首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Clostridium difficile infection is the primary cause of health care-associated diarrhea. While most laboratories have been using rapid antigen tests for detecting C. difficile toxins, they have poor sensitivity; newer molecular methods offer rapid results with high test sensitivity and specificity. This study was designed to compare the performances of two molecular assays (Meridian illumigene and BD GeneOhm) and two antigen assays (Wampole Quik Chek Complete and TechLab Tox A/B II) to detect toxigenic C. difficile. Fecal specimens from hospitalized patients (n = 139) suspected of having C. difficile infection were tested by the four assays. Nine specimens were positive and 109 were negative by all four methods. After discrepant analysis by toxigenic culture (n = 21), the total numbers of stool specimens classified as positive and negative for toxigenic C. difficile were 21 (15%) and 118 (85%), respectively. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were as follows: GeneOhm (95.2%, 100%, 100%, and 99.2%), illumigene (95.2%, 96.6%, 83.3%, and 99.2%), Tox A/B II (52.4%, 97.5%, 78.6%, and 92.4%), and Quik Chek Complete (47.6%, 100%, 100%, and 91.9%). The illumigene assay performed comparably to the GeneOhm assay with a slight decrease in test specificity; the sensitivities of both far exceeded those of the antigen assays. The clinical characteristics of the concordant and discrepant study patients were similar, including stool consistency and frequency. In the era of rapid molecular-based tests for toxigenic C. difficile, toxin enzyme immunoassays (EIAs) should no longer be considered the standard of care.  相似文献   

2.
Detection of Clostridium difficile toxins A and B in stools by Premier Cytoclone A+B enzyme immunoassay (EIA) was compared with detection by stool culture for C. difficile followed by detection of toxigenic isolates using the same EIA. Chart reviews were performed to evaluate the likelihood of C. difficile-associated diarrhea and colitis (CADC) for all patients with at least one positive toxin assay. While the toxins were detected in 58 of 85 consecutive CADC patients by both assays, CADC in 5 patients was detected only by stool toxin assay, and in 22 patients CADC was detected only by toxigenic culture. Our results suggest that for laboratories using a rapid toxin A+B EIA, direct toxin detection in stools should be combined with toxigenic culture in cases in which there is a negative stool toxin assay.  相似文献   

3.
Clostridium difficile infection (CDI) is changing as evidenced by increasing virulence, rising incidence, unresponsiveness to metronidazole therapy, and worse outcomes. Thus, it is critical that CDI diagnosis be accurate so ongoing epidemiology, disease prevention, and treatment remain satisfactory. We tested 10 diagnostic assays, including 1 commercial real-time polymerase chain reaction (qPCR) test for the laboratory detection of toxigenic C difficile on 1,000 stool samples. Sensitive culture for toxigenic C difficile using 2 types of media with broth enrichment defined the reference standard. For the study, 1,000 tests were performed on samples from 919 patients. Of the samples, 146 contained evidence for toxigenic C difficile and represented the true-positive results. Only the US Food and Drug Administration-cleared qPCR assay (Becton Dickinson, Franklin Lakes, NJ) and 1 glutamate dehydrogenase test (TechLab, Blacksburg, VA) were not statistically inferior to culture in sensitivity. The common enzyme immunoassay tests all had sensitivity values less than 50%. Clinical laboratory professionals need to seriously consider their diagnostic testing and use the assays that perform best for the detection of CDI.  相似文献   

4.
Accurate diagnosis of Clostridium difficile infection (CDI) is essential for optimal treatment, prevention and control. There are two reference assays for CDI diagnosis: the cell cytotoxicity assay (CCTA) and toxigenic culture (TC). Importantly, these tests actually detect different targets: CCTA detects the presence of C difficile toxins (primarily toxin B, but also toxin A), whereas TC detects the presence in the stool of C difficile with the potential to produce toxin. Not surprisingly studies comparing the results of these assays show imperfect agreement. Thus, a faecal sample may be CCTA negative but TC positive, and this raises the crucial question about the clinical significance of the presence of C difficile with the capacity to produce toxin but no actual detectable free toxin. A positive TC result indicates that a patient with diarrhoea is potentially infectious. TC also has the advantage that the cultured isolate is available for typing and for susceptibility testing. In general, however, CCTA has been shown to be a better test for the laboratory confirmation of CDI, although additional culture may be needed to optimise sensitivity. Crucially, when these reference assays are used to determine the accuracy of alternative diagnostic tests, care should be taken to compare methods with their appropriate standard (ie, compare tests that target equivalent end-points). Such issues have contributed to the variable and often suboptimal performance of rapid diagnostic tests for CDI. Further research is urgently needed to improve knowledge of the utility of routine diagnostic tests in CDI and the factors that influence their performance.  相似文献   

5.
A rapid (2.5 h) direct enzyme immunoassay (EIA) for Clostridium difficile toxin A was developed for clinical use. Specimen centrifugation and filtration were not required. The EIA detected toxin A levels in patient stool as low as 20 pg (2 ng/ml of stool). The test was 5,000 times more sensitive for toxin A than it was for toxin B and did not react with a panel of other bacterial species with the exception of one highly toxigenic strain of Clostridium sordellii. The EIA was compared with the cytotoxin assay, culture of toxigenic C. difficile (toxigenic culture), and latex agglutination by using 313 fresh stool specimens submitted from patients with suspected C. difficile-associated disease. Results read visually and with a plate reader were similar. Sixty-two specimens were positive by one or more tests, but only 22 (35%) were positive by all four laboratory methods. The EIA was 84.1% sensitive and 98.9% specific when it was compared with the cytotoxin assay. The use of toxigenic culture to referee discrepant results (EIA versus cytotoxin assay) showed the EIA sensitivity and specificity to be 95.1 and 99.3%, respectively, with respect to other laboratory methods. Patient charts were reviewed for antibiotic-associated diarrhea on 108 specimens, including all those that were positive by at least one test method. Of 34 patients determined to have C. difficile-associated disease, 29 (85.3%) were positive by EIA, 32 (94.1%) were positive by the cytotoxin assay, 27 (79.4%) were positive by toxigenic culture, and 20 (58.8%) were positive by latex agglutination. Seven patients with antibiotic-associated diarrhea had a positive latex result, but results were negative by EIA, the cytotoxin assay, and toxigenic culture. The EIA demonstrated high specificity and good sensitivity for C. difficile-associated disease cases. The test can be used alone or in combination with the cytotoxin assay or toxigenic culture to provide rapid and sensitive results.  相似文献   

6.
Clostridium difficile is the most important cause of nosocomial diarrhea. Several laboratory techniques are available to detect C. difficile toxins or the genes that encode them in fecal samples. We evaluated the Xpert C. difficile and Xpert C. difficile/Epi (Cepheid, CA) that detect the toxin B gene (tcdB) and tcdB, cdt, and a deletion in tcdC associated with the 027/NAP1/BI strain, respectively, by real-time PCR, and the Illumigene C. difficile (Meridian Bioscience, Inc.) that detects the toxin A gene (tcdA) by loop-mediated isothermal amplification in stool specimens. Toxigenic culture was used as the reference method for discrepant stool specimens. Two hundred prospective and fifty retrospective diarrheal stool specimens were tested simultaneously by the cell cytotoxin neutralization assay (CCNA) and the Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. Of the 200 prospective stools tested, 10.5% (n = 23) were determined to be positive by CCNA, 17.5% (n = 35) were determined to be positive by Illumigene C. difficile, and 21.5% (n = 43) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 50 retrospective stools, previously determined to be positive by CCNA, 94% (n = 47) were determined to be positive by Illumigene C. difficile and 100% (n = 50) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 11 discrepant results (i.e., negative by Illumigene C. difficile but positive by Xpert C. difficile and Xpert C. difficile/Epi), all were determined to be positive by the toxigenic culture. A total of 21% of the isolates were presumptively identified by the Xpert C. difficile/Epi as the 027/NAP1/BI strain. The Xpert C. difficile and Xpert C. difficile/Epi assays were the most sensitive, rapid, and easy-to use assays for the detection of toxigenic C. difficile in stool specimens.  相似文献   

7.
Many clinical laboratories in the United States are transitioning from toxin enzyme immunoassays (EIA) to nucleic acid amplification tests (NAATs) as the primary diagnostic test for Clostridium difficile infection (CDI). While it is known that the analytical sensitivity of the toxin EIA is poor, there are limited clinical data on the performance of these assays for patients with mild or severe CDI. Two hundred ninety-six hospital inpatients with diarrhea and clinical suspicion for CDI were tested prospectively by toxin EIA, by C. difficile NAAT, and with a reference standard toxigenic culture. Following completion of laboratory testing, retrospective chart reviews were performed to stratify patients into mild and severe disease groups based on clinical criteria using a standard point-based system. One hundred forty-three patients with CDI confirmed by toxigenic culture were evaluated in this study. Among the patients with mild CDI, 49% tested positive by toxin EIA and 98% tested positive by NAAT. Among patients with severe CDI, 58% tested positive by toxin EIA and 98% tested positive by NAAT. Increased CDI disease severity was not associated with an increased sensitivity of EIA (P = 0.31). These data demonstrate that toxin EIA performs poorly both for patients with severe CDI and for those with mild CDI and support the routine use of NAAT for the diagnosis of CDI. The presence of stool toxin measured by EIA does not correlate with disease severity.  相似文献   

8.
One hundred two stool samples were tested by both the rapid Triage Clostridium difficile Panel (Triage Panel) and the cytotoxin cell culture assay. Five samples positive by both the C. difficile toxin A (Tox A) and common antigen components of the Triage Panel had cytotoxin titers of > or =10,000. Twenty-three samples were Triage Panel Tox A negative but common antigen positive. Ten of these had cytotoxin titers of 10 to 1,000, but 13 were cytotoxin negative. Bacterial isolates obtained from 8 of these 13 specimens were analyzed for Tox A and B genes by PCR, and only two contained toxigenic bacteria. Thus, the majority of samples positive only for C. difficile common antigen contained nontoxigenic bacteria. A Triage Panel Tox A-positive result indicated a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 33.3, 100, 100, and 88.2%, respectively. A Triage Panel common antigen-positive result indicated a sensitivity, specificity, PPV, and NPV of 100, 82.7, 53.6, and 100%, respectively. The high NPV of the Triage Panel common antigen, together with rapid reporting of results, should prove useful in avoiding unnecessary use of contact precautions and antibiotic treatment for C. difficile-negative patients. However, with Triage Panel common antigen-positive patients, a sensitive cytotoxin assay should be used to distinguish true cytotoxin-positive patients from C. difficile carriers.  相似文献   

9.
Clostridium difficile is the infectious agent responsible for antibiotic-associated colitis. We report the use of the polymerase chain reaction technique to identify toxigenic strains of C. difficile in human stool specimens. A set of primers based on the nucleotide sequence of the toxin B gene, which amplified a 399-bp fragment from isolates producing toxin B, was designed. We examined 28 known toxigenic strains, which were all positive by this assay. DNAs from the nontoxigenic strains examined and from strains of Clostridium sordellii and C. bifermentans were not amplified with these primers. The sensitivity of this assay allowed us to identify as little as 10% toxigenic C. difficile cells in the presence of 90% nontoxigenic cells and to detect the toxin B gene in 1 pg of DNA from a toxigenic strain. DNAs extracted from 18 clinical stool specimens that were positive for toxin B by the tissue culture cytotoxicity assay were also positive by this assay. In addition, we detected toxin B sequences in DNA from 2 of 18 stool specimens that were negative for toxin B by the cytotoxicity assay. These two stool specimens were from patients who had a clinical pattern of colitis that was compatible with C. difficile causation. This rapid, sensitive assay will be useful for specific identification of toxigenic C. difficile and for revealing cases that are undetected by analysis of fecal samples for toxin B alone.  相似文献   

10.
The clinical significance of indeterminate (PCR+/Tox?) results for patients tested with a two-step algorithm for Clostridium difficile infection (CDI) is uncertain. We aimed to evaluate the clinical presentation and 8-week outcomes of patients with indeterminate test results. Patients with stool samples testing positive by PCR and negative by toxin A/B immunoassay between February 1, 2017, and April 30, 2018, were assessed by antimicrobial stewardship program (ASP) clinicians and classified as colonized or infected. Retrospective chart review was performed to obtain outcomes occurring within 8 weeks of testing, including recurrent C. difficile diarrhea, subsequent treatment for CDI, follow-up C. difficile testing, all-cause mortality, and CDI-related complications. In total, 110 PCR+/Tox? patients were evaluated. ASP classified 54% of patients as infected and 46% as colonized. Patients assessed and classified as colonized did not have increased adverse outcomes by 8 weeks compared to those assessed as infected, despite not receiving treatment for CDI. We conclude that PCR+/Tox? patients are heterogeneous with respect to clinical presentation. Negative toxin A/B immunoassay in a two-step algorithm should not be interpreted in isolation to distinguish colonization from infection as many PCR+/Tox? results may be clinically significant for CDI.  相似文献   

11.
Many laboratories use enzyme immunoassays (EIAs) for the diagnosis of Clostridium difficile infection (CDI). More recently, polymerase chain reaction (PCR)-based diagnosis has been described as a sensitive test. Real-time PCR for the detection of C. difficile toxin A and B genes was evaluated. A prospective evaluation was performed on stool samples from 150 hospitalized adult patients and 141 healthy volunteers. PCR was compared to toxigenic culture (TC), direct cytotoxicity test (CTT), ImmunoCard? Toxin A and B (Meridian Bioscience), and enzyme-linked immunosorbent assay (ELISA) (Vidas). The results were correlated with clinical data using a standardized questionnaire. The diagnostic yield of the PCR was further evaluated after implementation. Using toxigenic culture as the gold standard, the sensitivity and specificity of PCR were 100 and 99.2%, respectively. Patients were categorized as follows: TC/PCR-positive (n?=?17) and negative TC (n?=?133). The differences in these groups were more frequent use of antibiotics and leukocytosis (p?相似文献   

12.
We examined the incremental yield of stool culture (with toxin testing on isolates) versus our two-step algorithm for optimal detection of toxigenic Clostridium difficile. Per the two-step algorithm, stools were screened for C. difficile-associated glutamate dehydrogenase (GDH) antigen and, if positive, tested for toxin by a direct (stool) cell culture cytotoxicity neutralization assay (CCNA). In parallel, stools were cultured for C. difficile and tested for toxin by both indirect (isolate) CCNA and conventional PCR if the direct CCNA was negative. The "gold standard" for toxigenic C. difficile was detection of C. difficile by the GDH screen or by culture and toxin production by direct or indirect CCNA. We tested 439 specimens from 439 patients. GDH screening detected all culture-positive specimens. The sensitivity of the two-step algorithm was 77% (95% confidence interval [CI], 70 to 84%), and that of culture was 87% (95% CI, 80 to 92%). PCR results correlated completely with those of CCNA testing on isolates (29/29 positive and 32/32 negative, respectively). We conclude that GDH is an excellent screening test and that culture with isolate CCNA testing detects an additional 23% of toxigenic C. difficile missed by direct CCNA. Since culture is tedious and also detects nontoxigenic C. difficile, we conclude that culture is most useful (i) when the direct CCNA is negative but a high clinical suspicion of toxigenic C. difficile remains, (ii) in the evaluation of new diagnostic tests for toxigenic C. difficile (where the best reference standard is essential), and (iii) in epidemiologic studies (where the availability of an isolate allows for strain typing and antimicrobial susceptibility testing).  相似文献   

13.
In order to investigate the incidence, clinical and microbiologic characteristics of Clostridium difficile infection (CDI) in Korea, a prospective observational study was performed. From September 2008 through January 2010, all patients whose stool was tested for toxin assay A&B and/or C. difficile culture were studied for clinical characteristics. Toxin types of the isolates from stool were tested. The mean incidence of CDI per 100,000 patient-days was 71.6 by month (range, 52.5-114.0), and the ratio of CDI to antibiotic-associated diarrhea was 0.23. Among 200 CDI patients, 37.5% (75/200) was severe CDI based on severity score. Clinical outcome of 189 CDI was as followed; 25.9% (49/189) improved without treatment, 84.3% (118/140) achieved clinical cure and attributed mortality was 0.7% (1/140) with the treatment. Recurrence rate was 21.4% (30/140) and cure without recurrence was 66.4% (93/140). The most common type of toxin was toxin A-positive/toxin B-positive strain (77.5%), toxin A-negative/toxin B-positive strains or binary toxin-producing strains comprised 15.4% or 7.1%, respectively. In conclusion, the incidence of CDI in Korea is a little higher than other reports during the non-epidemic setting. We expect that the change of epidemiology and clinical severity in CDI can be evaluated based on these results.  相似文献   

14.
The aim of this study was to compare the clinical and laboratory characteristics of Clostridium difficile infection (CDI) in patients with discordant test results for the cytotoxin assay (CYT) and PCR assays. A retrospective study from May to August 2008 and March to May 2010 was performed. CDI was diagnosed in 128 patients. PCR increased the yield of C. difficile cases by 2-fold compared to that of the CYT assay. Fifty-six cases (44%) were detected by PCR only (CYT negative). Forty-nine percent of patients with non-NAP1 strains were detected by PCR only, compared to 28% of those infected with NAP1 strains (P < 0.05). No significant differences were found in the clinical severity of illness and outcome among patients that tested positive for CDI by both tests (CYT and PCR) compared to those that tested positive by PCR only.  相似文献   

15.
Clostridium difficile is the principal pathogen associated with hospital-acquired acute diarrheal disease. We have evaluated the performances of six approaches for diagnosis of C. difficile-associated diarrhea (CDAD). Consecutive stool specimens (n = 200) from 133 patients were examined by cytotoxin assay, by culture of C. difficile on cycloserine-cefoxitin-fructose agar, and by toxin detection using four rapid immunoassay systems (Oxoid Toxin A test, ImmunoCard Toxin A test, TechLab Tox A/B II test, and Premier Toxins A&B test). A diagnosis of CDAD was established for 35 (27%) patients (representing 29% of specimens). The adjusted sensitivity and specificity of the methods were, respectively, 98 and 99% for the cytotoxin assay, 54 and 99% for ImmunoCard, 50 and 98% for Oxoid, 79 and 98% for TechLab, 80 and 98% for Premier, and 57 and 100% for culture. The TechLab and Premier assays are acceptable tests for diagnosis of CDAD but are not equivalent to the cytotoxin assay.  相似文献   

16.
A PCR assay detecting Clostridium difficile toxin B gene in stool specimens was compared to the cytotoxicity assay as the reference standard for the diagnosis of C. difficile antibiotic-associated diarrhea (CDAD). Overall, 118 stool samples were tested. All of the specimens that were negative by the cytotoxicity assay (59 out of 118) were also negative by the PCR method (specificity of 100%). Of the 59 cytotoxin-positive samples, 54 were PCR positive (sensitivity of 91.5%). This PCR method is promising for rapid diagnosis of CDAD.  相似文献   

17.
We compared a recently marketed enzyme immunoassay for glutamate dehydrogenase (GDH), TechLab's C. DIFF CHEK-60 (TL-GDH), in combination with the C. difficile Tox A/B II enzyme immunoassay (Tox-A/B) with (i) the Triage C. difficile test, which detects both GDH (TR-GDH) and toxin A (TR-Tox-A); (ii) an in-house cytotoxin assay (C-Tox); and (iii) stool cultures for C. difficile. All C. difficile isolates were tested for the presence of the toxin genes by PCR. If a toxin gene-positive strain of Clostridium difficile was recovered and a toxin was detected by any method, the result was considered to be truly positive. Eighty-seven of 93 and 79 of 93 C. difficile culture-positive samples were also TL-GDH and TR-GDH positive, respectively. No test was able to detect toxin in all samples with true-positive results. Tox-A/B and TR-Tox-A in combination with the GDH detection tests and C-Tox were able to identify 52 and 50 samples with true-positive results. Tox-A/B and TR-Tox-A would have missed 15 and 31% of cases of C. difficile-associated diarrhea, respectively, if used alone.  相似文献   

18.
Clostridium difficile is emerging as pathogen in both humans and animals. In 2000 it was described as one of the causes of neonatal enteritis in piglets, and it is now the most common cause of neonatal diarrhea in the United States. In Europe, C. difficile infection (CDI) in both neonatal piglets and adult sows has also been reported. Diagnosis of this infection is based on detection of the bacterium C. difficile or its toxins A and B. Most detection methods, however, are only validated for diagnosing human infections. In this study three commercially available enzyme immunoassays (EIAs) and a commercial real-time-PCR (Becton, Dickinson, and Company) were evaluated by testing 172 pig fecal specimens (139 diarrheic and 33 nondiarrheic piglets). The results of each test were compared to those of cytotoxicity assays (CTAs) and toxigenic culture as the "gold standards." Compared to CTAs, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were, respectively, as follows: for real-time PCR, 91.6, 37.1, 57.6, and 82.5%; for Premier Toxins A&B (Meridian), 83.1, 31.5, 53.1, and 66.7%; for ImmunoCard Toxins A&B kit (ICTAB; Meridian), 86.6, 56.8, 66.9, and 80.7%; and for VIDAS (bioMérieux), 54.8, 92.6, 85.0, and 72.8%. Compared to toxigenic culture, the sensitivity, specificity, PPV, and NPV were, respectively, as follows: for real-time PCR, 93.0, 34.7, 50.0, and 87.5%; for Premier Toxins A&B, 80.3, 27.7, 43.8, and 66.7%; and for ICTAB, 80.0, 46.2, 52.8, and 75.4%; and for VIDAS, 56.4, 89.8, 77.5, and 76.7%. We conclude that all tests had an unacceptably low performance as a single test for the detection of C. difficile in pig herds and that a two-step algorithm is necessary, similar to that in cases of human CDI. Of all of the assays, the real-time PCR had the highest NPV compared to both reference methods and is therefore the most appropriate test to screen for the absence of C. difficile in pigs as a first step in the algorithm. The second step would be a confirmation of the positive results by toxigenic culture.  相似文献   

19.
The currently available diagnostics for Clostridium difficile infection (CDI) have major limitations. Despite mounting evidence that toxin detection is paramount for diagnosis, conventional toxin immunoassays are insufficiently sensitive and cytotoxicity assays too complex; assays that detect toxigenic organisms (toxigenic culture [TC] and nucleic acid amplification testing [NAAT]) are confounded by asymptomatic colonization by toxigenic C. difficile. We developed ultrasensitive digital enzyme-linked immunosorbent assays (ELISAs) for toxins A and B using single-molecule array technology and validated the assays using (i) culture filtrates from a panel of clinical C. difficile isolates and (ii) 149 adult stool specimens already tested routinely by NAAT. The digital ELISAs detected toxins A and B in stool with limits of detection of 0.45 and 1.5 pg/ml, respectively, quantified toxins across a 4-log range, and detected toxins from all clinical strains studied. Using specimens that were negative by cytotoxicity assay/TC/NAAT, clinical cutoffs were set at 29.4 pg/ml (toxin A) and 23.3 pg/ml (toxin B); the resulting clinical specificities were 96% and 98%, respectively. The toxin B digital ELISA was 100% sensitive versus cytotoxicity assay. Twenty-five percent and 22% of the samples positive by NAAT and TC, respectively, were negative by the toxin B digital ELISA, consistent with the presence of organism but minimal or no toxin. The mean toxin levels by digital ELISA were 1.5- to 1.7-fold higher in five patients with CDI-attributable severe outcomes, versus 68 patients without, but this difference was not statistically significant. Ultrasensitive digital ELISAs for the detection and quantification of toxins A and B in stool can provide a rapid and simple tool for the diagnosis of CDI with both high analytical sensitivity and high clinical specificity.  相似文献   

20.
In the past decade, the incidence of Clostridium difficile infections (CDI) with a more severe course has increased in Europe and North America. Assays that are capable of rapidly diagnosing CDI are essential. Two real-time PCRs (LUMC and LvI) targeting C. difficile toxin genes (tcdB, and tcdA and tcdB, respectively) were compared with the BD GeneOhm PCR (targeting the tcdB gene), using cytotoxigenic culture as a gold standard. In addition, a real-time PCR targeting the tcdC frameshift mutation at position 117 (Δ117 PCR) was evaluated for detecting toxigenic C. difficile and the presence of PCR ribotype 027 in stool samples. In total, 526 diarrheal samples were prospectively collected and included in the study. Compared with those for cytotoxigenic culture, sensitivity, specificity, positive predicted value (PPV), and negative predicted value (NPV) were for PCR LUMC 96.0%, 88.0%, 66.0%, and 98.9%, for PCR LvI 100.0%, 89.4%, 69.7%, and 100.0%, for PCR Δ117 98.0%, 90.7%, 71.9%, and 99.5%, and for PCR BD GeneOhm 88.3%, 96.9%, 86.5%, and 97.4%. Compared to those with feces samples cultured positive for C. difficile type 027, the sensitivity, specificity, PPV, and NPV of the Δ117 PCR were 95.2%, 96.2%, 87.0%, and 98.7%. We conclude that all real-time PCRs can be applied as a first screening test in an algorithm for diagnosing CDI. However, the low PPVs hinder the use of the assays as stand-alone tests. Furthermore, the Δ117 PCR may provide valuable information for minimizing the spread of the epidemic C. difficile PCR ribotype 027.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号