首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal studies have suggested an increased striatal glutamate activity in Parkinson's disease models, although this has not been substantiated in magnetic resonance spectroscopy studies in patients. Our initial aim was to assess glutamate and glutamine levels in the striatum of patients with idiopathic Parkinson's disease, using multivoxel proton magnetic resonance spectroscopy techniques. Since data were collected from other areas of the brain without a priori selection, information on the cortex was also obtained. Twelve healthy volunteers, seven dyskinetic and five non-dyskinetic patients were studied. Peak area ratios of choline-containing compounds (Cho), glutamine and glutamate (Glx) and N-acetyl moieties including N-acetylaspartate (NAx), relative to creatine (Cr) were calculated. Spectra were analysed from the corpus striatum, the occipital cortex and the temporo-parietal cortex. The median Glx/Cr ratio was unaltered in the striatal spectra of Parkinson's disease patients compared to healthy controls. However, the more severely affected patients had significantly reduced NAx/Cr ratios in spectra localised to the temporo-parietal cortex, compared to healthy controls. Furthermore, the entire patient population had significantly reduced Cho/Cr ratios in spectra from the temporo-parietal cortex, compared to the reference population. We found no evidence of increased striatal glutamate in either dyskinetic or non-dyskinetic Parkinson's disease. However, the low NAx/Cr and Cho/Cr ratios in the temporo-parietal cortex may indicate the presence of subclinical cortical dysfunction.  相似文献   

2.
The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1beta injected into the rat striatum with the excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1beta (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1beta mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1beta into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1beta was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1beta can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.  相似文献   

3.
The striatum in the basal ganglia-thalamocortical circuitry is a key neural substrate that is implicated in motor balance and procedural learning. The projection neurons in the striatum are dynamically modulated by nigrostriatal dopaminergic input and intrastriatal cholinergic input. The role of intrastriatal acetylcholine (ACh) in learning behaviors, however, remains to be fully clarified. In this investigation, we examine the involvement of intrastriatal ACh in different categories of learning by selectively ablating the striatal cholinergic neurons with use of immunotoxin-mediated cell targeting. We show that selective ablation of cholinergic neurons in the striatum impairs procedural learning in the tone-cued T-maze memory task. Spatial delayed alternation in the T-maze learning test is also impaired by cholinergic cell elimination. In contrast, the deficit in striatal ACh transmission has no effect on motor learning in the rota-rod test or spatial learning in the Morris water-maze test or on contextual- and tone-cued conditioning fear responses. We also report that cholinergic cell elimination adaptively up-regulates nicotinic ACh receptors not only within the striatum but also in the cerebral cortex and substantia nigra. The present investigation indicates that cholinergic modulation in the local striatal circuit plays a pivotal role in regulation of neural circuitry involving reward-related procedural learning and working memory.  相似文献   

4.
The rat beta nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.  相似文献   

5.
Treatment of Parkinson disease (PD) with L-3,4-dihydroxyphenylalanine (L-DOPA) dramatically relieves associated motor deficits, but L-DOPA-induced dyskinesias (LID) limit the therapeutic benefit over time. Previous investigations have noted changes in striatal medium spiny neurons, including abnormal activation of extracellular signal-regulated kinase1/2 (ERK). Using two PD models, the traditional 6-hydroxydopamine toxic lesion and a genetic model with nigrostriatal dopaminergic deficits, we found that acute dopamine challenge induces ERK activation in medium spiny neurons in denervated striatum. After repeated L-DOPA treatment, however, ERK activation diminishes in medium spiny neurons and increases in striatal cholinergic interneurons. ERK activation leads to enhanced basal firing rate and stronger excitatory responses to dopamine in striatal cholinergic neurons. Pharmacological blockers of ERK activation inhibit L-DOPA-induced changes in ERK phosphorylation, neuronal excitability, and the behavioral manifestation of LID. In addition, a muscarinic receptor antagonist reduces LID. These data indicate that increased dopamine sensitivity of striatal cholinergic neurons contributes to the expression of LID, which suggests novel therapeutic targets for LID.  相似文献   

6.
Interneurons are critical for shaping neuronal circuit activity in many parts of the central nervous system. To study interneuron function in the basal ganglia, we tested and characterized an NK-1 receptor-based method for targeted ablation of specific classes of interneuron in the striatum. Our findings demonstrate that the neurotoxin SP-PE35, a substance P-Pseudomonas exotoxin conjugate, selectively targets striatal cholinergic and nitric oxide synthase/somatostatinergic interneurons when injected locally into the striatum. The effects of this selective cell targeting encompassed alterations in both behavioral and neural responses to dopaminergic stimulation, including altered patterns of early-gene response in striosomes and matrix. We conclude that NK-1-bearing local circuit neurons of the striatum regulate the differential responses of striatal projection neurons to dopamine-mediated signaling.  相似文献   

7.
Striatum expresses a cholinergic system involved in the regulation of its activity and changes in striatal cholinergic receptors may be related to cognitive impairment. This study has investigated muscarinic cholinergic M1-M5 receptor subtype expression in striatum of Fischer 344 rats aged 6 (young), 15 (adult) and 22 months (senescent) to assess the contribution of different muscarinic cholinergic receptor subtypes in age-related changes of striatal cholinergic neurotransmission. Western blot analysis revealed the expression of the M1-M5 muscarinic receptor subtytpes in the striatum of rats of the three age groups investigated. Both radioligand binding assay and light microscope autoradiography showed in young rats a M4>M1>M2>M3>M5 rank order of receptor density. With the exception of M1 receptor, the density of which is similar in the dorsal (motor) and ventral (limbic) striatum, other receptor subtypes were more abundant in ventral than in dorsal striatum. M1 receptor expression was unchanged between young and adult rats and decreased in senescent animals both in dorsal and ventral striatum. In dorsal striatum M2 and M5 receptor expression did not show age-related changes, whereas in ventral striatum it was slightly decreased in adult rats compared to young or senescent cohorts. M3 receptor expression did not show age-related modifications, whereas a progressive age-related decrease of M4 receptor was found, both in dorsal and ventral striatum. These data indicate a heterogeneous response to age of different muscarinic receptor subtypes. Striatal cholinergic markers are thought to correlate with cognitive impairment in aged rats. In view of this, the identification of age-related changes of striatal muscarinic receptor subtypes may contribute to develop cholinergic strategies to counter cholinergic neurotransmission changes occurring with aging.  相似文献   

8.
Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/- mice showed hypolocomotion when subjected to amphetamine challenge and increased striatal denervation and dopaminergic neuron loss induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. DJ-1-/-embryonic cortical neurons showed increased sensitivity to oxidative, but not nonoxidative, insults. Restoration of DJ-1 expression to DJ-1-/- mice or cells via adenoviral vector delivery mitigated all phenotypes. WT mice that received adenoviral delivery of DJ-1 resisted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine-induced striatal damage, and neurons overexpressing DJ-1 were protected from oxidative stress in vitro. Thus, DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.  相似文献   

9.
Cortico-basal ganglia circuits are key parts of the brain's habit system, but little is yet known about how these forebrain pathways function as ingrained habits are performed. We simultaneously recorded spike and local field potential (LFP) activity from regions of the frontal cortex and basal ganglia implicated in visuo-oculomotor control as highly trained macaque monkeys performed sequences of visually guided saccades. The tasks were repetitive, required no new learning, and could be performed nearly automatically. Our findings demonstrate striking differences between the relative timing of striatal and cortical activity during performance of the tasks. At the onset of the visual cues, LFPs in the prefrontal cortex and the oculomotor zone of the striatum showed near-synchronous activation. During the period of sequential-saccade performance, however, peak LFP activity occurred 100-300 msec later in the striatum than in the prefrontal cortex. Peak prefrontal activity tended to be peri-saccadic, whereas peak striatal activity tended to be post-saccadic. This temporal offset was also apparent in pairs of simultaneously recorded prefrontal and striatal neurons. In triple-site recordings, the LFP activity recorded in the supplementary eye field shared temporal characteristics of both the prefrontal and the striatal patterns. The near simultaneity of prefrontal and striatal peak responses at cue onsets, but temporal lag of striatal activity in the movement periods, suggests that the striatum may integrate corollary discharge or confirmatory response signals during sequential task performance. These timing relationships may be signatures of the normal functioning of striatal and frontal cortex during repetitive performance of learned behaviors.  相似文献   

10.
The neurotransmitters dopamine (DA) and glutamate in the striatum play key roles in movement and cognition, and they are implicated in disorders of the basal ganglia such as Parkinson's disease. Excitatory synapses in striatum undergo a form of developmental plasticity characterized by a decrease in glutamate release probability. Here we demonstrate that this form of synaptic plasticity is DA and DA D2 receptor dependent. Analysis of spontaneous synaptic responses indicates that a presynaptic mechanism involving inhibition of neurotransmitter release underlies the developmental plasticity. We suggest that a major role of DA in the striatum is to initiate mechanisms that regulate the efficacy of excitatory striatal synapses, producing a decrease in glutamate release.  相似文献   

11.
Muscarinic acetylcholine receptors (M(1)-M(5)) regulate many key functions of the central and peripheral nervous system. Primarily because of the lack of receptor subtype-selective ligands, the precise physiological roles of the individual muscarinic receptor subtypes remain to be elucidated. Interestingly, the M(4) receptor subtype is expressed abundantly in the striatum and various other forebrain regions. To study its potential role in the regulation of locomotor activity and other central functions, we used gene-targeting technology to create mice that lack functional M(4) receptors. Pharmacologic analysis of M(4) receptor-deficient mice indicated that M(4) receptors are not required for muscarinic receptor-mediated analgesia, tremor, hypothermia, and salivation. Strikingly, M(4) receptor-deficient mice showed an increase in basal locomotor activity and greatly enhanced locomotor responses (as compared with their wild-type littermates) after activation of D1 dopamine receptors. These results indicate that M(4) receptors exert inhibitory control on D1 receptor-mediated locomotor stimulation, probably at the level of striatal projection neurons where the two receptors are coexpressed at high levels. Our findings offer new perspectives for the treatment of Parkinson's disease and other movement disorders that are characterized by an imbalance between muscarinic cholinergic and dopaminergic neurotransmission.  相似文献   

12.
GPR37 is an orphan G protein-coupled receptor expressed in mammalian brain, and its insoluble aggregates are found in the brain samples of juvenile Parkinson's disease patients. We have produced a Gpr37 knock-out mouse strain and identified several phenotypic features that are similar to those reported for mutants of genes encoding components of synaptic dopamine vesicles. Our results reveal an unanticipated role of GPR37 in regulating substantia nigra-striatum dopaminergic signaling. Gpr37(-/-) mice are viable, with normal brain development and anatomy, but they exhibit reduced striatal dopamine content, enhanced amphetamine sensitivity, and specific deficits in motor behavior paradigms sensitive to nigrostriatal dysfunction. These functional alterations are not associated with any substantial loss of substantia nigra neurons or degeneration of striatal dopaminergic afferences, the main histological marks of Parkinson's disease. The inactivation of GPR37, in fact, has protective effects on substantia nigra neurons, causing resistance to treatment with the Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.  相似文献   

13.
Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat in the huntingtin (Htt) gene. HD is autosomal dominant and, in theory, amenable to therapeutic RNA silencing. We introduced cholesterol-conjugated small interfering RNA duplexes (cc-siRNA) targeting human Htt mRNA (siRNA-Htt) into mouse striata that also received adeno-associated virus containing either expanded (100 CAG) or wild-type (18 CAG) Htt cDNA encoding huntingtin (Htt) 1-400. Adeno-associated virus delivery to striatum and overlying cortex of the mutant Htt gene, but not the wild type, produced neuropathology and motor deficits. Treatment with cc-siRNA-Htt in mice with mutant Htt prolonged survival of striatal neurons, reduced neuropil aggregates, diminished inclusion size, and lowered the frequency of clasping and footslips on balance beam. cc-siRNA-Htt was designed to target human wild-type and mutant Htt and decreased levels of both in the striatum. Our findings indicate that a single administration into the adult striatum of an siRNA targeting Htt can silence mutant Htt, attenuate neuronal pathology, and delay the abnormal behavioral phenotype observed in a rapid-onset, viral transgenic mouse model of HD.  相似文献   

14.
Male and female rat pups were administered ethanol (3 g/kg/dose) twice daily by intragastric intubation between postnatal Day (PN) 4 and 8. Pups were maternally reared throughout the exposure period and until sacrifice on PN20. The consequences of this growth spurt exposure to ethanol were measured by an impact upon body growth, as well as upon specific growth parameters and cholinergic neurochemical factors within the cerebral cortex and corpus striatum. Specific endpoints included muscarinic receptor binding dynamics, acetylcholinesterase (AChE) and choline acetyltransferase (CAT) activities, regional wet weights, and subcellular protein content. In male pups, ethanol resulted in a significant enhancement of body weight gain and an increase in striatal but not cortical mass. Additionally, ethanol exposure resulted in a significant increase in striatal muscarinic receptor affinity, regardless of gender. This was accompanied by evidence of a significantly greater density of striatal muscarinic receptors in males versus females, regardless of treatment. Overall, the ethanol-associated effects are suggestive of a drug-induced developmental delay. Gender-specific, treatment-independent differences were also detected in the developing brain regions. Thus, regardless of treatment, cerebral cortical S1-level protein content was found to be significantly greater in males than in females. Furthermore, there were gender-based, significant differences in AChE activity within the striatum of control pups (males greater than females). Ethanol exposure resulted in a loss of this gender-based difference. We conclude that the cholinergic neurochemical development occurring in the striatum of the female rat brain between PN4 and 8 is exquisitely sensitive to ethanol-induced developmental delays which are not remediable by 12 subsequent days of maternal rearing in the absence of ethanol exposure.  相似文献   

15.
Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non–cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons.  相似文献   

16.
17.
In hereditary neurodegenerative Huntington disease (HD), early cognitive impairments before motor deficits have been hypothesized to result from dysfunction in the striatum and cortex before degeneration. To test this hypothesis, we examined the firing properties of single cells and local field activity in the striatum and cortex of pre-motor-symptomatic R6/1 transgenic mice while they were engaged in a procedural learning task, the performance on which typically depends on the integrity of striatum and basal ganglia. Here, we report that a dramatically diminished recruitment of the vulnerable striatal projection cells, but not local interneurons, of R6/1 mice in coding for the task, compared with WT littermates, is associated with severe deficits in procedural learning. In addition, both the striatum and cortex in these mice showed a unique oscillation at high γ-frequency. These data provide crucial information on the in vivo cellular processes in the corticostriatal pathway through which the HD mutation exerts its effects on cognitive abilities in early HD.  相似文献   

18.
Ischemic lesions of the cerebral cortex occur frequently in humans as a result of stroke. One major consequence of the death of cortical neurons is the loss of excitatory cortical projections to subcortical regions. Little is known, however, about the transsynaptic effect of such lesions on neurotransmitter expression in subcortical structures. We have examined the effects of ischemic cortical lesions on the peptidergic neurotransmitters enkephalin and tachykinins in the striatum, a brain region massively innervated by glutamatergic cortical inputs. The levels of enkephalin and tachykinin mRNAs increased in the striatum of adult rats after thermocoagulation of pial vessels. The effects were more pronounced in the striatal region most heavily innervated by the lesioned cortex but were also observed in other striatal regions and on the contralateral side. Increased gene expression was accompanied by increased immunoreactivity for the two peptides. Elevated levels of enkephalin mRNA were observed up to 3 months after surgery in the ipsilateral striatum. Whereas results of previous studies of acute cortical ablations suggested that excitatory corticostriatal neurons were necessary to maintain normal peptide levels in striatal efferent neurons, the present data indicate that lesions of the same corticostriatal neurons secondary to local ischemia result in a paradoxical transsynaptic activation of neuropeptide synthesis in subcortical structures. This effect may play a role in the functional consequences of cortical strokes and progressive cortical atrophy in humans and may have critical bearing for their treatment and prognosis.  相似文献   

19.
A decline of cholinergic neurotransmission probably contributes to cognitive dysfunction occurring in Alzheimer's disease (AD) and vascular dementia (VaD). Acetylcholinesterase (AChE)/cholinesterase (ChE) inhibitors are the only drugs authorized for symptomatic treatment of AD and are also under investigation for VaD. The present study has investigated the influence of two doses of the AChE inhibitor rivastigmine (0.625 mg/Kg/day and 2.5 mg/Kg/day) on vesicular acetylcholine transporter (VAChT) and on choline acetyltransferase (ChAT) expression in frontal cortex, hippocampus, striatum and cerebellum of normotensive and spontaneously hypertensive rats (SHR). Cholinergic markers were assessed by immunochemical (Western blotting) and immunohistochemical techniques. In frontal cortex and striatum of normotensive rats, treatment with the lower dose (0.625 mg/Kg/day) of rivastigmine had no effect on VAChT immunoreactivity and increased slightly ChAT protein immunoreactivity. The higher dose (2.5 mg/Kg/day) of the compound increased significantly VAChT and ChAT protein immunoreactivity. In hippocampus rivastigmine induced a concentration-dependent increase of VAChT protein expression and no significant changes of ChAT protein expression. A similar pattern of VAChT and ChAT protein expression was observed in control SHR, whereas treatment of SHR with rivastigmine induced a more pronounced increase of VAChT protein immunoreactivity in frontal cortex, hippocampus and striatum compared to normotensive rats. Our data showing an increase of VAChT after treatment with rivastgmine further support the notion of an enhancement of cholinergic neurotransmission by AChE/ChE inhibitors. The observation of a greater expression of this cholinergic marker in SHR suggest that AChE inhibition may provide beneficial effects on cholinergic neurotransmission in an animal model of VaD.  相似文献   

20.
Adenosine receptors modulate dopaminergic function by regulating dopamine release in presynaptic neurons and intracellular signaling in postsynaptic striatal neurons. To investigate how adenosine impinges on the action of dopamine in feeding and locomotion, genetically altered, dopamine-deficient mice were treated with adenosine receptor antagonists. Acute administration of the nonselective adenosine receptor antagonist, caffeine (5-25 mgkg i.p.), reversed the hypophagia of mutant mice and induced hyperactivity in both control and mutant animals. However, caffeine treatment elicited much less hyperactivity in dopamine-deficient mice than did l-3,4-dihydroxyphenylalanine (l-dopa) administration, which partially restores dopamine content. Caffeine treatment enhanced feeding of l-dopa-treated mutants but, unexpectedly, it reduced their hyperlocomotion. Caffeine administration induced c-Fos expression in the cortex of dopamine-deficient mice but had no effect in the striatum by itself. Caffeine attenuated dopamine agonist-induced striatal c-Fos expression. An antagonist selective for adenosine A(2A) receptors induced feeding and locomotion in mutants much more effectively than an A(1) receptor antagonist. l-dopa-elicited feeding and hyperlocomotion were reduced in mutants treated with an A(1) receptor agonist, whereas an A(2A) receptor agonist decreased l-dopa-induced feeding without affecting locomotion. The observations suggest that the hypophagia and hypoactivity of mutants result not only because of the absence of dopamine but also because of the presence of A(2A) receptor signaling. This study of a genetic model of dopamine depletion provides evidence that A(2A) receptor antagonists could ameliorate the hypokinetic symptoms of advanced Parkinson's disease patients without inducing excessive motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号