首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bone morphogenetic protein-4 (BMP-4), a member of the transforming growth factor-beta superfamily, is capable of initiating differentiation of uncommitted mesenchymal cells into a chondro/osteogenic pathway. This study reports the effects of pentoxifylline (PTX), a nonspecific inhibitor of phosphodiesterases (PDEs), that causes elevation of the intracellular cyclic adenosine monophosphate (cAMP) level on the BMP-4-induced chondro/osteogenic differentiation of a mesenchymal cell line, C3H10T1/2; a bone marrow stromal cell line, ST2; and an osteoblastic cell line, MC3T3-E1. It was found that PTX enhanced BMP-4-induced chondro/osteogenic differentiation in C3H10T1/2 and ST2 cells. Similar effects were observed when adding dibutyryl-cAMP and forskolin. These results indicate that cAMP may potentiate the action of BMP-4 on osteoprogenitor cells, highlighting the possibility that PDE inhibitors could be used as therapeutic agents to enhance bone formation through this effect.  相似文献   

4.
目的 探讨黄芩素(BAI)对小鼠胚胎成骨细胞前体细胞(MC3T3-E1)成骨分化的作用及其分子机制。方法 将MC3T3-E1分为对照组(正常培养)和BAI组(以Baicalein处理),在成骨分化条件培养下采用CCK-8检测BAI对MC3T3-E1细胞增殖的影响;分别以碱性磷酸酶染色(ALP)、茜素红染色(ARS)检测MC3T3-E1细胞成骨分化水平与矿化能力,实时荧光定量PCR检测成骨标志基因ALP、COL1A1、RUNX2、OSX的mRNA表达水平,通过免疫印迹法(Western-blot)检测MC3T3-E1细胞中BMP-2、Smad1、p-Smad1蛋白表达水平,通过免疫荧光技术(IF)检测RUNX2、COL1A1表达水平。结果 与对照组比较,BAI干预1 d后发现,BAI组COL1A1(P<0.001)、RUNX2(P <0.05)、OSX(P <0.05) mRNA表达水平在成骨分化中表达上升;干预3 d后发现,与对照组比较,BAI组ALP(P <0.05)、RUNX2(P <0.001)mRNA表达上升;干预7 d后发现,与对照组比较,BAI组COL1A1(P <0.05)mRNA表达水平较对照组上升,BMP-2、p-Smad1/Smad1蛋白表达水平上升(P <0.05)。免疫荧光中成骨标志蛋白RUNX2、COL1A1表达增多(P <0.05)。结论 BAI可通过激活BMP-2/Smad通路促进MC3T3-E1成骨分化。  相似文献   

5.
目的 探讨THSD4基因对小鼠间充质干细胞和MC3T3-E1细胞成骨分化的影响。方法 提取绝经后骨质疏松症患者的骨髓间充质干细胞进行基因测序分析,与骨关节炎患者的骨髓间充质干细胞进行比较,分析基因表达差异。通过提取不同分化阶段的小鼠骨髓间充质干细胞(M-BMSC)及MC3T3-E1细胞的mRNA来检测THSD4 基因以及成骨分化的标志性基因(ALP、Runx2、Osx)的表达水平。通过构建慢病毒表达载体来实现对M-BMSC及MC3T3-E1细胞中THSD4的敲减及过表达,并观察其对M-BMSC及MC3T3-E1细胞成骨分化能力的影响。结果 THSD4基因在绝经后骨质疏松症患者骨髓间充质干细胞中明显下调,且通过KEGG以及GO富集分析发现THSD4基因可能与PI3K-AKT信号通路及Wnt信号通路相关。随着成骨诱导分化时间的延长,THSD4 mRNA和成骨分化标志性基因(ALP、Runx2、Osx)mRNA在MC3T3-E1以及M-BMSC中表达量均逐渐增加。过表达THSD4可以增强MC3T3-E1细胞和M-BMSC的成骨分化能力,而敲减THSD4则减弱了MC3T3-E1细胞和M-BMSC的成骨分化能力。结论 THSD4基因在绝经后骨质疏松症患者骨髓间充质干细胞中明显下调,且THSD4基因可以增强MC3T3-E1细胞以及M-BMSC的成骨分化能力。  相似文献   

6.
Wnt/beta-catenin signaling has recently been suggested to be involved in bone biology. The precise role of this cascade in osteoblast differentiation was examined. We show that a Wnt autocrine loop mediates the induction of alkaline phosphatase and mineralization by BMP-2 in pre-osteoblastic cells. INTRODUCTION: Loss of function of LRP5 leads to osteoporosis (OPPG syndrome), and a specific point mutation in this same receptor results in high bone mass (HBM). Because LRP5 acts as a coreceptor for Wnt proteins, these findings suggest a crucial role for Wnt signaling in bone biology. MATERIALS AND METHODS: We have investigated the involvement of the Wnt/LRP5 cascade in osteoblast function by using the pluripotent mesenchymal cell lines C3H10T1/2, C2C12, and ST2 and the osteoblast cell line MC3T3-E1. Transfection experiments were carried out with a number of elements of the Wnt/LRP5 pathway. Measuring osteoblast and adipocyte differentiation markers addressed the effect of this cascade on osteoblast differentiation. RESULTS: In mesenchymal cells, only Wnt's capable of stabilizing beta-catenin induced the expression of alkaline phosphatase (ALP). Wnt3a-mediated ALP induction was inhibited by overexpression of either Xddl, dickkopf 1 (dkk1), or LRP5deltaC, indicating that canonical beta-catenin signaling is responsible for this activity. The use of Noggin, a bone morphogenic protein (BMP) inhibitor, or cyclopamine, a Hedgehog inhibitor, revealed that the induction of ALP by Wnt is independent of these morphogenetic proteins and does not require de novo protein synthesis. In contrast, blocking Wnt/LRP5 signaling or protein synthesis inhibited the ability of both BMP-2 and Shh to induce ALP in mesenchymal cells. Moreover, BMP-2 enhanced Wntl and Wnt3a expression in our cells. In MC3T3-E1 cells, where endogenous ALP levels are maximal, antagonizing the Wnt/LRP5 pathway led to a decrease of ALP activity. In addition, overexpression of dkkl reduced extracellular matrix mineralization in a BMP-2-dependent assay. CONCLUSIONS: Our data strongly suggest that the capacity of BMP-2 and Shh to induce ALP relies on Wnt expression and the Wnt/LRP5 signaling cascade. Moreover the effects of BMP-2 on extracellular matrix mineralization by osteoblasts are mediated, at least in part, by the induction of a Wnt autocrine/paracrine loop. These results may help to explain the phenotype of OPPG patients and HBM.  相似文献   

7.
8.
Pi handling by osteogenic cells is important for bone mineralization. The role of Pi transport in BMP-2-induced matrix calcification was studied. BMP-2 enhances Pit-1 Pi transporters in osteogenic cells. Experimental analysis suggest that this response is required for bone matrix calcification. INTRODUCTION: Bone morphogenetic proteins (BMPs) are produced by osteogenic cells and play an important role in bone formation. Inorganic phosphate (Pi) is a fundamental constituent of hydroxyapatite, and its transport by osteogenic cells is an important function for primary calcification of the bone matrix. In this study, we investigated the role of Pi transport in BMP-2-induced matrix mineralization. MATERIALS AND METHODS: Confluent MC3T3-E1 osteoblast-like cells were exposed to BMP-2 for various time periods. Pi and alanine transport was determined using radiolabeled substrate, Pit-1 and Pit-2 expression by Northern blot analysis, cell differentiation by alkaline phosphatase activity, matrix mineralization by alizarin red staining, and the characteristics of mineral deposited in the matrix by transmission electron microscopy, electron diffraction analysis, and Fourier transformed infrared resolution (FTIR). RESULTS: BMP-2 time- and dose-dependently stimulated Na-dependent Pi transport in MC3T3-E1 cells by increasing the V(max) of the transport system. This effect was preceded by an increase in mRNA encoding Pit-1 but not Pit-2. BMP-2 also dose-dependently enhanced extracellular matrix mineralization, an effect blunted by either phosphonoformic acid or expression of antisense Pit-1. Enhanced Pi transport and matrix mineralization induced by BMP-2 were blunted by a specific inhibitor of the c-Jun-N-terminal kinase (JNK) pathway. CONCLUSIONS: Results presented in this study indicate that, in addition to its well-known effect on several markers of the differentiation of osteoblastic cells, BMP-2 also stimulates Pi transport activity through a selective increase in expression of type III Pi transporters Pit-1. In MC3T3-E1 cells, this effect is mediated by the JNK pathway and plays an essential role in bone matrix calcification induced by BMP-2.  相似文献   

9.
目的 探讨仙灵骨葆胶囊含药血清对小鼠胚胎成骨细胞前体细胞(MC3T3-E1)增殖分化的影响及与p38MAPK信号通路的关系。方法 用仙灵骨葆胶囊含药血清干预MC3T3-E1,CCK8法筛选最佳干预时间及浓度,试剂盒检测各组细胞ALP活性。将细胞分为A、B、C、D 4组,分别加入10%含药血清、10%空白血清、10%含药血清+SB203580、10%空白血清+SB203580,利用免疫印迹法(Western blot)检测p38丝裂原活化蛋白激酶(p38)、磷酸化p38(p-p38)、成骨相关转录因子2(Runx2)、骨形态发生蛋白2(BMP-2)的蛋白表达量,荧光定量PCR检测p38、Runx2和BMP-2 mRNA的表达水平。结果 与空白血清组相比,不同浓度的仙灵骨葆胶囊含药血清均能促进MC3T3-E1的增殖分化,提高ALP的活性,其中10%含药血清干预36 h的作用最为明显(P<0.05);与B组比较,A组p38、p-p38、Runx2、BMP-2蛋白及p38、Runx2、BMP-2 mRNA的表达明显增高(P<0.05);加入信号通路阻断剂SB203580后,C组与D组上述指标的表达明显降低(P<0.05);与C组相比,D组p38、p-p38、Runx2、BMP-2蛋白及p38、Runx2、BMP-2 mRNA表达更低(P<0.05)。结论 仙灵骨葆胶囊含药血清能促进MC3T3-E1的分化生长,其作用机制可能与激活p38MAPK信号通路、上调成骨相关因子Runx2、BMP-2的表达有关。  相似文献   

10.
11.
Osteopontin (OPN) is an important mediator of bone remodeling. However, the role of OPN in the process of bone formation is not fully understood. In previous studies, we have shown that MC3T3-E1 pre-osteoblastic cells at higher passage number exhibited weakened osteogenic capacity and elevated OPN mRNA expression. In this work, we investigated the role of OPN on proliferation and differentiation of low-passage MC3T3-E1 cells by studying stable cell lines overexpressing either OPN mRNA or its antisense RNA. Overexpression was verified by both Northern and Western blot analyses. Overexpression of OPN markedly inhibited proliferation as determined by daily cell counts, while overexpression of antisense RNA stimulated cellular proliferation. We also examined the effect of OPN level on BMP-2-induced alkaline phosphatase activity. Overexpression of OPN inhibited BMP-2 responsiveness while overexpression of antisense RNA enhanced the effect of BMP-2 on alkaline phosphatase activity. Increased OPN expression also caused decreases in expression of osteocalcin and bone sialoproteins while a reduction of OPN level caused the opposite. Furthermore, endogenous OPN expression in response to BMP-2 exhibited a biphasic pattern, that is, it was initially inhibited and then enhanced by the treatment of BMP-2, indicating that OPN might function as a negative feedback regulator for osteoblastic differentiation. Finally, overexpression of OPN inhibited mineral deposition. In contrast, overexpression of antisense RNA enhanced mineral deposition. These results indicate that OPN is a negative regulator of proliferation and differentiation in MC3T3-E1 cells.  相似文献   

12.
13.
14.
15.
The role of epidermal growth factor receptors (EGF-R) in osteogenic cell differentiation was investigated using preosteoblastic MC3T3-E1 (MC3T3) cells and osteoblast-like ROS 17/2.8 (ROS) cells. When cultured in the presence of β-glycerophosphate (GP) and ascorbic acid (AA), MC3T3 cells underwent spontaneous differentiation into osteoblasts which was confirmed as they expressed osteoblast markers such as alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteocalcin (OC). Interestingly, the number of EGF-binding sites decreased during their differentiation into osteoblasts, and the osteogenic protein-1 (OP-1) treatment, which accelerated their differentiation, lowered the number of EGF-binding sites even further. On the other hand, ROS cells with high expression levels of osteoblast markers and no EGF-R, after being transfected with human EGF-R cDNA (EROS cells), expressed numerous EGF-binding sites as well as EGF-R mRNA and protein; in the process, they ceased to express osteoblast markers, indicating their dedifferentiation into osteoprogenitor cells. Both MC3T3 and EROS cells showed increased cell growth in response to EGF, whereas ROS cells did not. These results imply that the EGF/EGF-R system in osteogenic cells has a crucial function in osteoblast phenotype suppression and osteogenic cell proliferation.  相似文献   

16.
Glucocorticoids (GCs), which play an important role in the normal regulation of bone remodeling, are widely used as anti-inflammatory and chemotherapeutic agents. However, continued exposure to GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. To understand the mechanism of how GCs induce cell death in osteoblasts, we examined apoptotic effects of dexamethasone (Dex), GC, on MC3T3-E1 osteoblast cells. Results revealed that Dex-induced apoptosis was inhibited by a GC receptor antagonist, mifepristone, and a general caspase inhibitor, Z-VAD-fmk, indicating that Dex induces apoptosis of MC3T3-E1 cells through the pathways involved in GC receptor and caspase. Glycogen synthase kinase 3β (GSK3β) is known to participate in apoptosis signaling in MC3T3-E1 cells. Dex activated both GSK3β and p38-mitogen-activated protein kinase (MAPK). The inhibition of GSK3β by inhibitor (LiCl) or small interference RNA (siRNA) decreased apoptosis. In contrast, the inhibition of p38-MAPK by inhibitor (SB203580) or siRNA did not decrease, but increase apoptosis. These results suggest that Dex-mediated apoptosis of osteoblasts is facilitated by GSK3β, but prevented by p38-MAPK.  相似文献   

17.
Excessive reactive oxygen species (ROS) play an important role in the development of osteoporosis. Ophiopogonin D (OP-D), isolated from the traditional Chinese herbal agent Radix Ophiopogon japonicus, is a potent anti-oxidative agent. We hypothesized that OP-D demonstrates anti-osteoporosis effects via decreasing ROS generation in mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells and a macrophage cell line RAW264.7 cells. We investigated OP-D on osteogenic and osteoclastic differentiation under oxidative status. Hydrogen peroxide (H2O2) was used to establish an oxidative damage model. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Then, we searched the molecular mechanism of OP-D against osteoporosis. Our results revealed that OP-D significantly promoted the proliferation of MC3T3-E1 cells and improved some osteogenic markers. Moreover, OP-D reduced TRAP activity and the mRNA expressions of osteoclastic genes in RAW264.7 cells. OP-D suppressed ROS generation in both MC3T3-E1 and RAW264.7 cells. OP-D treatment reduced the activity of serum bone degradation markers, including CTX-1 and TRAP. Further research showed that OP-D displayed anti-osteoporosis effects via reducing ROS through the FoxO3a-β-catenin signaling pathway. In summary, our results indicated that the protective effects of OP-D against osteoporosis are linked to a reduction in oxidative stress via the FoxO3a-β-catenin signaling pathway, suggesting that OP-D may be a beneficial herbal agent in bone-related disorders, such as osteoporosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号