首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the TNF superfamily. TWEAK activates the Fn14 receptor, and may regulate apoptosis, proliferation, and inflammation, processes that play a significant role in pathological conditions. However, there is little information on the function and regulation of this system in the kidney. Therefore, TWEAK and Fn14 expression were studied in cultured murine tubular epithelial MCT cells and in mice in vivo. The effect of TWEAK on cell death was determined. We found that TWEAK and Fn14 expression was increased in experimental acute renal failure induced by folic acid. Cultured tubular cells express both TWEAK and the Fn14 receptor. TWEAK did not induce cell death in non-stimulated tubular cells. However, in cells costimulated with TNFalpha/interferon-gamma, TWEAK induced apoptosis through the activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-8, caspase-9, and caspase-3, Bid cleavage, and evidence of mitochondrial injury. There was no evidence of endoplasmic reticulum stress. A pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp prevented TWEAK-induced apoptosis, but it sensitized cells to necrosis via generation of reactive oxygen species. In conclusion, cooperation between inflammatory cytokines results in tubular cell death. TWEAK and Fn14 may play a role in renal tubular cell injury.  相似文献   

2.
TNF ligand superfamily member 12, also known as TNF-related weak inducer of apoptosis (TWEAK), acts through its receptor, fibroblast growth factor-inducible 14 (Fn14), to mediate several key pathologic processes involved in tissue injury relating to lupus nephritis. To explore the potential for renal protection in lupus nephritis by targeting this pathway, we introduced the Fn14 null allele into the MRL-lpr/lpr lupus mouse strain. At 26–38 weeks of age, female Fn14-knockout MRL-lpr/lpr mice had significantly lower levels of proteinuria compared with female wild-type MRL-lpr/lpr mice. Furthermore, Fn14-knockout mice had significantly improved renal histopathology accompanied by attenuated glomerular and tubulointerstitial inflammation. There was a significant reduction in glomerular Ig deposition in Fn14-knockout mice, despite no detectable differences in either serum levels of antibodies or splenic immune cell subsets. Notably, we found that the Fn14-knockout mice displayed substantial preservation of podocytes in glomeruli and that TWEAK signaling directly damaged barrier function and increased filtration through podocyte and glomerular endothelial cell monolayers. Our results show that deficiency of the Fn14 receptor significantly improves renal disease in a spontaneous lupus nephritis model through prevention of the direct injurious effects of TWEAK on the filtration barrier and/or modulation of cytokine production by resident kidney cells. Thus, blocking the TWEAK/Fn14 axis may be a novel therapeutic intervention in immune-mediated proliferative GN.  相似文献   

3.
4.
As one of the manifestations of patients with systemic lupus erythematosus, lupus nephritis (LN) has high morbidity and mortality. Although the explicit mechanism of LN remains to be fully elucidated, there is increasing evidence to support the notion that tumour necrosis factor‐related weak inducer of apoptosis (TWEAK), acting via its sole receptor, fibroblast growth factor‐inducible 14 (Fn14), plays a pivotal role in such pathologic process. TWEAK/Fn14 interactions occur prominently in kidneys of LN, inducing inflammatory responses, angiogenesis, mesangial proliferation, filtration barrier injuries, renal fibrosis, etc. This review will specify the important roles of TWEAK/Fn14 pathway in the pathogenesis of LN with experimental data from cellular and animal models. Additionally, the raised levels of urinary and serum soluble TWEAK correlate with renal disease activity in patients with LN. The neutralizing antibodies targeting TWEAK or other approaches inhibiting TWEAK/Fn14 signals can attenuate renal damage in the murine lupus models. Therefore, to focus on TWEAK/Fn14 signalling may be promising in both clinical evaluation and the treatment of patients with LN.  相似文献   

5.
Aim: The role of the tumour necrosis factor‐like weak inducer of apoptosis (TWEAK)/Fn14 and interferon‐inducible protein (IP‐10)/CXCR3 axis in the pathogenesis of lupus nephritis were studied. Methods: The mRNA expression of TWEAK, Fn14, IP‐10 and CXCR3 were quantified in the glomerulus and tubulointerstitium of 42 patients with lupus nephritis (LN group) and 10 healthy controls. Results: As compared to controls, LN patients had higher glomerular expression of TWEAK and Fn14, but glomerular CXCR3 expression was lower in the LN group. Similarly, the LN group had higher tubulointerstitial expression of TWEAK and Fn14, but lower tubulointerstitial expression of CXCR3, than controls. Glomerular TWEAK expression of class V nephritis was significantly higher than class IV nephritis. Glomerular expression of CXCR3 significantly correlated with proteinuria (r = ?0.532; P = 0.019), whereas tubulointerstitial CXCR3 significantly correlated with serum creatinine (r = ?0.447; P = 0.029). Conclusion: In patients with lupus nephritis, there is an increase in intra‐renal expression of TWEAK and Fn14, and a decrease in CXCR3 expression. Intra‐renal expression of CXCR3 correlates with proteinuria and renal function. Our findings suggest that the TWEAK/Fn14 and IP‐10/CXCR3 axis may contribute to the pathogenesis of lupus nephritis.  相似文献   

6.
TNF-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily of cytokines. In addition to binding and activating the fibroblast growth factor-inducible 14 receptor, TWEAK may regulate apoptosis, proliferation, and inflammation; however, the role of this system in kidney injury is unknown. In vitro, it was found that TWEAK induced the sustained activation of NF-kappaB in a murine tubular epithelial cell line (MCT). NF-kappaB activation was associated with degradation of IkappaB-alpha; translocation of RelA to the nucleus; and increased mRNA and protein expression of monocyte chemoattractant protein-1, RANTES, and IL-6. Similarly, in vivo, the systemic administration of TWEAK induced renal NF-kappaB activation, chemokine and IL-6 expression, and interstitial inflammation in mice. Parthenolide, which prevents IkappaB-alpha degradation, inhibited TWEAK-induced NF-kappaB activation and prevented the aforementioned changes in vitro and in vivo. After folic acid-induced acute kidney injury, fibroblast growth factor-inducible 14 expression increased in mouse tubular epithelium. Neutralization of TWEAK decreased the expression of chemokines in tubular cells and reduced interstitial inflammation. In conclusion, TWEAK has NF-kappaB-dependent proinflammatory effects on tubular epithelial cells in vitro and in vivo. Moreover, blockade of TWEAK reduces tubular chemokine expression and macrophage infiltration, suggesting that TWEAK modulates acute kidney injury by regulating the inflammatory response.  相似文献   

7.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to have pivotal roles in various inflammatory processes. The TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14), has various unique functions under physiological and pathological conditions; however, the therapeutic potential of its direct targeting remains unknown. Here, we found that Fn14 expression was highly upregulated in ischemic renal tissues and tubular epithelial cells of patient biopsies and experimental animal models of renal injury. To clarify the function of Fn14 in ischemia reperfusion injury, we coincubated renal tubular cells with ITEM-2, an anti-Fn14 blocking monoclonal antibody, and found that it inhibited the production of proinflammatory cytokines and chemokines after injury. Furthermore, Fn14 blockade downregulated the local expression of several proinflammatory mediators, reduced accumulation of neutrophils and macrophages in ischemic tissues, and inhibited tubular cell apoptosis. Importantly, Fn14 blockade attenuated the development of chronic fibrosis after ischemia reperfusion injury and significantly prolonged the survival of lethally injured mice. Thus, we conclude that Fn14 is a critical mediator in the pathogenesis of ischemia reperfusion injury.  相似文献   

8.
BackgroundIn autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia.MethodsTo evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection.ResultsMeta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation–related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment.ConclusionsThis study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.  相似文献   

9.
Fas ligand (FasL) is a cell membrane cytokine that can promote apoptosis through activation of Fas receptors. Fas receptor activation induces glomerular cell apoptosis in vivo and participates in tubular cell death during acute renal failure. However, there is little information on the expression of FasL in the kidney. This study reports that FasL mRNA and protein are present in normal mouse and rat kidney. In situ hybridization and immunohistochemistry showed that proximal tubular epithelium is the main site of FasL expression in the normal kidney. In addition, increased total kidney FasL mRNA and de novo FasL protein expression by glomerular cells were observed in two different models of glomerular injury : rat immune-complex proliferative glumerulonephritis and murine lupus nephritis. Both full-length and soluble FasL were increased in the kidneys of the mice with nephritis. Cultured murine proximal tubular epithelial MCT cells and primary cultures of murine tubular epithelial cells expressed FasL mRNA and protein. Tubular epithelium-derived FasL induced apoptosis in Fassensitive lymphoid cell lines but not in Fas-resistant lymphoid cell lines. By contrast, MCT cells grown in the presence of the survival factors of serum were resistant to FasL, and only became partially sensitive to apoptosis induced by high concentrations (100 ng/ml) of FasL upon serum deprivation. However, MCT cells stimulated with inflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide) increased cell surface Fas expression and were sensitized to apoptosis induced by FasL (FasL 55 +/- 5% versus control 8.3 +/- 4.1% apoptotic cells at 24 h, P < 0.05). Cytokine-primed primary cultures of tubular epithelial cells also acquired sensitivity to FasL-induced apoptosis. These results suggest that FasL expression by intrinsic renal cells may play a role in cell homeostasis in the normal kidney and during renal injury.  相似文献   

10.
Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAK-induced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD.  相似文献   

11.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (TWEAK-Fn14), are widely expressed and are involved in both injury and repair. Hotta et al. now demonstrate an important role for Fn14 in the common clamp ischemia model of acute kidney injury. Their data suggest paracrine and autocrine effects in which TWEAK produced by tubule cells feeds back on them via upregulated Fn-14 receptors expressed downstream in the proximal tubule.  相似文献   

12.
Calcineurin inhibitor toxicity (CNT) is a frequent occurrence in transplanted renal grafts and autochthone kidneys from patients undergoing long‐term treatment with calcineurin inhibitors, notably cyclosporin A (CsA) and tacrolimus. Here, we show an indispensable role of the tumor necrosis factor superfamily (TNFS) molecule TNF‐related weak inducer of apoptosis (TWEAK) (TNFSF12) in the pathogenesis of acute CNT lesions in mice. A deficiency in TWEAK resulted in limited tubulotoxicity after CsA exposure, which correlated with diminished expression of inflammatory cytokines and reduced intraparenchymal infiltration with immune cells. We further identified tubular epithelial cells of the kidney as major targets of CsA activity and found that Fn14 (tumor necrosis factor receptor superfamily 12A), the receptor for TWEAK, is a highly CsA‐inducible gene in these cells. Correlating with this, CsA pretreatment sensitized tubular epithelial cells specifically to the pro‐inflammatory activities of recombinant TWEAK in vitro. Moreover, injection of rTWEAK alone into mice induced moderate disease similar to CsA, and rTWEAK combined with CsA resulted in synergistic nephrotoxicity. These findings support the importance of tubular epithelial cells as cellular targets of CsA toxicity and introduce TWEAK as a critical contributor to CNT pathogenesis.  相似文献   

13.
Stromal cells protect against acute tubular injury via an endocrine effect   总被引:5,自引:0,他引:5  
Emerging evidence suggests that the intravenous injection of bone marrow-derived stromal cells (BMSC) improves renal function after acute tubular injury, but the mechanism of this effect is controversial. In this article, we confirm that intravenous infusion of male BMSC reduced the severity of cisplatin-induced acute renal failure in adult female mice. This effect was also seen when BMSC (or adipocyte-derived stromal cells (AdSC)), were given by intraperitoneal injection. Infusion of BMSC enhanced tubular cell proliferation after injury and decreased tubular cell apoptosis. Using the Y chromosome as a marker of donor stromal cells, examination of multiple kidney sections at one or four days after cell infusion failed to reveal any examples of stromal cells within the tubules, and only rare examples of stromal cells within the renal interstitium. Furthermore, conditioned media from cultured stromal cells induced migration and proliferation of kidney-derived epithelial cells and significantly diminished cisplatin-induced proximal tubule cell death in vitro. Intraperitoneal administration of this conditioned medium to mice injected with cisplatin diminished tubular cell apoptosis, increased survival, and limited renal injury. Thus, marrow stromal cells protect the kidney from toxic injury by secreting factors that limit apoptosis and enhance proliferation of the endogenous tubular cells, suggesting that transplantation of the cells themselves is not necessary. Identification of the stromal cell-derived protective factors may provide new therapeutic options to explore in humans with acute kidney injury.  相似文献   

14.

Purpose

Patients diagnosed with chronic kidney disease (CKD) have a greater rate of cardiovascular mortality compared with the general population. The soluble form of TNF-like weak inducer of apoptosis (TWEAK) plays a role in cellular proliferation, migration, and apoptosis. The current study aimed to analyze whether soluble TWEAK levels are associated with the severity of coronary arterial disease (CAD) in CKD patients.

Methods

Ninety-seven patients diagnosed with CKD stages 2–3 according to their estimated glomerular filtration rate and the presence of kidney injury were included in the study. Plasma sTWEAK concentrations were determined using commercially available ELISA kits. Coronary angiographies were performed through femoral artery access using the Judkins technique.

Results

Correlation analysis of sTWEAK and Gensini scores showed significant association (p < 0.01, r 2 = 0.287). When patients were divided into two groups with a limit of 17 according to their Gensini score, sTWEAK levels indicated a statistically significant difference (p < 0.01).

Conclusions

Our results indicate a relationship between sTWEAK levels and CAD in CKD stages 2–3 patients.  相似文献   

15.
This study aimed to investigate the effects of human anti-DNA antibodies (Ab) from patients with lupus on renal proximal tubular epithelial cells (PTEC), focusing on alterations in cell morphology and proinflammatory cytokine synthesis. Immunohistochemistry showed increased tubulointerstitial IL-6 expression and IgG deposition in renal biopsies from patients with diffuse proliferative lupus nephritis, not observed in controls or membranous lupus nephritis, which correlated with the severity of inflammatory cell infiltration. Sera from patients with lupus nephritis contained IgG that bound to cultured PTEC. Such binding increased with disease activity and correlated with the level of anti-DNA Ab. Incubation of PTEC with anti-DNA Ab that were isolated during active (active Ab) or inactive (inactive Ab) disease induced IL-6 synthesis, both apically and from the basolateral aspect. This was accompanied by altered cell morphology, increased cell proliferation (P < 0.05), and lactate dehydrogenase release (P < 0.05). The binding of inactive Ab and active Ab to PTEC resulted in differential and sequential upregulation of TNF-alpha, IL-1beta, and IL-6 secretion (P < 0.05). Early induction of TNF-alpha was observed with active Ab; the two then acted synergistically to induce IL-6 secretion. Exposure of PTEC to inactive Ab was associated with modest induction of TNF-alpha, which was not involved in downstream induction of other proinflammatory peptides. These data suggest distinct immunopathogenetic mechanisms during disease flare or remission. Conditioned media from human mesangial cells acted synergistically with anti-DNA Ab to induce cytokine secretion in PTEC. Results from these studies underscore the pivotal role of PTEC in the pathogenesis of tubulointerstitial inflammation and fibrosis in lupus nephritis.  相似文献   

16.
17.
《Renal failure》2013,35(8):1297-1302
Abstract

Purpose: Patients diagnosed with chronic kidney disease (CKD) have a greater rate of cardiovascular mortality when compared with the general population. The soluble form of TNF-like weak inducer of apoptosis (TWEAK) and monocyte chemoattractan protein 1 (MCP-1) play important roles in cellular proliferation, migration and apoptosis. The current study aimed to analyze whether soluble TWEAK (sTWEAK) and MCP-1 levels are associated with the severity of coronary arterial disease (CAD) in CKD patients. Methods: Ninety-seven patients diagnosed with CKD stages 2–3 according to their estimated glomerular filtration rate and the presence of kidney injury were included in the study. Plasma sTWEAK and MCP-1 concentrations were determined using commercially available ELISA kits. Coronary angiographies were performed through femoral artery access using the Judkins technique. Results: Correlation analysis of sTWEAK and Gensini scores showed significant association (p?<?0.01, r2?=?0.287). Also significant correlation has been found in MCP-1 levels and Gensini scores (p?<?0.01, r2?=?0.414). When patients were divided into two groups with a limit of 17 according to their Gensini score, sTWEAK levels indicated a statistically significant difference (p?<?0.01). Conclusions: Our findings support a relationship between sTWEAK and MCP-1 levels and CAD in CKD stages 2–3 patients.  相似文献   

18.
Justo P  Sanz AB  Lorz C  Egido J  Ortiz A 《Kidney international》2006,69(12):2205-2211
Fas-associated death domain (FADD) is an adaptor protein that is required for the transmission of the death signal from lethal receptors of the tumor necrosis factor superfamily. FADD contains a death domain (DD) and a death effector domain (DED). As death receptors contribute to renal tubular injury and tubular cell FADD increases in acute renal failure, we have studied the function of FADD in tubular epithelium. FADD expression was studied in kidney samples from mice. In order to study the contribution of FADD to renal tubular cell survival, FADD or FADD-DD were overexpressed in murine tubular epithelium. FADD is expressed in renal tubules of the healthy kidney. Both FADD and FADD-DD induce apoptosis in primary cultures of murine tubular epithelium and in the murine cortical tubular cell line. Death induced by FADD-DD has apoptotic morphology, but differs from death receptor-induced apoptosis in that it is not blocked by inhibitors of caspases. Neither an inhibitor of serine proteases nor overexpression of antiapoptotic BclxL prevented cell death. However, the combination of caspase and serine protease inhibition was protective. FADD and FADD-DD overexpression decreased nuclear factor kappa B activity. These data suggest that FADD has a death regulatory function in renal tubular cells that is independent of death receptors. FADD-DD is sufficient to induce apoptosis in these cells. This information is relevant to understanding the role of FADD in tubular injury.  相似文献   

19.
20.
Drug discovery to lessen the burden of chronic renal failure and end-stage renal disease remains a principle goal of translational research in nephrology. In this review, we provide an overview of the current development of small molecule cyclin-dependent kinase (CDK)/glycogen synthase kinase-3 (GSK-3) inhibitors as therapeutic agents for parenchymal renal diseases. The emergence of this drug family has resulted from the recognition that CDKs and GSK-3s play critical roles in the progression and regression of many kidney diseases. CDK/GSK-3 inhibitors suppress pathogenic proliferation, apoptosis, and inflammation, and promote regeneration of injured tissue. Preclinical efficacy has now been demonstrated in mesangial proliferative glomerulonephritis, crescentic glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, polycystic kidney diseases, diabetic nephropathy, and several forms of acute kidney injury. Novel biomarkers of therapy are aiding the process of drug development. This review will highlight these advancements in renal therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号