TGRs, whole-body insulin sensitivity was increased 35% (P < .05) in the irbesartan-treated group, and insulin-mediated glucose transport was increased (P < .05) in both type IIb epitrochlearis (80%) and type I soleus (59%) muscles after irbesartan treatment. Moreover, glycogen synthase activation due to insulin was increased 58% (P < .05) in the soleus of the irbesartan-treated TGRs. However, no significant improvements were observed for functionality of insulin-signaling elements (tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 [IRS1], IRS1 associated with the p85 regulatory subunit of phosphatidylinositol 3'-kinase, and Ser473 of Akt) in muscle of irbesartan-treated animals, except for a 25% increase (P < .05) in IRS1 tyrosine phosphorylation in soleus. Collectively, these data indicate that the improvements in whole-body and skeletal muscle insulin action after long-term antagonism of ANGII action in TGRs occur independently of modulation of the functionality of these insulin-signaling elements.  相似文献   

5.
Omapatrilat (OMA), a vasopeptidase inhibitor (VPI), presently being tested in clinical trials for its antihypertensive properties, inhibits both angiotensin-converting enzyme and neutral endopeptidase, and raises tissue bradykinin levels. Recent studies from our laboratory and those of others have demonstrated that VPIs enhance muscle glucose uptake in animal models, and this effect is mediated by the bradykinin-nitric oxide pathway. The mechanism of the effect of OMA on muscle glucose uptake, however, is presently unknown. To investigate the effect of OMA on insulin signaling, soleus muscle was isolated 2 or 5 min after an i.v. bolus of insulin or saline from male Zucker fatty rats (8-10 weeks of age), following a 5-day treatment period of oral OMA (15 mg/kg per day) or drug vehicle (placebo). OMA resulted in significantly lower systolic blood pressure compared with the placebo-treated group (84.4+/- 7.52 mmHg in OMA vs 112+/-2.18 mmHg in controls, P<0.01). Immunoprecipitation and Western blot analysis of insulin receptor substrate 1 (IRS-1) revealed no changes in protein mass with OMA treatment. OMA did not enhance basal or insulin-stimulated IRS-1 tyrosine phosphorylation or its subsequent association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Under basal and insulin-stimulated conditions, OMA treatment did not alter the protein mass or the phosphorylation of Akt/protein kinase B, p42/44 extracellular signal-regulated kinase or adenosine monophosphate-activated protein kinase, or GLUT4 protein expression. We conclude that the ability of OMA to enhance whole body and specifically muscle glucose uptake in Zucker fatty rats is not mediated by enhancing insulin or AMPK signaling. Future studies should examine whether hemodynamic effects of the drug, independent of insulin signaling, enhance glucose uptake in insulin-resistant skeletal muscle.  相似文献   

6.
Phosphorylation of insulin receptor substrate-1 (IRS-1) on serine residues has been recognized as a mechanism responsible for a diminution of insulin action and insulin resistance. Potential approaches to improve insulin sensitivity may include interference with and/or reduction in expression of certain signaling intermediates that participate in the pathogenesis of insulin resistance. In this study, we transduced fully differentiated 3T3-L1 adipocytes with a constitutively active myristoylated Akt that led to hyperactivation of mammalian target of rapamycin and p70 S6 kinase (S6K1), increased serine phosphorylation of IRS-1, and reduction in insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and glucose transport. We then reduced expression of the PI 3-kinase regulatory subunit, p85alpha, or expression of S6K1 kinase using small interfering RNA transfections, which led to a reduction in p85alpha expression of 70% at 48 h (P < 0.05) and S6K1 of 49% (P < 0.05). Reduction in expression of either p85alpha or S6K1 achieved with small interfering RNA in the presence of myristoylated Akt rescued 3T3-L1 adipocytes from the insulin resistance induced by serine phosphorylation of IRS-1 and completely restored insulin-stimulated activation of PI 3-kinase and glucose uptake. We conclude that reduction in expression of p85alpha or S6K1 could represent therapeutic targets to mitigate insulin resistance.  相似文献   

7.
Recently, we have reported that the overexpression of a membrane-targeted phosphatidylinositol (PI) 3-kinase (p110CAAX) stimulated p70S6 kinase, Akt, glucose transport, and Ras activation in the absence of insulin but inhibited insulin-stimulated glycogen synthase activation and MAP kinase phosphorylation in 3T3-L1 adipocytes. To investigate the mechanism of p110CAAX-induced cellular insulin resistance, we have now studied the effect of p110CAAX on insulin receptor substrate (IRS)-1 protein. Overexpression of p110CAAX alone decreased IRS-1 protein levels to 63+/-10% of control values. Insulin treatment led to an IRS-1 gel mobility shift (most likely caused by serine/threonine phosphorylation), with subsequent IRS-1 degradation. Moreover, insulin-induced IRS-1 degradation was enhanced by expression of p110CAAX (61+/-16% vs. 13+/-15% at 20 min, and 80+/-8% vs. 41+/-12% at 60 min, after insulin stimulation with or without p110CAAX expression, respectively). In accordance with the decreased IRS-1 protein, the insulin-stimulated association between IRS-1 and the p85 subunit of PI 3-kinase was also decreased in the p110CAAX-expressing cells, and IRS-1-associated PI 3-kinase activity was decreased despite the fact that total PI 3-kinase activity was increased. Five hours of wortmannin pretreatment inhibited both serine/threonine phosphorylation and degradation of IRS-1 protein. These results indicate that insulin treatment leads to serine/threonine phosphorylation of IRS-1, with subsequent IRS-1 degradation, through a PI 3-kinase-sensitive mechanism. Consistent with this, activated PI 3-kinase phosphorylates IRS-1 on serine/threonine residues, leading to IRS- 1 degradation. The similar finding was observed in IRS-2 as well as IRS-1. These results may also explain the cellular insulin-resistant state induced by chronic p110CAAX expression.  相似文献   

8.
The mechanisms by which elevated plasma nonesterified fatty acid (NEFA) levels induce skeletal muscle insulin resistance remain unclear. A NEFA-induced defect in the activation of PI3K, which plays a key role in insulin's stimulation of glucose transport, has been invoked. We sought to examine the effects of elevated plasma NEFA (approximately 1 mmol/liter) on muscle PI3K activity, insulin receptor substrate (IRS)-1 (important for activation of PI3K), and Akt, which is downstream of PI3K and activated by phosphorylation on serine and threonine in a PI3K-dependent manner. Ten normal men [age, 37 +/- 9 yr (mean +/- SD); body mass index, 25.2 +/- 3.8 kg/m(2)] underwent two 5-h hyperinsulinemic (80 mU/m(2) x min) euglycemic clamps with basal and end of clamp biopsies of the vastus lateralis muscle. Plasma NEFAs were increased in one study by infusion of 20% Intralipid (1 ml/min) and heparin (900 U/h) throughout and for 2.5 h beforehand. Skeletal muscle protein levels were quantified by Western blotting. Elevated plasma NEFA reduced whole-body insulin-stimulated glucose disposal by 24% (42.1 +/- 4.0 vs. 54.8 +/- 3.6 micromol/kg x min; P < 0.001). Basal muscle IRS-1 was the same in the two studies. IRS-1 levels decreased by 40% in the control glucose clamps (P < 0.005), but did not change during the Intralipid study. Total tyrosine phosphorylated IRS-1 increased by 29% during the control clamps (P < 0.05), but by only 18% (NS) during the Intralipid studies. Total levels of p85alpha subunit of PI3K and Akt were not influenced by plasma NEFA levels either in the basal state or during the glucose clamps. The insulin-induced increase in IRS-1-associated PI3K activity was impaired by elevated NEFA, so that activity at the end of the clamps with Intralipid was 35% lower than in the control clamps (P < 0.05). The percentage reduction in PI3K activation correlated with the reduction in insulin-stimulated glucose disappearance rate that was induced by elevated NEFA (r = 0.70; P < 0.05). Basal P-ser- and P-thr-Akt levels were very low and unaffected by NEFA levels. The glucose clamps resulted in a marked increase in P-ser and P-thr Akt levels. Despite the decrease in PI3K in the Intralipid study, no defect in Akt phosphorylation was found. In summary, NEFA-induced insulin resistance is associated with an impairment of IRS-1 tyrosine phosphorylation and IRS-1-associated PI3K activation. Down-regulation of IRS-1 levels is also impaired. The NEFA-induced defect in muscle glucose uptake appears to be a consequence of a defect in the insulin-signaling pathway leading to impaired PI3K activation. This in turn may lead to impaired glucose transport through an Akt-independent pathway because Akt phosphorylation was unaffected by elevated NEFA levels.  相似文献   

9.
Aims/hypothesis C-reactive protein (CRP) is associated with insulin resistance and predicts development of type 2 diabetes. However, it is unknown whether CRP directly affects insulin signalling action. To this aim, we determined the effects of human recombinant CRP (hrCRP) on insulin signalling involved in glucose transport in L6 myotubes. Materials and methods L6 myotubes were exposed to endotoxin-free hrCRP and insulin-stimulated activation of signal molecules, glucose uptake and glycogen synthesis were assessed. Results We found that hrCRP stimulates both c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK)1/2 activity. These effects were paralleled by a concomitant increase in IRS-1 phosphorylation at Ser307 and Ser612, respectively. The stimulatory effects of hrCRP on IRS-1 phosphorylation at Ser307 and Ser612 were partially reversed by treatment with specific JNK and ERK1/2 inhibitors, respectively. Exposure of L6 myotubes to hrCRP reduced insulin-stimulated phosphorylation of IRS-1 at Tyr632, a site essential for engaging p85 subunit of phosphatidylinositol-3 kinase (PI-3K), protein kinase B (Akt) activation and glycogen synthase kinase-3 (GSK-3) phosphorylation. These events were accompanied by a decrease in insulin-stimulated glucose transporter (GLUT) 4 translocation to the plasma membrane, glucose uptake and glucose incorporation into glycogen. The inhibitory effects of hrCRP on insulin signalling and insulin-stimulated GLUT4 translocation were reversed by treatment with JNK inhibitor I and the mitogen-activated protein kinase inhibitor, PD98059. Conclusions/interpretation Our data suggest that hrCRP may cause insulin resistance by increasing IRS-1 phosphorylation at Ser307 and Ser612 via JNK and ERK1/2, respectively, leading to impaired insulin-stimulated glucose uptake, GLUT4 translocation, and glycogen synthesis mediated by the IRS-1/PI-3K/Akt/GSK-3 pathway.  相似文献   

10.
Patients with hepatitis C virus (HCV) infection have a greater risk of developing type 2 diabetes mellitus. However, the mechanism of this association is unclear. In this study, we examined the potential defects in upstream insulin signaling pathways in liver specimens obtained from nonobese/nondiabetic subjects with HCV infection. Fasting liver biopsy specimens were obtained from 42 HCV-infected subjects and 10 non-HCV-infected subjects matched for age and body mass index. Liver tissues were exposed to insulin and examined for the contents and phosphorylation/activation status of the upstream insulin signaling molecules by immunoprecipitation and Western blot analysis. HCV infection resulted in a trend toward a 2-fold to 3-fold increase in insulin receptor (IR) and insulin receptor substrate (IRS)-1 contents when compared with non-HCV. In contrast, insulin-stimulated IRS-1 tyrosine phosphorylation was decreased by 2-fold in HCV-infected subjects compared with non-HCV-infected subjects (P <.05). The observed reductions in IRS-1 tyrosine phosphorylation were accompanied by a 3.4-fold decrease in IRS-1/p85 phosphatidylinositol 3-kinase (PI3-kinase) association and a 2.5-fold decrease in IRS-1-associated PI3-kinase enzymatic activity (P <.05 vs. non-HCV). This was accompanied by a marked reduction in insulin-stimulated Akt phosphorylation without any alterations in mitogen-activated protein kinase (MAPK) phosphorylation. Cellular contents of the hepatic p85 subunit of PI3-kinase were comparable between HCV-infected and non-HCV-infected subjects. In conclusion, we found that (1). HCV infection leads to a postreceptor defect in IRS-1 association with the IR and (2). insulin signaling defects in hepatic IRS-1 tyrosine phosphorylation and PI3-kinase association/activation may contribute to insulin resistance, which leads to the development of type 2 diabetes mellitus in patients with HCV infection.  相似文献   

11.
Sweeney G  Keen J  Somwar R  Konrad D  Garg R  Klip A 《Endocrinology》2001,142(11):4806-4812
Obesity is a major risk factor for the development of insulin resistance, characterized by impaired stimulation of glucose disposal into muscle. The mechanisms underlying insulin resistance are unknown. Here we examine the direct effect of leptin, the product of the obesity gene, on insulin-stimulated glucose uptake in cultured rat skeletal muscle cells. Preincubation of L6 myotubes with leptin (2 or 100 nM, 30 min) had no effect on basal glucose uptake but reduced insulin-stimulated glucose uptake. However, leptin had no effect on the insulin-induced gain in myc-tagged glucose transporter 4 (GLUT4) appearance at the cell surface of L6 myotubes. Preincubation of cells with leptin also had no effect on insulin-stimulated tyrosine phosphorylation of insulin receptor, IRS-1 and IRS-2, phosphatidylinositol 3-kinase activity, or Akt phosphorylation. We have previously shown that insulin regulates glucose uptake via a signaling pathway sensitive to inhibitors of p38 MAP kinase. Here, leptin pretreatment reduced the extent of insulin-stimulated p38 MAP kinase phosphorylation and phosphorylation of cAMP response element binder, a downstream effector of p38 MAP kinase. These results show that high leptin levels can directly reduce insulin-stimulated glucose uptake in L6 muscle cells despite normal GLUT4 translocation. The mechanism of this effect could involve inhibition of insulin-stimulated p38 MAP kinase and GLUT4 activation.  相似文献   

12.
BACKGROUND: Epidemiological evidence has indicated that vitamin D deficiency increased the risk of insulin resistance in metabolic syndrome. The present study was conducted to test the hypothesis that 1,25-dihydroxyvitamin D may improve the free fatty-acid (FFA)-induced insulin resistance in muscle cells. METHOD: The insulin resistance of muscle cell model was established by treatment of FFA in differentiated C2C12 cells. Glucose uptake of C2C12 myotubes was analysed by the 3H-labelled 2-deoxyglucose uptake assay. The diameter of myotubes was measured under the condition of glutaraldehyde-induced autofluorescense. Tyrosine phosphorylated insulin receptor substrate 1 (IRS-1) was measured by immunoprecipitation. Serine phosphorylated IRS-1 and protein kinase B (Akt), extracellular signal-related kinase (ERK), c-Jun amino-terminal kinases (JNK) as well as their phosphorylated form were analysed by Western blots. RESULTS: Compared with a vehicle-treated group, FFA treatment in myotubes was associated with 70.6% reduction in insulin-mediated uptake of glucose, a five-fold increase in serine phosphorylation of IRS-1, 76.9% decrease in tyrosine phosphorylation of IRS-1 and 81.8% decrease in phosphorylation of Akt. Supplement of 1,25-dihydroxyvitamin D improved the FFA-induced inhibition of glucose uptake in a dose- dependent (p < 0.001) and time-dependent manner (p < 0.01). This was accompanied by increase in tyrosine phosphorylation of IRS-1 and phosphorylated Akt and decrease in serine phosphorylation of IRS-1 (p < 0.001). 1,25-Dihydroxyvitamin D also inhibited the FFA-induced reduction in myotube diameter by 35.3% (p < 0.001). JNK phosphorylation was reduced by 126.7% with treatment of 1,25-dihydroxyvitamin D (p < 0.001). 1,25-Dihydroxyvitamin D had no effect on FFA-induced ERK phosphorylation (p = 0.84). CONCLUSION: 1,25-Dihydroxyvitamin D improved the FFA-induced insulin resistance in muscle cells. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The function of insulin receptor substrate-1 (IRS-1) is regulated by both tyrosine and serine/threonine phosphorylation. Phosphorylation of some serine/threonine residues in IRS-1 dampens insulin signaling, whereas phosphorylation of other serine/threonine residues enhances insulin signaling. Phosphorylation of human IRS-1 at Ser(629) was increased by insulin in Chinese hamster ovary cells expressing the insulin receptor (1.26 +/- 0.09-fold; P < 0.05) and L6 cells (1.35 +/- 0.29-fold; P < 0.05) expressing human IRS-1. Sequence analysis surrounding Ser(629) revealed conformity to the consensus phosphorylation sequence recognized by Akt. Phosphorylation of IRS-1 at Ser(629) in cells was decreased upon treatment with either an Akt inhibitor or by coexpression with kinase dead Akt, whereas Ser(629) phosphorylation was increased by coexpression with constitutively active Akt. In addition, Ser(629) of IRS-1 is directly phosphorylated by Akt in vitro. In cells, preventing phosphorylation of Ser(629) by a Ser(629)Ala mutation resulted in increased phosphorylation of Ser(636), a known negative regulator of IRS-1, without affecting phosphorylation of Tyr(632) or Ser(616). Cells expressing the Ser(629)Ala mutation, along with increased Ser(636) phosphorylation, had decreased insulin-stimulated association of the p85 regulatory subunit of phosphatidylinositol 3'-kinase with IRS-1 and decreased phosphorylation of Akt at Ser(473). Finally, in vitro phosphorylation of a Ser(629)-containing IRS-1 fragment with Akt reduces the subsequent ability of ERK to phosphorylate Ser(636/639). These results suggest that a feed-forward mechanism may exist whereby insulin activation of Akt leads to phosphorylation of IRS-1 at Ser(629), resulting in decreased phosphorylation of IRS-1 at Ser(636) and enhanced downstream signaling. Understanding the complex phosphorylation patterns of IRS-1 is crucial to elucidating the factors contributing to insulin resistance and, ultimately, the pathogenesis of type 2 diabetes.  相似文献   

14.
Many adverse effects of glucose were attributed to its increased routing through the hexosamine pathway (HBP). There is evidence for an autocrine role of the insulin signaling in beta-cell function. We tested the hypothesis that activation of the HBP induces defects in insulin biosynthesis by affecting the insulin-mediated protein translation signaling. Exposure of human pancreatic islets and RIN beta-cells to glucosamine resulted in reduction in glucose- and insulin-stimulated insulin biosynthesis, which in RIN beta-cells was associated with impairment in insulin-stimulated insulin receptor substrate-1 (IRS-1) phosphorylation at Tyr(608) and Tyr(628), which are essential for engaging phosphatidylinositol 3-kinase (PI 3-kinase). These changes were accompanied by impaired activation of PI 3-kinase, and activation of Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway. RIN beta-cells exposed to high glucose exhibited increased c-Jun N-terminal kinase (JNK) and ERK1/2 activity, which was associated with increased IRS-1 phosphorylation at serine (Ser)(307) and Ser(612), respectively, that inhibits coupling of IRS-1 to the insulin receptor and is upstream of the inhibition of IRS-1 tyrosine phosphorylation. Azaserine reverted the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Glucosamine mimicked the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Inhibition of JNK and MAPK kinase-1 activity reverted the negative effects of glucosamine on insulin-mediated protein synthesis. These results suggest that activation of the HBP accounts, in part, for glucose-induced phosphorylation at Ser(307) and Ser(612) of IRS-1 mediated by JNK and ERK1/2, respectively. These changes result in impaired coupling of IRS-1 and PI 3-kinase, and activation of the Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway.  相似文献   

15.
Aims/hypothesis p38 mitogen activated protein kinase (MAPK) is generally thought to facilitate signal transduction to genomic, rather than metabolic responses. However, recent evidence implicates a role for p38 MAPK in the regulation of glucose transport; a site of insulin resistance in Type 2 diabetes. Thus we determined p38 MAPK protein expression and phosphorylation in skeletal muscle from Type 2 diabetic patients and non-diabetic subjects.Methods In vitro effects of insulin (120 nmol/l) or AICAR (1 mmol/l) on p38 MAPK expression and phosphorylation were determined in skeletal muscle from non-diabetic (n=6) and Type 2 diabetic (n=9) subjects.Results p38 MAPK protein expression was similar between Type 2 diabetic patients and non-diabetic subjects. Insulin exposure increased p38 MAPK phosphorylation in non-diabetic, but not in Type 2 diabetic patients. In contrast, basal phosphorylation of p38 MAPK was increased in skeletal muscle from Type 2 diabetic patients.Conclusion/interpretation Insulin increases p38 MAPK phosphorylation in skeletal muscle from non-diabetic subjects, but not in Type 2 diabetic patients. However, basal p38 MAPK phosphorylation is increased in skeletal muscle from Type 2 diabetic patients. Thus, aberrant p38 MAPK signalling might contribute to the pathogenesis of insulin resistance.Abbreviations AICAR 5-aminoimidazole-4-carboxamide ribonucleoside - AMPK 5-AMP activated protein kinase - ERK 1/2 extracellular regulated kinase - GIR glucose infusion rate - IRS-1 insulin receptor substrate 1 - MAPK mitogen-activated protein kinase - PI phosphatidylinositol - VO2max maximal oxygen uptake  相似文献   

16.
Chronic hyperinsulinemia is both a marker and a cause for insulin resistance. This study analyzes the effect of long-term exposure to high insulin levels on the insulin-signaling pathway and glucose transport in cultured human myoblasts. Human myoblasts were grown in the presence of low (107 pmol/L, SkMC-L) or high (1430 pmol/L, SkMC-H) insulin concentrations for 3 weeks. Glucose transport, insulin receptor (IR), and IR substrate 1 (IRS1) phosphorylation, phosphatidylinositol 3'-kinase (PI3K) activity, as well as Akt-Ser473 phosphorylation have been investigated at the end of the incubation period and after a further short-term insulin stimulation. At the end of the incubation period, IR, IRS1, p85/PI3K, Akt, and GLUT4 protein expression levels were similar in both culture conditions. Basal glucose transport was similar in SkMC-L and SkMC-H, but after short-term insulin stimulation significantly increased (P < .01) only in SkMC-L. IR binding was down-regulated in SkMC-H (P < .01), but IR and IRS1 tyrosine phosphorylation and PI3K activity were significantly higher (P < .01) in SkMC-H than SkMC-L. Despite increased PI3K activation, Akt-Ser473 phosphorylation was similar in SkMC-L and SkMC-H. After a short-term insulin stimulation (10 nmol/L insulin for 10 minutes), IR and IRS1 tyrosine phosphorylation, PI3K activation, and Akt-Ser473 phosphorylation significantly increased (P < .01 and P < .05 for Akt) in SkMC-L but not in SkMC-H. Serine phosphorylation of IRS1 was similar in SkMC-L and SkMC-H. Moreover, in the SkMC-H, insulin stimulation was associated with the inhibition of IRS1 tyrosine dephosphorylation (P < .05). In summary, continuous exposure of cultured myoblasts to high insulin levels induces a persistent up-regulation of IR, IRS1, and PI3K activity associated with the demodulation of insulin signaling. Moreover, the impairment of the insulin-signaling steps between PI3K and Akt is concomitant with the desensitization of glucose transport. These alterations may contribute to the derangement insulin-signaling pathway states of hyperinsulinemia such as obesity and type 2 diabetes.  相似文献   

17.
18.
Objective: We determined the direct effects of modulating the endocannabinoid‐1 (CB1) receptor on the glucose transport system in isolated skeletal muscle from insulin‐sensitive lean Zucker and insulin‐resistant obese Zucker rats. Methods: Soleus strips were incubated in the absence or presence of insulin, without or with various concentrations of the CB1 receptor antagonist SR141716 or with the CB1 receptor agonist arachidonyl‐2‐chloroethylamide (ACEA). Results: CB1 receptor protein expression in visceral adipose (57%), soleus (40%) and myocardial (36%) tissue was significantly (p < 0.05) decreased in obese compared to lean animals, with a trend for a reduction (17%, p = 0.079) in the liver. In isolated soleus muscle from both lean and obese Zucker rats, CB1 receptor antagonism directly improved glucose transport activity in a dose‐dependent manner. Basal glucose transport activity was maximally enhanced between 100 and 200 nM SR141716 in lean (26–28%) and obese (22–31%) soleus. The maximal increase in insulin‐stimulated glucose transport for lean muscle (~30%) was achieved at 50 nM SR141716 and for obese muscle (~30%) at 100 nM SR141716. In contrast, CB1 receptor antagonism did not alter hypoxia‐stimulated glucose transport activity. CB1 receptor agonism (1 mM ACEA) significantly decreased both basal (15%) and insulin‐stimulated (22%) glucose transport activity in isolated lean soleus. This effect was reversed by 200 nM SR141716. In both lean and obese muscle, the functionality of key signalling proteins (insulin receptor β‐subunit, Akt, glycogen synthase kinase‐3β (GSK‐3β), AMP‐dependent protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38 MAPK)) was not altered by either CB1 receptor agonism or antagonism. Conclusion: These results indicate that the engagement of CB1 receptor can negatively modulate both basal and insulin‐dependent glucose transport activity in lean and obese skeletal muscles, and that these effects are not mediated by the engagement of elements of the canonical pathways regulating this process in mammalian skeletal muscle.  相似文献   

19.
Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppressor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN.  相似文献   

20.
Calorie restriction (CR) improves insulin sensitivity and increases life span in normal but not in long-lived growth hormone-resistant knockout (GHRKO) mice. In this study, we examined interactive effects of GH resistance and long-term CR on cardiac insulin action. GHRKO mice exhibited marked increases in the insulin-induced phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), Akt, and ERK1/2 along with elevated insulin-stimulated IRS-1-associated regulatory subunit of phosphatidylinositol 3-kinase in the heart. These changes were associated with elevated protein levels of IR, IRS-1, and Akt and with a down-regulation of cardiac glucose transporter 4 (GLUT4). In normal mice, CR induced an important increase in the phosphorylation of cardiac Akt without elevation of Akt protein, reaching activation levels similar to those seen in GHRKO mice. This change may be cardioprotective and thus contribute to increased longevity in response to CR. Interestingly, the insulin signaling cascade in the heart of GHRKO mice was unaffected by CR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号