共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. 总被引:12,自引:0,他引:12
Safe and efficient genetic modification of liver cells could enable new therapies for a variety of hepatic and systemic diseases. Lentiviral vectors are promising tools for in vivo gene delivery. Previous data suggested that recruitment into the cell cycle was required for transduction of hepatocytes in vivo. We developed an improved vector design that enhanced nuclear translocation in target cells and significantly improved gene transfer performance. Using the new vector and a panel of internal promoters, we showed that rat hepatocytes were transduced ex vivo to high frequency without requirement for proliferation. On intravenous administration of vector into adult severe combined immunodeficient (SCID) mice, we found high levels (up to 30%) of transduction of parenchymal and nonparenchymal cells of the liver, integration of the vector genome in liver DNA and stable expression of the marker green fluorescent protein (GFP)-encoding gene without signs of toxicity. Coadministration of vectors and 5'-bromo-2'-deoxyuridine in vivo proved that cell cycling was not required for efficient transduction of hepatocytes. In addition to the liver, the spleen and the bone marrow were transduced effectively by systemic delivery of vector. GFP expression was observed in all these organs when driven by the cytomegalovirus promoter and by the phosphoglycerate kinase gene promoter. Using the promoter of the albumin gene, we could restrict expression to hepatocytes. By a single vector injection into the bloodstream of SCID mice, we achieved therapeutic-range levels of the human clotting factor IX, stable in the plasma for up to 1 year (the longest time tested), indicating the potential efficacy of improved lentiviral vectors for the gene therapy of hemophilias and other diseases. 相似文献
2.
Lentiviral vectors represent an attractive technology platform from which to develop a targetable injectable gene delivery system for transduction of specific cell populations in vivo, irrespective of their cell cycle status. Targeted HIV-1-based lentiviral vectors were generated by pseudotyping them with chimeric murine leukemia virus (MLV) envelope glycoproteins displaying N-terminal targeting polypeptides. Vectors displaying an EGF polypeptide were fully infectious on EGF receptor-negative cells, but were inactive on cells with abundant EGF receptors (inverse targeting). Receptor-mediated inactivation of gene transfer was overcome by competing the EGF receptors on the target cells with soluble EGF or by removing the displayed EGF domain from the surface of the vector particles by factor Xa cleavage of a specific protease substrate engineered into its tethering linker (protease targeting). Intravenous infusion of nontargeted HIV-1 vectors led to maximal luciferase activity in liver and spleen with moderate or minimal activity in heart, skeletal muscle, lung, brain, kidney, ovaries and bone marrow. In contrast, intravenous EGF-displaying vectors were expressed maximally in spleen with very low level luciferase expression detectable in liver (EGF-receptor rich). Liver transduction by the EGF-displaying vector was restored by pretreating the animals with soluble EGF suggesting that these vectors are inversely targeted to spleen. 相似文献
3.
4.
Lundstrom K 《Intervirology》2000,43(4-6):247-257
Replication-deficient alphavirus vectors have been developed for efficient high-level transgene expression. The broad host range of alphaviruses has allowed infection of a wide variety of mammalian cell lines and primary cultures. Particularly, G protein-coupled receptors have been expressed at high levels and subjected to binding and functional studies. Expression in suspension cultures has greatly facilitated production of large quantities of recombinant proteins for structural studies. Injection of recombinant alphavirus vectors into rodent brain resulted in local reporter gene expression. Highly neuron-specific expression was obtained in hippocampal slice cultures in vivo. Additionally, preliminary studies in animal models suggest that alphavirus vectors can be attractive candidates for gene therapy applications. Traditionally alphavirus vectors, either attenuated strains or replication-deficient particles, have been used to elicit efficient immune responses in animals. Recently, the application of alphaviruses has been extended to naked nucleic acids. Injection of DNA as well as RNA vectors has demonstrated efficient antigen production. In many cases, protection against lethal challenges has been obtained after immunization with alphavirus particles or nucleic acid vectors. Alphavirus vectors can therefore be considered as potentially promising vectors for vaccine production. 相似文献
5.
White K Büning H Kritz A Janicki H McVey J Perabo L Murphy G Odenthal M Work LM Hallek M Nicklin SA Baker AH 《Gene therapy》2008,15(6):443-451
Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors. 相似文献
6.
Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. 总被引:3,自引:0,他引:3
Bradley L Hodges Kristin M Taylor Macy F Joseph Sarah A Bourgeois Ronald K Scheule 《Molecular therapy》2004,10(2):269-278
CpG-reduced, CMV-based plasmid DNA constructs encoding human alpha-galactosidase A and factor IX were injected into C57Bl/6, BALB/c, and CD1 mice using hydrodynamics-based delivery of plasmid DNA (pDNA), and gene expression was monitored for 6 months. Linearized and supercoiled pDNAs were compared for their abilities to support long-term expression and to generate immune responses to the transgene product. In all mouse strains supercoiled CpG-reduced pDNA encoding alpha-galactosidase A and factor IX generated higher and more sustained levels of circulating gene product than their supercoiled CpG-replete analogs. Linearizing supercoiled CpG-reduced pDNA did not significantly increase levels of circulating gene product beyond levels supercoiled CpG-reduced pDNA could achieve. Linearizing supercoiled CpG-replete pDNA vectors significantly increased expression compared to their supercoiled CpG-replete analogs, but the increase was short-lived or subtherapeutic. Regardless of vector, liver depot expression did not elicit significant antibody responses to human alpha-galactosidase A or factor IX. Taken together, these data suggest that a clinically acceptable hydrodynamics-based approach targeting the liver combined with CpG-reduced pDNA vectors may represent a viable option for individuals with hemophilia, a lysosomal storage disease, or other disease in which prolonged depot expression of a therapeutic protein from the liver is desirable. 相似文献
7.
8.
Martín F Toscano MG Blundell M Frecha C Srivastava GK Santamaría M Thrasher AJ Molina IJ 《Gene therapy》2005,12(8):715-723
The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. In order to achieve this, we used a 500 bp fragment from the proximal WASP gene promoter to drive the expression of the WASP cDNA in the context of a self-inactivating lentiviral vector. Single-round transduction of WASp-deficient herpesvirus saimiri (HVS)-immortalized cells as well as primary allospecific T cells from Wiskott-Aldrich syndrome (WAS) patients with this vector (WW) resulted in expression levels similar to those of control cells. Non-HCs were transduced with similar efficiency, but the levels of WASp were 135-350 times lower than those achieved in HCs. Additionally, transduction of WASp-deficient cells with WW conferred a selective growth advantage in vitro. Therefore, lentiviral vectors incorporating proximal promoter sequences from the WASP gene confer hematopoietic-specific, and physiological protein expression. 相似文献
9.
We have explored a novel strategy for the targeting of retroviral vectors to particular sites or cell types. This strategy involves a method whereby the infectivity of a retroviral vector is neutralized by treatment of viral particles with a photocleavable, biotinylation reagent. These modified viral vectors possess little to no infectivity for target cells. Exposure of these modified viral vectors to long-wavelength UV light induces a reversal of the neutralizing, chemical modification resulting in restoration of infectivity to the viral vector. This infectivity 'trigger' possesses great potential, both as a research tool and as a novel tactic for the targeting of gene-transfer agents, since it would become possible to direct both the time and location of a viral infection in a versatile manner. 相似文献
10.
van Beusechem VW van Rijswijk AL van Es HH Haisma HJ Pinedo HM Gerritsen WR 《Gene therapy》2000,7(22):1940-1946
Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be fulfilled by deleting the entire knob domain of the adenovirus fiber protein and replacing it with two distinct moieties that provide a trimerization function for the knobless fiber and specific binding to the target cell, respectively. To test this concept, we constructed adenoviral vectors carrying knobless fibers comprising the alpha-helix trimerization domain from MoMuLV envelope glycoprotein. Two mimic targeting ligands, a Myc-epitope and a 6His-tag, were attached via a flexible linker peptide. The targeted knobless fiber molecules were properly expressed and imported into the nucleus of adenovirus packaging cells, where they were incorporated as functional trimers into the adenovirus capsid. Both ligands were exposed on the surface of the virion and were available for specific binding to their target molecules. Moreover, the knobless fibers mediated gene delivery into cells displaying receptors for the coupled ligand. Hence, these knobless fibers are prototype substrates for versatile addition of targeting ligands to generate truly targeted adenoviruses. 相似文献
11.
12.
13.
Non-viral gene therapy is being considered as a treatment for cystic fibrosis. In clinical studies and in studies using the mouse airways as a model, current formulations result in only transient transgene expression. A number of reasons for this have been proposed including the loss of plasmid DNA from cells. The aim of these studies was to investigate why transgene expression from non-viral vectors is transient in the mouse lung. Plasmid DNA encoding the luciferase reporter gene was complexed with the cationic lipid GL67 and delivered to the mouse airways. The persistence of plasmid DNA in the mouse lungs was investigated using quantitative PCR and Southern hybridization. Results showed that intact plasmid DNA persisted in the mouse lung in the absence of any detectable luciferase activity. The de novo methylation of plasmid DNA in vivo was investigated as a potential cause of this transient gene expression but results suggested that plasmid DNA does not become de novo methylated in the mouse lung. Therefore processes other than the loss of plasmid DNA from the lung or the de novo methylation of plasmid DNA vectors must be responsible for the transient transgene expression. 相似文献
14.
AAV vectors for RNA-based modulation of gene expression 总被引:1,自引:0,他引:1
Danos O 《Gene therapy》2008,15(11):864-869
15.
16.
Ward CM 《Current opinion in molecular therapeutics》2000,2(2):182-187
The vitamin folic acid exhibits high affinity for the endocytosed, membrane-bound folate receptor. Conjugation of folic acid via its gamma-carboxyl group to various macromolecules results in binding to, and endocytosis into, cells expressing the folate receptor. The folate receptor is overexpressed on a wide range of cancers, therefore folic acid has been investigated as a targeting ligand for the specific delivery of therapeutic compounds to cancer cells. This review will introduce folate-targeting of macromolecules to cancer cells in vitro and in vivo, and discuss the accumulation of such compounds in non-target tissues in vivo. Folate-targeting of non-viral DNA vectors in vitro and in vivo will be discussed in detail, with particular emphasis on the recent advances in this field. 相似文献
17.
靶向HIWI基因的shRNA真核表达载体的构建及鉴定 总被引:2,自引:0,他引:2
目的构建靶向HIWI基因的shRNA真核表达载体质粒,为利用RNA干扰技术探索HIWI基因的作用的研究做准备。方法根据HIWI mRNA序列设计并合成shRNA寡核苷酸片段,退火形成双链并连接入pGenesil-2载体,并进行酶切鉴定和测序。结果酶切证明构建的shRNA已插入载体中,经测序证明与设计相同。结论成功构靶向HIWI基因的shRNA真核表达载体,为进一步研究HIWI基因在干细胞和肿瘤细胞中的作用机制及后续的体内外RNAi实验研究奠定了基础。 相似文献
18.
Sarah J Nightingale Roger P Hollis Karen A Pepper Denise Petersen Xiao-Jin Yu Catherine Yang Ingrid Bahner Donald B Kohn 《Molecular therapy》2006,13(6):1121-1132
Nonintegrating lentiviral (NIL) vectors were produced from HIV-1-based lentiviral vectors by introducing combinations of mutations made to disable the integrase protein itself and to alter the integrase recognition sequences (att) in the viral LTR. NIL vectors with these novel combinations of mutations were used to transduce the human T lymphoid cell line Jurkat and primary human CD34(+) hematopoietic progenitor cells to assess their efficacy measured through transient expression of the enhanced green fluorescent protein (eGFP) reporter gene. The most disabled NIL vectors resulted in initial high levels of eGFP expression (approximately 90% of cells), but expression was transient, diminishing toward background (<0.5%) within less than 1 month. Southern blot analyses of transduced Jurkat cells confirmed the loss of detectable NIL vector sequence (linear form and one- and two-LTR circles) by 1 month. There were low residual levels of integration by NIL vectors (reduced approximately 10(4)-fold compared to wild-type vectors), despite any combination of the engineered changes. Based upon analysis of the sequences of the DNA from the junctions of the vector LTR and cellular chromosomes, these rare integrated NIL vector sequences were not mediated by an integrase-driven mechanism due to reversion of the engineered mutations, but more likely were produced by background recombination events. The development of NIL vectors provides a novel tool for efficient transient gene expression in primary stem cells and hematopoietic and lymphoid cells. 相似文献
19.